blob: 24fdc7f37b90ab7a12912182a403ff3c41858849 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <string.h>
#include <functional>
#include <iomanip>
#include <mutex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <android-base/macros.h>
#include <backtrace.h>
#include "Allocator.h"
#include "Binder.h"
#include "HeapWalker.h"
#include "Leak.h"
#include "LeakFolding.h"
#include "LeakPipe.h"
#include "ProcessMappings.h"
#include "PtracerThread.h"
#include "ScopedDisableMalloc.h"
#include "Semaphore.h"
#include "ThreadCapture.h"
#include "bionic.h"
#include "log.h"
#include "memunreachable/memunreachable.h"
using namespace std::chrono_literals;
namespace android {
const size_t Leak::contents_length;
class MemUnreachable {
public:
MemUnreachable(pid_t pid, Allocator<void> allocator)
: pid_(pid), allocator_(allocator), heap_walker_(allocator_) {}
bool CollectAllocations(const allocator::vector<ThreadInfo>& threads,
const allocator::vector<Mapping>& mappings,
const allocator::vector<uintptr_t>& refs);
bool GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit, size_t* num_leaks,
size_t* leak_bytes);
size_t Allocations() { return heap_walker_.Allocations(); }
size_t AllocationBytes() { return heap_walker_.AllocationBytes(); }
private:
bool ClassifyMappings(const allocator::vector<Mapping>& mappings,
allocator::vector<Mapping>& heap_mappings,
allocator::vector<Mapping>& anon_mappings,
allocator::vector<Mapping>& globals_mappings,
allocator::vector<Mapping>& stack_mappings);
DISALLOW_COPY_AND_ASSIGN(MemUnreachable);
pid_t pid_;
Allocator<void> allocator_;
HeapWalker heap_walker_;
};
static void HeapIterate(const Mapping& heap_mapping,
const std::function<void(uintptr_t, size_t)>& func) {
malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin,
[](uintptr_t base, size_t size, void* arg) {
auto f = reinterpret_cast<const std::function<void(uintptr_t, size_t)>*>(arg);
(*f)(base, size);
},
const_cast<void*>(reinterpret_cast<const void*>(&func)));
}
bool MemUnreachable::CollectAllocations(const allocator::vector<ThreadInfo>& threads,
const allocator::vector<Mapping>& mappings,
const allocator::vector<uintptr_t>& refs) {
MEM_ALOGI("searching process %d for allocations", pid_);
allocator::vector<Mapping> heap_mappings{mappings};
allocator::vector<Mapping> anon_mappings{mappings};
allocator::vector<Mapping> globals_mappings{mappings};
allocator::vector<Mapping> stack_mappings{mappings};
if (!ClassifyMappings(mappings, heap_mappings, anon_mappings, globals_mappings, stack_mappings)) {
return false;
}
for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) {
MEM_ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
HeapIterate(*it,
[&](uintptr_t base, size_t size) { heap_walker_.Allocation(base, base + size); });
}
for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) {
MEM_ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
heap_walker_.Allocation(it->begin, it->end);
}
for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) {
MEM_ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
heap_walker_.Root(it->begin, it->end);
}
for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) {
for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) {
if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) {
MEM_ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name);
heap_walker_.Root(thread_it->stack.first, it->end);
}
}
heap_walker_.Root(thread_it->regs);
}
heap_walker_.Root(refs);
MEM_ALOGI("searching done");
return true;
}
bool MemUnreachable::GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit,
size_t* num_leaks, size_t* leak_bytes) {
MEM_ALOGI("sweeping process %d for unreachable memory", pid_);
leaks.clear();
if (!heap_walker_.DetectLeaks()) {
return false;
}
allocator::vector<Range> leaked1{allocator_};
heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes);
MEM_ALOGI("sweeping done");
MEM_ALOGI("folding related leaks");
LeakFolding folding(allocator_, heap_walker_);
if (!folding.FoldLeaks()) {
return false;
}
allocator::vector<LeakFolding::Leak> leaked{allocator_};
if (!folding.Leaked(leaked, num_leaks, leak_bytes)) {
return false;
}
allocator::unordered_map<Leak::Backtrace, Leak*> backtrace_map{allocator_};
// Prevent reallocations of backing memory so we can store pointers into it
// in backtrace_map.
leaks.reserve(leaked.size());
for (auto& it : leaked) {
leaks.emplace_back();
Leak* leak = &leaks.back();
ssize_t num_backtrace_frames = malloc_backtrace(
reinterpret_cast<void*>(it.range.begin), leak->backtrace.frames, leak->backtrace.max_frames);
if (num_backtrace_frames > 0) {
leak->backtrace.num_frames = num_backtrace_frames;
auto inserted = backtrace_map.emplace(leak->backtrace, leak);
if (!inserted.second) {
// Leak with same backtrace already exists, drop this one and
// increment similar counts on the existing one.
leaks.pop_back();
Leak* similar_leak = inserted.first->second;
similar_leak->similar_count++;
similar_leak->similar_size += it.range.size();
similar_leak->similar_referenced_count += it.referenced_count;
similar_leak->similar_referenced_size += it.referenced_size;
similar_leak->total_size += it.range.size();
similar_leak->total_size += it.referenced_size;
continue;
}
}
leak->begin = it.range.begin;
leak->size = it.range.size();
leak->referenced_count = it.referenced_count;
leak->referenced_size = it.referenced_size;
leak->total_size = leak->size + leak->referenced_size;
memcpy(leak->contents, reinterpret_cast<void*>(it.range.begin),
std::min(leak->size, Leak::contents_length));
}
MEM_ALOGI("folding done");
std::sort(leaks.begin(), leaks.end(),
[](const Leak& a, const Leak& b) { return a.total_size > b.total_size; });
if (leaks.size() > limit) {
leaks.resize(limit);
}
return true;
}
static bool has_prefix(const allocator::string& s, const char* prefix) {
int ret = s.compare(0, strlen(prefix), prefix);
return ret == 0;
}
bool MemUnreachable::ClassifyMappings(const allocator::vector<Mapping>& mappings,
allocator::vector<Mapping>& heap_mappings,
allocator::vector<Mapping>& anon_mappings,
allocator::vector<Mapping>& globals_mappings,
allocator::vector<Mapping>& stack_mappings) {
heap_mappings.clear();
anon_mappings.clear();
globals_mappings.clear();
stack_mappings.clear();
allocator::string current_lib{allocator_};
for (auto it = mappings.begin(); it != mappings.end(); it++) {
if (it->execute) {
current_lib = it->name;
continue;
}
if (!it->read) {
continue;
}
const allocator::string mapping_name{it->name, allocator_};
if (mapping_name == "[anon:.bss]") {
// named .bss section
globals_mappings.emplace_back(*it);
} else if (mapping_name == current_lib) {
// .rodata or .data section
globals_mappings.emplace_back(*it);
} else if (mapping_name == "[anon:libc_malloc]") {
// named malloc mapping
heap_mappings.emplace_back(*it);
} else if (has_prefix(mapping_name, "/dev/ashmem/dalvik")) {
// named dalvik heap mapping
globals_mappings.emplace_back(*it);
} else if (has_prefix(mapping_name, "[stack")) {
// named stack mapping
stack_mappings.emplace_back(*it);
} else if (mapping_name.size() == 0) {
globals_mappings.emplace_back(*it);
} else if (has_prefix(mapping_name, "[anon:") &&
mapping_name != "[anon:leak_detector_malloc]") {
// TODO(ccross): it would be nice to treat named anonymous mappings as
// possible leaks, but naming something in a .bss or .data section makes
// it impossible to distinguish them from mmaped and then named mappings.
globals_mappings.emplace_back(*it);
}
}
return true;
}
template <typename T>
static inline const char* plural(T val) {
return (val == 1) ? "" : "s";
}
bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) {
int parent_pid = getpid();
int parent_tid = gettid();
Heap heap;
Semaphore continue_parent_sem;
LeakPipe pipe;
PtracerThread thread{[&]() -> int {
/////////////////////////////////////////////
// Collection thread
/////////////////////////////////////////////
MEM_ALOGI("collecting thread info for process %d...", parent_pid);
ThreadCapture thread_capture(parent_pid, heap);
allocator::vector<ThreadInfo> thread_info(heap);
allocator::vector<Mapping> mappings(heap);
allocator::vector<uintptr_t> refs(heap);
// ptrace all the threads
if (!thread_capture.CaptureThreads()) {
continue_parent_sem.Post();
return 1;
}
// collect register contents and stacks
if (!thread_capture.CapturedThreadInfo(thread_info)) {
continue_parent_sem.Post();
return 1;
}
// snapshot /proc/pid/maps
if (!ProcessMappings(parent_pid, mappings)) {
continue_parent_sem.Post();
return 1;
}
if (!BinderReferences(refs)) {
continue_parent_sem.Post();
return 1;
}
// malloc must be enabled to call fork, at_fork handlers take the same
// locks as ScopedDisableMalloc. All threads are paused in ptrace, so
// memory state is still consistent. Unfreeze the original thread so it
// can drop the malloc locks, it will block until the collection thread
// exits.
thread_capture.ReleaseThread(parent_tid);
continue_parent_sem.Post();
// fork a process to do the heap walking
int ret = fork();
if (ret < 0) {
return 1;
} else if (ret == 0) {
/////////////////////////////////////////////
// Heap walker process
/////////////////////////////////////////////
// Examine memory state in the child using the data collected above and
// the CoW snapshot of the process memory contents.
if (!pipe.OpenSender()) {
_exit(1);
}
MemUnreachable unreachable{parent_pid, heap};
if (!unreachable.CollectAllocations(thread_info, mappings, refs)) {
_exit(2);
}
size_t num_allocations = unreachable.Allocations();
size_t allocation_bytes = unreachable.AllocationBytes();
allocator::vector<Leak> leaks{heap};
size_t num_leaks = 0;
size_t leak_bytes = 0;
bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes);
ok = ok && pipe.Sender().Send(num_allocations);
ok = ok && pipe.Sender().Send(allocation_bytes);
ok = ok && pipe.Sender().Send(num_leaks);
ok = ok && pipe.Sender().Send(leak_bytes);
ok = ok && pipe.Sender().SendVector(leaks);
if (!ok) {
_exit(3);
}
_exit(0);
} else {
// Nothing left to do in the collection thread, return immediately,
// releasing all the captured threads.
MEM_ALOGI("collection thread done");
return 0;
}
}};
/////////////////////////////////////////////
// Original thread
/////////////////////////////////////////////
{
// Disable malloc to get a consistent view of memory
ScopedDisableMalloc disable_malloc;
// Start the collection thread
thread.Start();
// Wait for the collection thread to signal that it is ready to fork the
// heap walker process.
continue_parent_sem.Wait(30s);
// Re-enable malloc so the collection thread can fork.
}
// Wait for the collection thread to exit
int ret = thread.Join();
if (ret != 0) {
return false;
}
// Get a pipe from the heap walker process. Transferring a new pipe fd
// ensures no other forked processes can have it open, so when the heap
// walker process dies the remote side of the pipe will close.
if (!pipe.OpenReceiver()) {
return false;
}
bool ok = true;
ok = ok && pipe.Receiver().Receive(&info.num_allocations);
ok = ok && pipe.Receiver().Receive(&info.allocation_bytes);
ok = ok && pipe.Receiver().Receive(&info.num_leaks);
ok = ok && pipe.Receiver().Receive(&info.leak_bytes);
ok = ok && pipe.Receiver().ReceiveVector(info.leaks);
if (!ok) {
return false;
}
MEM_ALOGI("unreachable memory detection done");
MEM_ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s",
info.leak_bytes, info.num_leaks, plural(info.num_leaks), info.allocation_bytes,
info.num_allocations, plural(info.num_allocations));
return true;
}
std::string Leak::ToString(bool log_contents) const {
std::ostringstream oss;
oss << " " << std::dec << size;
oss << " bytes unreachable at ";
oss << std::hex << begin;
oss << std::endl;
if (referenced_count > 0) {
oss << std::dec;
oss << " referencing " << referenced_size << " unreachable bytes";
oss << " in " << referenced_count << " allocation" << plural(referenced_count);
oss << std::endl;
}
if (similar_count > 0) {
oss << std::dec;
oss << " and " << similar_size << " similar unreachable bytes";
oss << " in " << similar_count << " allocation" << plural(similar_count);
oss << std::endl;
if (similar_referenced_count > 0) {
oss << " referencing " << similar_referenced_size << " unreachable bytes";
oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count);
oss << std::endl;
}
}
if (log_contents) {
const int bytes_per_line = 16;
const size_t bytes = std::min(size, contents_length);
if (bytes == size) {
oss << " contents:" << std::endl;
} else {
oss << " first " << bytes << " bytes of contents:" << std::endl;
}
for (size_t i = 0; i < bytes; i += bytes_per_line) {
oss << " " << std::hex << begin + i << ": ";
size_t j;
oss << std::setfill('0');
for (j = i; j < bytes && j < i + bytes_per_line; j++) {
oss << std::setw(2) << static_cast<int>(contents[j]) << " ";
}
oss << std::setfill(' ');
for (; j < i + bytes_per_line; j++) {
oss << " ";
}
for (j = i; j < bytes && j < i + bytes_per_line; j++) {
char c = contents[j];
if (c < ' ' || c >= 0x7f) {
c = '.';
}
oss << c;
}
oss << std::endl;
}
}
if (backtrace.num_frames > 0) {
oss << backtrace_string(backtrace.frames, backtrace.num_frames);
}
return oss.str();
}
std::string UnreachableMemoryInfo::ToString(bool log_contents) const {
std::ostringstream oss;
oss << " " << leak_bytes << " bytes in ";
oss << num_leaks << " unreachable allocation" << plural(num_leaks);
oss << std::endl;
oss << " ABI: '" ABI_STRING "'" << std::endl;
oss << std::endl;
for (auto it = leaks.begin(); it != leaks.end(); it++) {
oss << it->ToString(log_contents);
oss << std::endl;
}
return oss.str();
}
std::string GetUnreachableMemoryString(bool log_contents, size_t limit) {
UnreachableMemoryInfo info;
if (!GetUnreachableMemory(info, limit)) {
return "Failed to get unreachable memory\n"
"If you are trying to get unreachable memory from a system app\n"
"(like com.android.systemui), disable selinux first using\n"
"setenforce 0\n";
}
return info.ToString(log_contents);
}
} // namespace android
bool LogUnreachableMemory(bool log_contents, size_t limit) {
android::UnreachableMemoryInfo info;
if (!android::GetUnreachableMemory(info, limit)) {
return false;
}
for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) {
MEM_ALOGE("%s", it->ToString(log_contents).c_str());
}
return true;
}
bool NoLeaks() {
android::UnreachableMemoryInfo info;
if (!android::GetUnreachableMemory(info, 0)) {
return false;
}
return info.num_leaks == 0;
}