blob: cd802123e2c482827acda1f4689aaf7f0ad6eaf1 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ctype.h>
#include <fcntl.h>
#include <inttypes.h>
#include <poll.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <string>
#include <android-base/file.h>
#include <android-base/macros.h>
#include <android-base/stringprintf.h>
#include <cutils/sockets.h>
#include <gtest/gtest.h>
#include <private/android_filesystem_config.h>
#include <private/android_logger.h>
#ifdef __ANDROID__
#include <selinux/selinux.h>
#endif
#include "../LogReader.h" // pickup LOGD_SNDTIMEO
#include "../libaudit.h" // pickup AUDIT_RATE_LIMIT_*
#ifdef __ANDROID__
static void send_to_control(char* buf, size_t len) {
int sock = socket_local_client("logd", ANDROID_SOCKET_NAMESPACE_RESERVED,
SOCK_STREAM);
if (sock >= 0) {
if (write(sock, buf, strlen(buf) + 1) > 0) {
ssize_t ret;
while ((ret = read(sock, buf, len)) > 0) {
if (((size_t)ret == len) || (len < PAGE_SIZE)) {
break;
}
len -= ret;
buf += ret;
struct pollfd p = {.fd = sock, .events = POLLIN, .revents = 0 };
ret = poll(&p, 1, 20);
if ((ret <= 0) || !(p.revents & POLLIN)) {
break;
}
}
}
close(sock);
}
}
/*
* returns statistics
*/
static void my_android_logger_get_statistics(char* buf, size_t len) {
snprintf(buf, len, "getStatistics 0 1 2 3 4");
send_to_control(buf, len);
}
static void alloc_statistics(char** buffer, size_t* length) {
size_t len = 8192;
char* buf;
for (int retry = 32; (retry >= 0); delete[] buf, --retry) {
buf = new char[len];
my_android_logger_get_statistics(buf, len);
buf[len - 1] = '\0';
size_t ret = atol(buf) + 1;
if (ret < 4) {
delete[] buf;
buf = nullptr;
break;
}
bool check = ret <= len;
len = ret;
if (check) {
break;
}
len += len / 8; // allow for some slop
}
*buffer = buf;
*length = len;
}
static char* find_benchmark_spam(char* cp) {
// liblog_benchmarks has been run designed to SPAM. The signature of
// a noisiest UID statistics is:
//
// Chattiest UIDs in main log buffer: Size Pruned
// UID PACKAGE BYTES LINES
// 0 root 54164 147569
//
char* benchmark = nullptr;
do {
static const char signature[] = "\n0 root ";
benchmark = strstr(cp, signature);
if (!benchmark) {
break;
}
cp = benchmark + sizeof(signature);
while (isspace(*cp)) {
++cp;
}
benchmark = cp;
#ifdef DEBUG
char* end = strstr(benchmark, "\n");
if (end == nullptr) {
end = benchmark + strlen(benchmark);
}
fprintf(stderr, "parse for spam counter in \"%.*s\"\n",
(int)(end - benchmark), benchmark);
#endif
// content
while (isdigit(*cp)) {
++cp;
}
while (isspace(*cp)) {
++cp;
}
// optional +/- field?
if ((*cp == '-') || (*cp == '+')) {
while (isdigit(*++cp) || (*cp == '.') || (*cp == '%') ||
(*cp == 'X')) {
;
}
while (isspace(*cp)) {
++cp;
}
}
// number of entries pruned
unsigned long value = 0;
while (isdigit(*cp)) {
value = value * 10ULL + *cp - '0';
++cp;
}
if (value > 10UL) {
break;
}
benchmark = nullptr;
} while (*cp);
return benchmark;
}
#endif
TEST(logd, statistics) {
#ifdef __ANDROID__
size_t len;
char* buf;
// Drop cache so that any access problems can be discovered.
if (!android::base::WriteStringToFile("3\n", "/proc/sys/vm/drop_caches")) {
GTEST_LOG_(INFO) << "Could not open trigger dropping inode cache";
}
alloc_statistics(&buf, &len);
ASSERT_TRUE(nullptr != buf);
// remove trailing FF
char* cp = buf + len - 1;
*cp = '\0';
bool truncated = *--cp != '\f';
if (!truncated) {
*cp = '\0';
}
// squash out the byte count
cp = buf;
if (!truncated) {
while (isdigit(*cp) || (*cp == '\n')) {
++cp;
}
}
fprintf(stderr, "%s", cp);
EXPECT_LT((size_t)64, strlen(cp));
EXPECT_EQ(0, truncated);
char* main_logs = strstr(cp, "\nChattiest UIDs in main ");
EXPECT_TRUE(nullptr != main_logs);
char* radio_logs = strstr(cp, "\nChattiest UIDs in radio ");
if (!radio_logs)
GTEST_LOG_(INFO) << "Value of: nullptr != radio_logs\n"
"Actual: false\n"
"Expected: false\n";
char* system_logs = strstr(cp, "\nChattiest UIDs in system ");
EXPECT_TRUE(nullptr != system_logs);
char* events_logs = strstr(cp, "\nChattiest UIDs in events ");
EXPECT_TRUE(nullptr != events_logs);
// Check if there is any " u0_a#### " as this means packagelistparser broken
char* used_getpwuid = nullptr;
int used_getpwuid_len;
char* uid_name = cp;
static const char getpwuid_prefix[] = " u0_a";
while ((uid_name = strstr(uid_name, getpwuid_prefix)) != nullptr) {
used_getpwuid = uid_name + 1;
uid_name += strlen(getpwuid_prefix);
while (isdigit(*uid_name)) ++uid_name;
used_getpwuid_len = uid_name - used_getpwuid;
if (isspace(*uid_name)) break;
used_getpwuid = nullptr;
}
EXPECT_TRUE(nullptr == used_getpwuid);
if (used_getpwuid) {
fprintf(stderr, "libpackagelistparser failed to pick up %.*s\n",
used_getpwuid_len, used_getpwuid);
}
delete[] buf;
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
#ifdef __ANDROID__
static void caught_signal(int /* signum */) {
}
static void dump_log_msg(const char* prefix, log_msg* msg, unsigned int version,
int lid) {
std::cout << std::flush;
std::cerr << std::flush;
fflush(stdout);
fflush(stderr);
switch (msg->entry.hdr_size) {
case 0:
version = 1;
break;
case sizeof(msg->entry_v2): /* PLUS case sizeof(msg->entry_v3): */
if (version == 0) {
version = (msg->entry_v3.lid < LOG_ID_MAX) ? 3 : 2;
}
break;
case sizeof(msg->entry_v4):
if (version == 0) {
version = 4;
}
break;
}
fprintf(stderr, "%s: v%u[%u] ", prefix, version, msg->len());
if (version != 1) {
fprintf(stderr, "hdr_size=%u ", msg->entry.hdr_size);
}
fprintf(stderr, "pid=%u tid=%u %u.%09u ", msg->entry.pid, msg->entry.tid,
msg->entry.sec, msg->entry.nsec);
switch (version) {
case 1:
break;
case 2:
fprintf(stderr, "euid=%u ", msg->entry_v2.euid);
break;
case 3:
default:
lid = msg->entry.lid;
break;
}
switch (lid) {
case 0:
fprintf(stderr, "lid=main ");
break;
case 1:
fprintf(stderr, "lid=radio ");
break;
case 2:
fprintf(stderr, "lid=events ");
break;
case 3:
fprintf(stderr, "lid=system ");
break;
case 4:
fprintf(stderr, "lid=crash ");
break;
case 5:
fprintf(stderr, "lid=security ");
break;
case 6:
fprintf(stderr, "lid=kernel ");
break;
default:
if (lid >= 0) {
fprintf(stderr, "lid=%d ", lid);
}
}
unsigned int len = msg->entry.len;
fprintf(stderr, "msg[%u]={", len);
unsigned char* cp = reinterpret_cast<unsigned char*>(msg->msg());
if (!cp) {
static const unsigned char garbage[] = "<INVALID>";
cp = const_cast<unsigned char*>(garbage);
len = strlen(reinterpret_cast<const char*>(garbage));
}
while (len) {
unsigned char* p = cp;
while (*p && (((' ' <= *p) && (*p < 0x7F)) || (*p == '\n'))) {
++p;
}
if (((p - cp) > 3) && !*p && ((unsigned int)(p - cp) < len)) {
fprintf(stderr, "\"");
while (*cp) {
if (*cp != '\n') {
fprintf(stderr, "%c", *cp);
} else {
fprintf(stderr, "\\n");
}
++cp;
--len;
}
fprintf(stderr, "\"");
} else {
fprintf(stderr, "%02x", *cp);
}
++cp;
if (--len) {
fprintf(stderr, ", ");
}
}
fprintf(stderr, "}\n");
fflush(stderr);
}
#endif
TEST(logd, both) {
#ifdef __ANDROID__
log_msg msg;
// check if we can read any logs from logd
bool user_logger_available = false;
bool user_logger_content = false;
int fd = socket_local_client("logdr", ANDROID_SOCKET_NAMESPACE_RESERVED,
SOCK_SEQPACKET);
if (fd >= 0) {
struct sigaction ignore, old_sigaction;
memset(&ignore, 0, sizeof(ignore));
ignore.sa_handler = caught_signal;
sigemptyset(&ignore.sa_mask);
sigaction(SIGALRM, &ignore, &old_sigaction);
unsigned int old_alarm = alarm(10);
static const char ask[] = "dumpAndClose lids=0,1,2,3";
user_logger_available = write(fd, ask, sizeof(ask)) == sizeof(ask);
user_logger_content = recv(fd, msg.buf, sizeof(msg), 0) > 0;
if (user_logger_content) {
dump_log_msg("user", &msg, 3, -1);
}
alarm(old_alarm);
sigaction(SIGALRM, &old_sigaction, nullptr);
close(fd);
}
// check if we can read any logs from kernel logger
bool kernel_logger_available = false;
bool kernel_logger_content = false;
static const char* loggers[] = {
"/dev/log/main", "/dev/log_main", "/dev/log/radio",
"/dev/log_radio", "/dev/log/events", "/dev/log_events",
"/dev/log/system", "/dev/log_system",
};
for (unsigned int i = 0; i < arraysize(loggers); ++i) {
fd = open(loggers[i], O_RDONLY);
if (fd < 0) {
continue;
}
kernel_logger_available = true;
fcntl(fd, F_SETFL, O_RDONLY | O_NONBLOCK);
int result = TEMP_FAILURE_RETRY(read(fd, msg.buf, sizeof(msg)));
if (result > 0) {
kernel_logger_content = true;
dump_log_msg("kernel", &msg, 0, i / 2);
}
close(fd);
}
static const char yes[] = "\xE2\x9C\x93";
static const char no[] = "\xE2\x9c\x98";
fprintf(stderr,
"LOGGER Available Content\n"
"user %-13s%s\n"
"kernel %-13s%s\n"
" status %-11s%s\n",
(user_logger_available) ? yes : no, (user_logger_content) ? yes : no,
(kernel_logger_available) ? yes : no,
(kernel_logger_content) ? yes : no,
(user_logger_available && kernel_logger_available) ? "ERROR" : "ok",
(user_logger_content && kernel_logger_content) ? "ERROR" : "ok");
EXPECT_EQ(0, user_logger_available && kernel_logger_available);
EXPECT_EQ(0, !user_logger_available && !kernel_logger_available);
EXPECT_EQ(0, user_logger_content && kernel_logger_content);
EXPECT_EQ(0, !user_logger_content && !kernel_logger_content);
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
#ifdef __ANDROID__
// BAD ROBOT
// Benchmark threshold are generally considered bad form unless there is
// is some human love applied to the continued maintenance and whether the
// thresholds are tuned on a per-target basis. Here we check if the values
// are more than double what is expected. Doubling will not prevent failure
// on busy or low-end systems that could have a tendency to stretch values.
//
// The primary goal of this test is to simulate a spammy app (benchmark
// being the worst) and check to make sure the logger can deal with it
// appropriately by checking all the statistics are in an expected range.
//
TEST(logd, benchmark) {
size_t len;
char* buf;
alloc_statistics(&buf, &len);
bool benchmark_already_run = buf && find_benchmark_spam(buf);
delete[] buf;
if (benchmark_already_run) {
fprintf(stderr,
"WARNING: spam already present and too much history\n"
" false OK for prune by worst UID check\n");
}
FILE* fp;
// Introduce some extreme spam for the worst UID filter
ASSERT_TRUE(
nullptr !=
(fp = popen("/data/nativetest/liblog-benchmarks/liblog-benchmarks"
" BM_log_maximum_retry"
" BM_log_maximum"
" BM_clock_overhead"
" BM_log_print_overhead"
" BM_log_latency"
" BM_log_delay",
"r")));
char buffer[5120];
static const char* benchmarks[] = {
"BM_log_maximum_retry ", "BM_log_maximum ", "BM_clock_overhead ",
"BM_log_print_overhead ", "BM_log_latency ", "BM_log_delay "
};
static const unsigned int log_maximum_retry = 0;
static const unsigned int log_maximum = 1;
static const unsigned int clock_overhead = 2;
static const unsigned int log_print_overhead = 3;
static const unsigned int log_latency = 4;
static const unsigned int log_delay = 5;
unsigned long ns[arraysize(benchmarks)];
memset(ns, 0, sizeof(ns));
while (fgets(buffer, sizeof(buffer), fp)) {
for (unsigned i = 0; i < arraysize(ns); ++i) {
char* cp = strstr(buffer, benchmarks[i]);
if (!cp) {
continue;
}
sscanf(cp, "%*s %lu %lu", &ns[i], &ns[i]);
fprintf(stderr, "%-22s%8lu\n", benchmarks[i], ns[i]);
}
}
int ret = pclose(fp);
if (!WIFEXITED(ret) || (WEXITSTATUS(ret) == 127)) {
fprintf(stderr,
"WARNING: "
"/data/nativetest/liblog-benchmarks/liblog-benchmarks missing\n"
" can not perform test\n");
return;
}
EXPECT_GE(200000UL, ns[log_maximum_retry]); // 104734 user
EXPECT_NE(0UL, ns[log_maximum_retry]); // failure to parse
EXPECT_GE(90000UL, ns[log_maximum]); // 46913 user
EXPECT_NE(0UL, ns[log_maximum]); // failure to parse
EXPECT_GE(4096UL, ns[clock_overhead]); // 4095
EXPECT_NE(0UL, ns[clock_overhead]); // failure to parse
EXPECT_GE(250000UL, ns[log_print_overhead]); // 126886 user
EXPECT_NE(0UL, ns[log_print_overhead]); // failure to parse
EXPECT_GE(10000000UL,
ns[log_latency]); // 1453559 user space (background cgroup)
EXPECT_NE(0UL, ns[log_latency]); // failure to parse
EXPECT_GE(20000000UL, ns[log_delay]); // 10500289 user
EXPECT_NE(0UL, ns[log_delay]); // failure to parse
alloc_statistics(&buf, &len);
bool collected_statistics = !!buf;
EXPECT_EQ(true, collected_statistics);
ASSERT_TRUE(nullptr != buf);
char* benchmark_statistics_found = find_benchmark_spam(buf);
ASSERT_TRUE(benchmark_statistics_found != nullptr);
// Check how effective the SPAM filter is, parse out Now size.
// 0 root 54164 147569
// ^-- benchmark_statistics_found
unsigned long nowSpamSize = atol(benchmark_statistics_found);
delete[] buf;
ASSERT_NE(0UL, nowSpamSize);
// Determine if we have the spam filter enabled
int sock = socket_local_client("logd", ANDROID_SOCKET_NAMESPACE_RESERVED,
SOCK_STREAM);
ASSERT_TRUE(sock >= 0);
static const char getPruneList[] = "getPruneList";
if (write(sock, getPruneList, sizeof(getPruneList)) > 0) {
char buffer[80];
memset(buffer, 0, sizeof(buffer));
read(sock, buffer, sizeof(buffer));
char* cp = strchr(buffer, '\n');
if (!cp || (cp[1] != '~') || (cp[2] != '!')) {
close(sock);
fprintf(stderr,
"WARNING: "
"Logger has SPAM filtration turned off \"%s\"\n",
buffer);
return;
}
} else {
int save_errno = errno;
close(sock);
FAIL() << "Can not send " << getPruneList << " to logger -- "
<< strerror(save_errno);
}
static const unsigned long expected_absolute_minimum_log_size = 65536UL;
unsigned long totalSize = expected_absolute_minimum_log_size;
static const char getSize[] = { 'g', 'e', 't', 'L', 'o', 'g',
'S', 'i', 'z', 'e', ' ', LOG_ID_MAIN + '0',
'\0' };
if (write(sock, getSize, sizeof(getSize)) > 0) {
char buffer[80];
memset(buffer, 0, sizeof(buffer));
read(sock, buffer, sizeof(buffer));
totalSize = atol(buffer);
if (totalSize < expected_absolute_minimum_log_size) {
fprintf(stderr,
"WARNING: "
"Logger had unexpected referenced size \"%s\"\n",
buffer);
totalSize = expected_absolute_minimum_log_size;
}
}
close(sock);
// logd allows excursions to 110% of total size
totalSize = (totalSize * 11) / 10;
// 50% threshold for SPAM filter (<20% typical, lots of engineering margin)
ASSERT_GT(totalSize, nowSpamSize * 2);
}
#endif
// b/26447386 confirm fixed
void timeout_negative(const char* command) {
#ifdef __ANDROID__
log_msg msg_wrap, msg_timeout;
bool content_wrap = false, content_timeout = false, written = false;
unsigned int alarm_wrap = 0, alarm_timeout = 0;
// A few tries to get it right just in case wrap kicks in due to
// content providers being active during the test.
int i = 3;
while (--i) {
int fd = socket_local_client("logdr", ANDROID_SOCKET_NAMESPACE_RESERVED,
SOCK_SEQPACKET);
ASSERT_LT(0, fd);
std::string ask(command);
struct sigaction ignore, old_sigaction;
memset(&ignore, 0, sizeof(ignore));
ignore.sa_handler = caught_signal;
sigemptyset(&ignore.sa_mask);
sigaction(SIGALRM, &ignore, &old_sigaction);
unsigned int old_alarm = alarm(3);
size_t len = ask.length() + 1;
written = write(fd, ask.c_str(), len) == (ssize_t)len;
if (!written) {
alarm(old_alarm);
sigaction(SIGALRM, &old_sigaction, nullptr);
close(fd);
continue;
}
// alarm triggers at 50% of the --wrap time out
content_wrap = recv(fd, msg_wrap.buf, sizeof(msg_wrap), 0) > 0;
alarm_wrap = alarm(5);
// alarm triggers at 133% of the --wrap time out
content_timeout = recv(fd, msg_timeout.buf, sizeof(msg_timeout), 0) > 0;
if (!content_timeout) { // make sure we hit dumpAndClose
content_timeout =
recv(fd, msg_timeout.buf, sizeof(msg_timeout), 0) > 0;
}
alarm_timeout =
alarm((old_alarm <= 0) ? old_alarm
: (old_alarm > (1 + 3 - alarm_wrap))
? old_alarm - 3 + alarm_wrap
: 2);
sigaction(SIGALRM, &old_sigaction, nullptr);
close(fd);
if (!content_wrap && !alarm_wrap && content_timeout && alarm_timeout) {
break;
}
}
if (content_wrap) {
dump_log_msg("wrap", &msg_wrap, 3, -1);
}
if (content_timeout) {
dump_log_msg("timeout", &msg_timeout, 3, -1);
}
EXPECT_TRUE(written);
EXPECT_TRUE(content_wrap);
EXPECT_NE(0U, alarm_wrap);
EXPECT_TRUE(content_timeout);
EXPECT_NE(0U, alarm_timeout);
#else
command = nullptr;
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
TEST(logd, timeout_no_start) {
timeout_negative("dumpAndClose lids=0,1,2,3,4,5 timeout=6");
}
TEST(logd, timeout_start_epoch) {
timeout_negative(
"dumpAndClose lids=0,1,2,3,4,5 timeout=6 start=0.000000000");
}
// b/26447386 refined behavior
TEST(logd, timeout) {
#ifdef __ANDROID__
// b/33962045 This test interferes with other log reader tests that
// follow because of file descriptor socket persistence in the same
// process. So let's fork it to isolate it from giving us pain.
pid_t pid = fork();
if (pid) {
siginfo_t info = {};
ASSERT_EQ(0, TEMP_FAILURE_RETRY(waitid(P_PID, pid, &info, WEXITED)));
ASSERT_EQ(0, info.si_status);
return;
}
log_msg msg_wrap, msg_timeout;
bool content_wrap = false, content_timeout = false, written = false;
unsigned int alarm_wrap = 0, alarm_timeout = 0;
// A few tries to get it right just in case wrap kicks in due to
// content providers being active during the test.
int i = 5;
log_time now(android_log_clockid());
now.tv_sec -= 30; // reach back a moderate period of time
while (--i) {
int fd = socket_local_client("logdr", ANDROID_SOCKET_NAMESPACE_RESERVED,
SOCK_SEQPACKET);
int save_errno = errno;
if (fd < 0) {
fprintf(stderr, "failed to open /dev/socket/logdr %s\n",
strerror(save_errno));
_exit(fd);
}
std::string ask = android::base::StringPrintf(
"dumpAndClose lids=0,1,2,3,4,5 timeout=6 start=%" PRIu32
".%09" PRIu32,
now.tv_sec, now.tv_nsec);
struct sigaction ignore, old_sigaction;
memset(&ignore, 0, sizeof(ignore));
ignore.sa_handler = caught_signal;
sigemptyset(&ignore.sa_mask);
sigaction(SIGALRM, &ignore, &old_sigaction);
unsigned int old_alarm = alarm(3);
size_t len = ask.length() + 1;
written = write(fd, ask.c_str(), len) == (ssize_t)len;
if (!written) {
alarm(old_alarm);
sigaction(SIGALRM, &old_sigaction, nullptr);
close(fd);
continue;
}
// alarm triggers at 50% of the --wrap time out
content_wrap = recv(fd, msg_wrap.buf, sizeof(msg_wrap), 0) > 0;
alarm_wrap = alarm(5);
// alarm triggers at 133% of the --wrap time out
content_timeout = recv(fd, msg_timeout.buf, sizeof(msg_timeout), 0) > 0;
if (!content_timeout) { // make sure we hit dumpAndClose
content_timeout =
recv(fd, msg_timeout.buf, sizeof(msg_timeout), 0) > 0;
}
alarm_timeout =
alarm((old_alarm <= 0) ? old_alarm
: (old_alarm > (1 + 3 - alarm_wrap))
? old_alarm - 3 + alarm_wrap
: 2);
sigaction(SIGALRM, &old_sigaction, nullptr);
close(fd);
if (!content_wrap && !alarm_wrap && content_timeout && alarm_timeout) {
break;
}
// modify start time in case content providers are relatively
// active _or_ inactive during the test.
if (content_timeout) {
log_time msg(msg_timeout.entry.sec, msg_timeout.entry.nsec);
if (msg < now) {
fprintf(stderr, "%u.%09u < %u.%09u\n", msg_timeout.entry.sec,
msg_timeout.entry.nsec, (unsigned)now.tv_sec,
(unsigned)now.tv_nsec);
_exit(-1);
}
if (msg > now) {
now = msg;
now.tv_sec += 30;
msg = log_time(android_log_clockid());
if (now > msg) {
now = msg;
--now.tv_sec;
}
}
} else {
now.tv_sec -= 120; // inactive, reach further back!
}
}
if (content_wrap) {
dump_log_msg("wrap", &msg_wrap, 3, -1);
}
if (content_timeout) {
dump_log_msg("timeout", &msg_timeout, 3, -1);
}
if (content_wrap || !content_timeout) {
fprintf(stderr, "now=%" PRIu32 ".%09" PRIu32 "\n", now.tv_sec,
now.tv_nsec);
}
EXPECT_TRUE(written);
EXPECT_FALSE(content_wrap);
EXPECT_EQ(0U, alarm_wrap);
EXPECT_TRUE(content_timeout);
EXPECT_NE(0U, alarm_timeout);
_exit(!written + content_wrap + alarm_wrap + !content_timeout +
!alarm_timeout);
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
// b/27242723 confirmed fixed
TEST(logd, SNDTIMEO) {
#ifdef __ANDROID__
static const unsigned sndtimeo =
LOGD_SNDTIMEO; // <sigh> it has to be done!
static const unsigned sleep_time = sndtimeo + 3;
static const unsigned alarm_time = sleep_time + 5;
int fd;
ASSERT_TRUE(
(fd = socket_local_client("logdr", ANDROID_SOCKET_NAMESPACE_RESERVED,
SOCK_SEQPACKET)) > 0);
struct sigaction ignore, old_sigaction;
memset(&ignore, 0, sizeof(ignore));
ignore.sa_handler = caught_signal;
sigemptyset(&ignore.sa_mask);
sigaction(SIGALRM, &ignore, &old_sigaction);
unsigned int old_alarm = alarm(alarm_time);
static const char ask[] = "stream lids=0,1,2,3,4,5,6"; // all sources
bool reader_requested = write(fd, ask, sizeof(ask)) == sizeof(ask);
EXPECT_TRUE(reader_requested);
log_msg msg;
bool read_one = recv(fd, msg.buf, sizeof(msg), 0) > 0;
EXPECT_TRUE(read_one);
if (read_one) {
dump_log_msg("user", &msg, 3, -1);
}
fprintf(stderr, "Sleep for >%d seconds logd SO_SNDTIMEO ...\n", sndtimeo);
sleep(sleep_time);
// flush will block if we did not trigger. if it did, last entry returns 0
int recv_ret;
do {
recv_ret = recv(fd, msg.buf, sizeof(msg), 0);
} while (recv_ret > 0);
int save_errno = (recv_ret < 0) ? errno : 0;
EXPECT_NE(0U, alarm(old_alarm));
sigaction(SIGALRM, &old_sigaction, nullptr);
EXPECT_EQ(0, recv_ret);
if (recv_ret > 0) {
dump_log_msg("user", &msg, 3, -1);
}
EXPECT_EQ(0, save_errno);
close(fd);
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
TEST(logd, getEventTag_list) {
#ifdef __ANDROID__
char buffer[256];
memset(buffer, 0, sizeof(buffer));
snprintf(buffer, sizeof(buffer), "getEventTag name=*");
send_to_control(buffer, sizeof(buffer));
buffer[sizeof(buffer) - 1] = '\0';
char* cp;
long ret = strtol(buffer, &cp, 10);
EXPECT_GT(ret, 4096);
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
TEST(logd, getEventTag_42) {
#ifdef __ANDROID__
char buffer[256];
memset(buffer, 0, sizeof(buffer));
snprintf(buffer, sizeof(buffer), "getEventTag id=42");
send_to_control(buffer, sizeof(buffer));
buffer[sizeof(buffer) - 1] = '\0';
char* cp;
long ret = strtol(buffer, &cp, 10);
EXPECT_GT(ret, 16);
EXPECT_TRUE(strstr(buffer, "\t(to life the universe etc|3)") != nullptr);
EXPECT_TRUE(strstr(buffer, "answer") != nullptr);
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
TEST(logd, getEventTag_newentry) {
#ifdef __ANDROID__
char buffer[256];
memset(buffer, 0, sizeof(buffer));
log_time now(CLOCK_MONOTONIC);
char name[64];
snprintf(name, sizeof(name), "a%" PRIu64, now.nsec());
snprintf(buffer, sizeof(buffer), "getEventTag name=%s format=\"(new|1)\"",
name);
send_to_control(buffer, sizeof(buffer));
buffer[sizeof(buffer) - 1] = '\0';
char* cp;
long ret = strtol(buffer, &cp, 10);
EXPECT_GT(ret, 16);
EXPECT_TRUE(strstr(buffer, "\t(new|1)") != nullptr);
EXPECT_TRUE(strstr(buffer, name) != nullptr);
// ToDo: also look for this in /data/misc/logd/event-log-tags and
// /dev/event-log-tags.
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
#ifdef __ANDROID__
static inline int32_t get4LE(const char* src) {
return src[0] | (src[1] << 8) | (src[2] << 16) | (src[3] << 24);
}
#endif
void __android_log_btwrite_multiple__helper(int count) {
#ifdef __ANDROID__
log_time ts(CLOCK_MONOTONIC);
log_time ts1(CLOCK_MONOTONIC);
// We fork to create a unique pid for the submitted log messages
// so that we do not collide with the other _multiple_ tests.
pid_t pid = fork();
if (pid == 0) {
// child
for (int i = count; i; --i) {
ASSERT_LT(
0, __android_log_btwrite(0, EVENT_TYPE_LONG, &ts, sizeof(ts)));
usleep(100);
}
ASSERT_LT(0,
__android_log_btwrite(0, EVENT_TYPE_LONG, &ts1, sizeof(ts1)));
usleep(1000000);
_exit(0);
}
siginfo_t info = {};
ASSERT_EQ(0, TEMP_FAILURE_RETRY(waitid(P_PID, pid, &info, WEXITED)));
ASSERT_EQ(0, info.si_status);
struct logger_list* logger_list;
ASSERT_TRUE(nullptr !=
(logger_list = android_logger_list_open(
LOG_ID_EVENTS, ANDROID_LOG_RDONLY | ANDROID_LOG_NONBLOCK,
0, pid)));
int expected_count = (count < 2) ? count : 2;
int expected_chatty_count = (count <= 2) ? 0 : 1;
int expected_identical_count = (count < 2) ? 0 : (count - 2);
static const int expected_expire_count = 0;
count = 0;
int second_count = 0;
int chatty_count = 0;
int identical_count = 0;
int expire_count = 0;
for (;;) {
log_msg log_msg;
if (android_logger_list_read(logger_list, &log_msg) <= 0) break;
if ((log_msg.entry.pid != pid) || (log_msg.entry.len < (4 + 1 + 8)) ||
(log_msg.id() != LOG_ID_EVENTS))
continue;
char* eventData = log_msg.msg();
if (!eventData) continue;
uint32_t tag = get4LE(eventData);
if ((eventData[4] == EVENT_TYPE_LONG) &&
(log_msg.entry.len == (4 + 1 + 8))) {
if (tag != 0) continue;
log_time tx(eventData + 4 + 1);
if (ts == tx) {
++count;
} else if (ts1 == tx) {
++second_count;
}
} else if (eventData[4] == EVENT_TYPE_STRING) {
if (tag != CHATTY_LOG_TAG) continue;
++chatty_count;
// int len = get4LE(eventData + 4 + 1);
log_msg.buf[LOGGER_ENTRY_MAX_LEN] = '\0';
const char* cp;
if ((cp = strstr(eventData + 4 + 1 + 4, " identical "))) {
unsigned val = 0;
sscanf(cp, " identical %u lines", &val);
identical_count += val;
} else if ((cp = strstr(eventData + 4 + 1 + 4, " expire "))) {
unsigned val = 0;
sscanf(cp, " expire %u lines", &val);
expire_count += val;
}
}
}
android_logger_list_close(logger_list);
EXPECT_EQ(expected_count, count);
EXPECT_EQ(1, second_count);
EXPECT_EQ(expected_chatty_count, chatty_count);
EXPECT_EQ(expected_identical_count, identical_count);
EXPECT_EQ(expected_expire_count, expire_count);
#else
count = 0;
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
TEST(logd, multiple_test_1) {
__android_log_btwrite_multiple__helper(1);
}
TEST(logd, multiple_test_2) {
__android_log_btwrite_multiple__helper(2);
}
TEST(logd, multiple_test_3) {
__android_log_btwrite_multiple__helper(3);
}
TEST(logd, multiple_test_10) {
__android_log_btwrite_multiple__helper(10);
}
#ifdef __ANDROID__
// returns violating pid
static pid_t sepolicy_rate(unsigned rate, unsigned num) {
pid_t pid = fork();
if (pid) {
siginfo_t info = {};
if (TEMP_FAILURE_RETRY(waitid(P_PID, pid, &info, WEXITED))) return -1;
if (info.si_status) return -1;
return pid;
}
// We may have DAC, but let's not have MAC
if ((setcon("u:object_r:shell:s0") < 0) && (setcon("u:r:shell:s0") < 0)) {
int save_errno = errno;
security_context_t context;
getcon(&context);
if (strcmp(context, "u:r:shell:s0")) {
fprintf(stderr, "setcon(\"u:r:shell:s0\") failed @\"%s\" %s\n",
context, strerror(save_errno));
freecon(context);
_exit(-1);
// NOTREACHED
return -1;
}
}
// The key here is we are root, but we are in u:r:shell:s0,
// and the directory does not provide us DAC access
// (eg: 0700 system system) so we trigger the pair dac_override
// and dac_read_search on every try to get past the message
// de-duper. We will also rotate the file name in the directory
// as another measure.
static const char file[] = "/data/backup/cannot_access_directory_%u";
static const unsigned avc_requests_per_access = 2;
rate /= avc_requests_per_access;
useconds_t usec;
if (rate == 0) {
rate = 1;
usec = 2000000;
} else {
usec = (1000000 + (rate / 2)) / rate;
}
num = (num + (avc_requests_per_access / 2)) / avc_requests_per_access;
if (usec < 2) usec = 2;
while (num > 0) {
if (access(android::base::StringPrintf(file, num).c_str(), F_OK) == 0) {
_exit(-1);
// NOTREACHED
return -1;
}
usleep(usec);
--num;
}
_exit(0);
// NOTREACHED
return -1;
}
static constexpr int background_period = 10;
static int count_avc(pid_t pid) {
int count = 0;
// pid=-1 skip as pid is in error
if (pid == (pid_t)-1) return count;
// pid=0 means we want to report the background count of avc: activities
struct logger_list* logger_list =
pid ? android_logger_list_alloc(
ANDROID_LOG_RDONLY | ANDROID_LOG_NONBLOCK, 0, pid)
: android_logger_list_alloc_time(
ANDROID_LOG_RDONLY | ANDROID_LOG_NONBLOCK,
log_time(android_log_clockid()) -
log_time(background_period, 0),
0);
if (!logger_list) return count;
struct logger* logger = android_logger_open(logger_list, LOG_ID_EVENTS);
if (!logger) {
android_logger_list_close(logger_list);
return count;
}
for (;;) {
log_msg log_msg;
if (android_logger_list_read(logger_list, &log_msg) <= 0) break;
if ((log_msg.entry.pid != pid) || (log_msg.entry.len < (4 + 1 + 8)) ||
(log_msg.id() != LOG_ID_EVENTS))
continue;
char* eventData = log_msg.msg();
if (!eventData) continue;
uint32_t tag = get4LE(eventData);
if (tag != AUDITD_LOG_TAG) continue;
if (eventData[4] != EVENT_TYPE_STRING) continue;
// int len = get4LE(eventData + 4 + 1);
log_msg.buf[LOGGER_ENTRY_MAX_LEN] = '\0';
const char* cp = strstr(eventData + 4 + 1 + 4, "): avc: denied");
if (!cp) continue;
++count;
}
android_logger_list_close(logger_list);
return count;
}
#endif
TEST(logd, sepolicy_rate_limiter) {
#ifdef __ANDROID__
int background_selinux_activity_too_high = count_avc(0);
if (background_selinux_activity_too_high > 2) {
GTEST_LOG_(ERROR) << "Too much background selinux activity "
<< background_selinux_activity_too_high * 60 /
background_period
<< "/minute on the device, this test\n"
<< "can not measure the functionality of the "
<< "sepolicy rate limiter. Expect test to\n"
<< "fail as this device is in a bad state, "
<< "but is not strictly a unit test failure.";
}
// sepolicy_rate_limiter_maximum
{ // maximum precharch test block.
static constexpr int rate = AUDIT_RATE_LIMIT_MAX;
static constexpr int duration = 2;
// Two seconds of a liveable sustained rate
EXPECT_EQ(rate * duration,
count_avc(sepolicy_rate(rate, rate * duration)));
}
// sepolicy_rate_limiter_sub_burst
{ // maximum period below half way between sustainable and burst rate
static constexpr int threshold =
((AUDIT_RATE_LIMIT_BURST_DURATION *
(AUDIT_RATE_LIMIT_DEFAULT + AUDIT_RATE_LIMIT_MAX)) +
1) /
2;
static constexpr int rate =
(threshold / AUDIT_RATE_LIMIT_BURST_DURATION) - 1;
static constexpr int duration = AUDIT_RATE_LIMIT_BURST_DURATION;
EXPECT_EQ(rate * duration,
count_avc(sepolicy_rate(rate, rate * duration)));
}
// sepolicy_rate_limiter_spam
{ // hit avc: hard beyond reason block.
// maximum period of double the maximum burst rate
static constexpr int threshold =
((AUDIT_RATE_LIMIT_BURST_DURATION *
(AUDIT_RATE_LIMIT_DEFAULT + AUDIT_RATE_LIMIT_MAX)) +
1) /
2;
static constexpr int rate = AUDIT_RATE_LIMIT_DEFAULT * 2;
static constexpr int duration = threshold / AUDIT_RATE_LIMIT_DEFAULT;
EXPECT_GE(
((AUDIT_RATE_LIMIT_DEFAULT * duration) * 115) / 100, // +15% margin
count_avc(sepolicy_rate(rate, rate * duration)));
// give logd another 3 seconds to react to the burst before checking
sepolicy_rate(rate, rate * 3);
// maximum period at double maximum burst rate (spam filter kicked in)
EXPECT_GE(threshold * 2,
count_avc(sepolicy_rate(
rate, rate * AUDIT_RATE_LIMIT_BURST_DURATION)));
// cool down, and check unspammy rate still works
sleep(2);
EXPECT_LE(AUDIT_RATE_LIMIT_BURST_DURATION - 1, // allow _one_ lost
count_avc(sepolicy_rate(1, AUDIT_RATE_LIMIT_BURST_DURATION)));
}
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}