blob: 415488fc078771e1ca6a40ba82f1a0c78bb72b10 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
// #define DEBUG 1
#if DEBUG
#ifdef USE_LIBLOG
#define LOG_TAG "usbhost"
#include "log/log.h"
#define D ALOGD
#else
#define D printf
#endif
#else
#define D(...)
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <stddef.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/inotify.h>
#include <dirent.h>
#include <fcntl.h>
#include <errno.h>
#include <ctype.h>
#include <poll.h>
#include <pthread.h>
#include <linux/usbdevice_fs.h>
#include <asm/byteorder.h>
#include "usbhost/usbhost.h"
#define DEV_DIR "/dev"
#define DEV_BUS_DIR DEV_DIR "/bus"
#define USB_FS_DIR DEV_BUS_DIR "/usb"
#define USB_FS_ID_SCANNER USB_FS_DIR "/%d/%d"
#define USB_FS_ID_FORMAT USB_FS_DIR "/%03d/%03d"
// Some devices fail to send string descriptors if we attempt reading > 255 bytes
#define MAX_STRING_DESCRIPTOR_LENGTH 255
#define MAX_USBFS_WD_COUNT 10
struct usb_host_context {
int fd;
usb_device_added_cb cb_added;
usb_device_removed_cb cb_removed;
void *data;
int wds[MAX_USBFS_WD_COUNT];
int wdd;
int wddbus;
};
#define MAX_DESCRIPTORS_LENGTH 4096
struct usb_device {
char dev_name[64];
unsigned char desc[MAX_DESCRIPTORS_LENGTH];
int desc_length;
int fd;
int writeable;
};
static inline int badname(const char *name)
{
while(*name) {
if(!isdigit(*name++)) return 1;
}
return 0;
}
static int find_existing_devices_bus(char *busname,
usb_device_added_cb added_cb,
void *client_data)
{
char devname[32];
DIR *devdir;
struct dirent *de;
int done = 0;
devdir = opendir(busname);
if(devdir == 0) return 0;
while ((de = readdir(devdir)) && !done) {
if(badname(de->d_name)) continue;
snprintf(devname, sizeof(devname), "%s/%s", busname, de->d_name);
done = added_cb(devname, client_data);
} // end of devdir while
closedir(devdir);
return done;
}
/* returns true if one of the callbacks indicates we are done */
static int find_existing_devices(usb_device_added_cb added_cb,
void *client_data)
{
char busname[32];
DIR *busdir;
struct dirent *de;
int done = 0;
busdir = opendir(USB_FS_DIR);
if(busdir == 0) return 0;
while ((de = readdir(busdir)) != 0 && !done) {
if(badname(de->d_name)) continue;
snprintf(busname, sizeof(busname), USB_FS_DIR "/%s", de->d_name);
done = find_existing_devices_bus(busname, added_cb,
client_data);
} //end of busdir while
closedir(busdir);
return done;
}
static void watch_existing_subdirs(struct usb_host_context *context,
int *wds, int wd_count)
{
char path[100];
int i, ret;
wds[0] = inotify_add_watch(context->fd, USB_FS_DIR, IN_CREATE | IN_DELETE);
if (wds[0] < 0)
return;
/* watch existing subdirectories of USB_FS_DIR */
for (i = 1; i < wd_count; i++) {
snprintf(path, sizeof(path), USB_FS_DIR "/%03d", i);
ret = inotify_add_watch(context->fd, path, IN_CREATE | IN_DELETE);
if (ret >= 0)
wds[i] = ret;
}
}
struct usb_host_context *usb_host_init()
{
struct usb_host_context *context = calloc(1, sizeof(struct usb_host_context));
if (!context) {
fprintf(stderr, "out of memory in usb_host_context\n");
return NULL;
}
context->fd = inotify_init();
if (context->fd < 0) {
fprintf(stderr, "inotify_init failed\n");
free(context);
return NULL;
}
return context;
}
void usb_host_cleanup(struct usb_host_context *context)
{
close(context->fd);
free(context);
}
int usb_host_get_fd(struct usb_host_context *context)
{
return context->fd;
} /* usb_host_get_fd() */
int usb_host_load(struct usb_host_context *context,
usb_device_added_cb added_cb,
usb_device_removed_cb removed_cb,
usb_discovery_done_cb discovery_done_cb,
void *client_data)
{
int done = 0;
int i;
context->cb_added = added_cb;
context->cb_removed = removed_cb;
context->data = client_data;
D("Created device discovery thread\n");
/* watch for files added and deleted within USB_FS_DIR */
context->wddbus = -1;
for (i = 0; i < MAX_USBFS_WD_COUNT; i++)
context->wds[i] = -1;
/* watch the root for new subdirectories */
context->wdd = inotify_add_watch(context->fd, DEV_DIR, IN_CREATE | IN_DELETE);
if (context->wdd < 0) {
fprintf(stderr, "inotify_add_watch failed\n");
if (discovery_done_cb)
discovery_done_cb(client_data);
return done;
}
watch_existing_subdirs(context, context->wds, MAX_USBFS_WD_COUNT);
/* check for existing devices first, after we have inotify set up */
done = find_existing_devices(added_cb, client_data);
if (discovery_done_cb)
done |= discovery_done_cb(client_data);
return done;
} /* usb_host_load() */
int usb_host_read_event(struct usb_host_context *context)
{
struct inotify_event* event;
char event_buf[512];
char path[100];
int i, ret, done = 0;
int offset = 0;
int wd;
ret = read(context->fd, event_buf, sizeof(event_buf));
if (ret >= (int)sizeof(struct inotify_event)) {
while (offset < ret && !done) {
event = (struct inotify_event*)&event_buf[offset];
done = 0;
wd = event->wd;
if (wd == context->wdd) {
if ((event->mask & IN_CREATE) && !strcmp(event->name, "bus")) {
context->wddbus = inotify_add_watch(context->fd, DEV_BUS_DIR, IN_CREATE | IN_DELETE);
if (context->wddbus < 0) {
done = 1;
} else {
watch_existing_subdirs(context, context->wds, MAX_USBFS_WD_COUNT);
done = find_existing_devices(context->cb_added, context->data);
}
}
} else if (wd == context->wddbus) {
if ((event->mask & IN_CREATE) && !strcmp(event->name, "usb")) {
watch_existing_subdirs(context, context->wds, MAX_USBFS_WD_COUNT);
done = find_existing_devices(context->cb_added, context->data);
} else if ((event->mask & IN_DELETE) && !strcmp(event->name, "usb")) {
for (i = 0; i < MAX_USBFS_WD_COUNT; i++) {
if (context->wds[i] >= 0) {
inotify_rm_watch(context->fd, context->wds[i]);
context->wds[i] = -1;
}
}
}
} else if (wd == context->wds[0]) {
i = atoi(event->name);
snprintf(path, sizeof(path), USB_FS_DIR "/%s", event->name);
D("%s subdirectory %s: index: %d\n", (event->mask & IN_CREATE) ?
"new" : "gone", path, i);
if (i > 0 && i < MAX_USBFS_WD_COUNT) {
int local_ret = 0;
if (event->mask & IN_CREATE) {
local_ret = inotify_add_watch(context->fd, path,
IN_CREATE | IN_DELETE);
if (local_ret >= 0)
context->wds[i] = local_ret;
done = find_existing_devices_bus(path, context->cb_added,
context->data);
} else if (event->mask & IN_DELETE) {
inotify_rm_watch(context->fd, context->wds[i]);
context->wds[i] = -1;
}
}
} else {
for (i = 1; (i < MAX_USBFS_WD_COUNT) && !done; i++) {
if (wd == context->wds[i]) {
snprintf(path, sizeof(path), USB_FS_DIR "/%03d/%s", i, event->name);
if (event->mask == IN_CREATE) {
D("new device %s\n", path);
done = context->cb_added(path, context->data);
} else if (event->mask == IN_DELETE) {
D("gone device %s\n", path);
done = context->cb_removed(path, context->data);
}
}
}
}
offset += sizeof(struct inotify_event) + event->len;
}
}
return done;
} /* usb_host_read_event() */
void usb_host_run(struct usb_host_context *context,
usb_device_added_cb added_cb,
usb_device_removed_cb removed_cb,
usb_discovery_done_cb discovery_done_cb,
void *client_data)
{
int done;
done = usb_host_load(context, added_cb, removed_cb, discovery_done_cb, client_data);
while (!done) {
done = usb_host_read_event(context);
}
} /* usb_host_run() */
struct usb_device *usb_device_open(const char *dev_name)
{
int fd, attempts, writeable = 1;
const int SLEEP_BETWEEN_ATTEMPTS_US = 100000; /* 100 ms */
const int64_t MAX_ATTEMPTS = 10; /* 1s */
D("usb_device_open %s\n", dev_name);
/* Hack around waiting for permissions to be set on the USB device node.
* Should really be a timeout instead of attempt count, and should REALLY
* be triggered by the perm change via inotify rather than polling.
*/
for (attempts = 0; attempts < MAX_ATTEMPTS; ++attempts) {
if (access(dev_name, R_OK | W_OK) == 0) {
writeable = 1;
break;
} else {
if (access(dev_name, R_OK) == 0) {
/* double check that write permission didn't just come along too! */
writeable = (access(dev_name, R_OK | W_OK) == 0);
break;
}
}
/* not writeable or readable - sleep and try again. */
D("usb_device_open no access sleeping\n");
usleep(SLEEP_BETWEEN_ATTEMPTS_US);
}
if (writeable) {
fd = open(dev_name, O_RDWR);
} else {
fd = open(dev_name, O_RDONLY);
}
D("usb_device_open open returned %d writeable %d errno %d\n", fd, writeable, errno);
if (fd < 0) return NULL;
struct usb_device* result = usb_device_new(dev_name, fd);
if (result)
result->writeable = writeable;
return result;
}
void usb_device_close(struct usb_device *device)
{
close(device->fd);
free(device);
}
struct usb_device *usb_device_new(const char *dev_name, int fd)
{
struct usb_device *device = calloc(1, sizeof(struct usb_device));
int length;
D("usb_device_new %s fd: %d\n", dev_name, fd);
if (lseek(fd, 0, SEEK_SET) != 0)
goto failed;
length = read(fd, device->desc, sizeof(device->desc));
D("usb_device_new read returned %d errno %d\n", length, errno);
if (length < 0)
goto failed;
strncpy(device->dev_name, dev_name, sizeof(device->dev_name) - 1);
device->fd = fd;
device->desc_length = length;
// assume we are writeable, since usb_device_get_fd will only return writeable fds
device->writeable = 1;
return device;
failed:
// TODO It would be more appropriate to have callers do this
// since this function doesn't "own" this file descriptor.
close(fd);
free(device);
return NULL;
}
static int usb_device_reopen_writeable(struct usb_device *device)
{
if (device->writeable)
return 1;
int fd = open(device->dev_name, O_RDWR);
if (fd >= 0) {
close(device->fd);
device->fd = fd;
device->writeable = 1;
return 1;
}
D("usb_device_reopen_writeable failed errno %d\n", errno);
return 0;
}
int usb_device_get_fd(struct usb_device *device)
{
if (!usb_device_reopen_writeable(device))
return -1;
return device->fd;
}
const char* usb_device_get_name(struct usb_device *device)
{
return device->dev_name;
}
int usb_device_get_unique_id(struct usb_device *device)
{
int bus = 0, dev = 0;
sscanf(device->dev_name, USB_FS_ID_SCANNER, &bus, &dev);
return bus * 1000 + dev;
}
int usb_device_get_unique_id_from_name(const char* name)
{
int bus = 0, dev = 0;
sscanf(name, USB_FS_ID_SCANNER, &bus, &dev);
return bus * 1000 + dev;
}
char* usb_device_get_name_from_unique_id(int id)
{
int bus = id / 1000;
int dev = id % 1000;
char* result = (char *)calloc(1, strlen(USB_FS_ID_FORMAT));
snprintf(result, strlen(USB_FS_ID_FORMAT) - 1, USB_FS_ID_FORMAT, bus, dev);
return result;
}
uint16_t usb_device_get_vendor_id(struct usb_device *device)
{
struct usb_device_descriptor* desc = (struct usb_device_descriptor*)device->desc;
return __le16_to_cpu(desc->idVendor);
}
uint16_t usb_device_get_product_id(struct usb_device *device)
{
struct usb_device_descriptor* desc = (struct usb_device_descriptor*)device->desc;
return __le16_to_cpu(desc->idProduct);
}
const struct usb_device_descriptor* usb_device_get_device_descriptor(struct usb_device* device) {
return (struct usb_device_descriptor*)device->desc;
}
size_t usb_device_get_descriptors_length(const struct usb_device* device) {
return device->desc_length;
}
const unsigned char* usb_device_get_raw_descriptors(const struct usb_device* device) {
return device->desc;
}
/* Returns a USB descriptor string for the given string ID.
* Return value: < 0 on error. 0 on success.
* The string is returned in ucs2_out in USB-native UCS-2 encoding.
*
* parameters:
* id - the string descriptor index.
* timeout - in milliseconds (see Documentation/driver-api/usb/usb.rst)
* ucs2_out - Must point to null on call.
* Will be filled in with a buffer on success.
* If this is non-null on return, it must be free()d.
* response_size - size, in bytes, of ucs-2 string in ucs2_out.
* The size isn't guaranteed to include null termination.
* Call free() to free the result when you are done with it.
*/
int usb_device_get_string_ucs2(struct usb_device* device, int id, int timeout, void** ucs2_out,
size_t* response_size) {
__u16 languages[MAX_STRING_DESCRIPTOR_LENGTH / sizeof(__u16)];
char response[MAX_STRING_DESCRIPTOR_LENGTH];
int result;
int languageCount = 0;
if (id == 0) return -1;
if (*ucs2_out != NULL) return -1;
memset(languages, 0, sizeof(languages));
// read list of supported languages
result = usb_device_control_transfer(device,
USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_DEVICE, USB_REQ_GET_DESCRIPTOR,
(USB_DT_STRING << 8) | 0, 0, languages, sizeof(languages),
timeout);
if (result > 0)
languageCount = (result - 2) / 2;
for (int i = 1; i <= languageCount; i++) {
memset(response, 0, sizeof(response));
result = usb_device_control_transfer(
device, USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE, USB_REQ_GET_DESCRIPTOR,
(USB_DT_STRING << 8) | id, languages[i], response, sizeof(response), timeout);
if (result >= 2) { // string contents begin at offset 2.
int descriptor_len = result - 2;
char* out = malloc(descriptor_len + 3);
if (out == NULL) {
return -1;
}
memcpy(out, response + 2, descriptor_len);
// trail with three additional NULLs, so that there's guaranteed
// to be a UCS-2 NULL character beyond whatever USB returned.
// The returned string length is still just what USB returned.
memset(out + descriptor_len, '\0', 3);
*ucs2_out = (void*)out;
*response_size = descriptor_len;
return 0;
}
}
return -1;
}
/* Warning: previously this blindly returned the lower 8 bits of
* every UCS-2 character in a USB descriptor. Now it will replace
* values > 127 with ascii '?'.
*/
char* usb_device_get_string(struct usb_device* device, int id, int timeout) {
char* ascii_string = NULL;
size_t raw_string_len = 0;
size_t i;
if (usb_device_get_string_ucs2(device, id, timeout, (void**)&ascii_string, &raw_string_len) < 0)
return NULL;
if (ascii_string == NULL) return NULL;
for (i = 0; i < raw_string_len / 2; ++i) {
// wire format for USB is always little-endian.
char lower = ascii_string[2 * i];
char upper = ascii_string[2 * i + 1];
if (upper || (lower & 0x80)) {
ascii_string[i] = '?';
} else {
ascii_string[i] = lower;
}
}
ascii_string[i] = '\0';
return ascii_string;
}
char* usb_device_get_manufacturer_name(struct usb_device *device, int timeout)
{
struct usb_device_descriptor *desc = (struct usb_device_descriptor *)device->desc;
return usb_device_get_string(device, desc->iManufacturer, timeout);
}
char* usb_device_get_product_name(struct usb_device *device, int timeout)
{
struct usb_device_descriptor *desc = (struct usb_device_descriptor *)device->desc;
return usb_device_get_string(device, desc->iProduct, timeout);
}
int usb_device_get_version(struct usb_device *device)
{
struct usb_device_descriptor *desc = (struct usb_device_descriptor *)device->desc;
return desc->bcdUSB;
}
char* usb_device_get_serial(struct usb_device *device, int timeout)
{
struct usb_device_descriptor *desc = (struct usb_device_descriptor *)device->desc;
return usb_device_get_string(device, desc->iSerialNumber, timeout);
}
int usb_device_is_writeable(struct usb_device *device)
{
return device->writeable;
}
void usb_descriptor_iter_init(struct usb_device *device, struct usb_descriptor_iter *iter)
{
iter->config = device->desc;
iter->config_end = device->desc + device->desc_length;
iter->curr_desc = device->desc;
}
struct usb_descriptor_header *usb_descriptor_iter_next(struct usb_descriptor_iter *iter)
{
struct usb_descriptor_header* next;
if (iter->curr_desc >= iter->config_end)
return NULL;
next = (struct usb_descriptor_header*)iter->curr_desc;
iter->curr_desc += next->bLength;
return next;
}
int usb_device_claim_interface(struct usb_device *device, unsigned int interface)
{
return ioctl(device->fd, USBDEVFS_CLAIMINTERFACE, &interface);
}
int usb_device_release_interface(struct usb_device *device, unsigned int interface)
{
return ioctl(device->fd, USBDEVFS_RELEASEINTERFACE, &interface);
}
int usb_device_connect_kernel_driver(struct usb_device *device,
unsigned int interface, int connect)
{
struct usbdevfs_ioctl ctl;
ctl.ifno = interface;
ctl.ioctl_code = (connect ? USBDEVFS_CONNECT : USBDEVFS_DISCONNECT);
ctl.data = NULL;
return ioctl(device->fd, USBDEVFS_IOCTL, &ctl);
}
int usb_device_set_configuration(struct usb_device *device, int configuration)
{
return ioctl(device->fd, USBDEVFS_SETCONFIGURATION, &configuration);
}
int usb_device_set_interface(struct usb_device *device, unsigned int interface,
unsigned int alt_setting)
{
struct usbdevfs_setinterface ctl;
ctl.interface = interface;
ctl.altsetting = alt_setting;
return ioctl(device->fd, USBDEVFS_SETINTERFACE, &ctl);
}
int usb_device_control_transfer(struct usb_device *device,
int requestType,
int request,
int value,
int index,
void* buffer,
int length,
unsigned int timeout)
{
struct usbdevfs_ctrltransfer ctrl;
// this usually requires read/write permission
if (!usb_device_reopen_writeable(device))
return -1;
memset(&ctrl, 0, sizeof(ctrl));
ctrl.bRequestType = requestType;
ctrl.bRequest = request;
ctrl.wValue = value;
ctrl.wIndex = index;
ctrl.wLength = length;
ctrl.data = buffer;
ctrl.timeout = timeout;
return ioctl(device->fd, USBDEVFS_CONTROL, &ctrl);
}
int usb_device_bulk_transfer(struct usb_device *device,
int endpoint,
void* buffer,
unsigned int length,
unsigned int timeout)
{
struct usbdevfs_bulktransfer ctrl;
memset(&ctrl, 0, sizeof(ctrl));
ctrl.ep = endpoint;
ctrl.len = length;
ctrl.data = buffer;
ctrl.timeout = timeout;
return ioctl(device->fd, USBDEVFS_BULK, &ctrl);
}
int usb_device_reset(struct usb_device *device)
{
return ioctl(device->fd, USBDEVFS_RESET);
}
struct usb_request *usb_request_new(struct usb_device *dev,
const struct usb_endpoint_descriptor *ep_desc)
{
struct usbdevfs_urb *urb = calloc(1, sizeof(struct usbdevfs_urb));
if (!urb)
return NULL;
if ((ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)
urb->type = USBDEVFS_URB_TYPE_BULK;
else if ((ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
urb->type = USBDEVFS_URB_TYPE_INTERRUPT;
else {
D("Unsupported endpoint type %d", ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
free(urb);
return NULL;
}
urb->endpoint = ep_desc->bEndpointAddress;
struct usb_request *req = calloc(1, sizeof(struct usb_request));
if (!req) {
free(urb);
return NULL;
}
req->dev = dev;
req->max_packet_size = __le16_to_cpu(ep_desc->wMaxPacketSize);
req->private_data = urb;
req->endpoint = urb->endpoint;
urb->usercontext = req;
return req;
}
void usb_request_free(struct usb_request *req)
{
free(req->private_data);
free(req);
}
int usb_request_queue(struct usb_request *req)
{
struct usbdevfs_urb *urb = (struct usbdevfs_urb*)req->private_data;
int res;
urb->status = -1;
urb->buffer = req->buffer;
urb->buffer_length = req->buffer_length;
do {
res = ioctl(req->dev->fd, USBDEVFS_SUBMITURB, urb);
} while((res < 0) && (errno == EINTR));
return res;
}
struct usb_request *usb_request_wait(struct usb_device *dev, int timeoutMillis)
{
// Poll until a request becomes available if there is a timeout
if (timeoutMillis > 0) {
struct pollfd p = {.fd = dev->fd, .events = POLLOUT, .revents = 0};
int res = poll(&p, 1, timeoutMillis);
if (res != 1 || p.revents != POLLOUT) {
D("[ poll - event %d, error %d]\n", p.revents, errno);
return NULL;
}
}
// Read the request. This should usually succeed as we polled before, but it can fail e.g. when
// two threads are reading usb requests at the same time and only a single request is available.
struct usbdevfs_urb *urb = NULL;
int res = TEMP_FAILURE_RETRY(ioctl(dev->fd, timeoutMillis == -1 ? USBDEVFS_REAPURB :
USBDEVFS_REAPURBNDELAY, &urb));
D("%s returned %d\n", timeoutMillis == -1 ? "USBDEVFS_REAPURB" : "USBDEVFS_REAPURBNDELAY", res);
if (res < 0) {
D("[ reap urb - error %d]\n", errno);
return NULL;
} else {
D("[ urb @%p status = %d, actual = %d ]\n", urb, urb->status, urb->actual_length);
struct usb_request *req = (struct usb_request*)urb->usercontext;
req->actual_length = urb->actual_length;
return req;
}
}
int usb_request_cancel(struct usb_request *req)
{
struct usbdevfs_urb *urb = ((struct usbdevfs_urb*)req->private_data);
return ioctl(req->dev->fd, USBDEVFS_DISCARDURB, urb);
}