| /* libs/pixelflinger/codeflinger/texturing.cpp |
| ** |
| ** Copyright 2006, The Android Open Source Project |
| ** |
| ** Licensed under the Apache License, Version 2.0 (the "License"); |
| ** you may not use this file except in compliance with the License. |
| ** You may obtain a copy of the License at |
| ** |
| ** http://www.apache.org/licenses/LICENSE-2.0 |
| ** |
| ** Unless required by applicable law or agreed to in writing, software |
| ** distributed under the License is distributed on an "AS IS" BASIS, |
| ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| ** See the License for the specific language governing permissions and |
| ** limitations under the License. |
| */ |
| |
| #define LOG_TAG "pixelflinger-code" |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <sys/types.h> |
| |
| #include <log/log.h> |
| |
| #include "GGLAssembler.h" |
| |
| namespace android { |
| |
| // --------------------------------------------------------------------------- |
| |
| // iterators are initialized like this: |
| // (intToFixedCenter(x) * dx)>>16 + x0 |
| // ((x<<16 + 0x8000) * dx)>>16 + x0 |
| // ((x<<16)*dx + (0x8000*dx))>>16 + x0 |
| // ( (x*dx) + dx>>1 ) + x0 |
| // (x*dx) + (dx>>1 + x0) |
| |
| void GGLAssembler::init_iterated_color(fragment_parts_t& parts, const reg_t& x) |
| { |
| context_t const* c = mBuilderContext.c; |
| const needs_t& needs = mBuilderContext.needs; |
| |
| if (mSmooth) { |
| // NOTE: we could take this case in the mDithering + !mSmooth case, |
| // but this would use up to 4 more registers for the color components |
| // for only a little added quality. |
| // Currently, this causes the system to run out of registers in |
| // some case (see issue #719496) |
| |
| comment("compute initial iterated color (smooth and/or dither case)"); |
| |
| parts.iterated_packed = 0; |
| parts.packed = 0; |
| |
| // 0x1: color component |
| // 0x2: iterators |
| const int optReload = mOptLevel >> 1; |
| if (optReload >= 3) parts.reload = 0; // reload nothing |
| else if (optReload == 2) parts.reload = 2; // reload iterators |
| else if (optReload == 1) parts.reload = 1; // reload colors |
| else if (optReload <= 0) parts.reload = 3; // reload both |
| |
| if (!mSmooth) { |
| // we're not smoothing (just dithering), we never have to |
| // reload the iterators |
| parts.reload &= ~2; |
| } |
| |
| Scratch scratches(registerFile()); |
| const int t0 = (parts.reload & 1) ? scratches.obtain() : 0; |
| const int t1 = (parts.reload & 2) ? scratches.obtain() : 0; |
| for (int i=0 ; i<4 ; i++) { |
| if (!mInfo[i].iterated) |
| continue; |
| |
| // this component exists in the destination and is not replaced |
| // by a texture unit. |
| const int c = (parts.reload & 1) ? t0 : obtainReg(); |
| if (i==0) CONTEXT_LOAD(c, iterators.ydady); |
| if (i==1) CONTEXT_LOAD(c, iterators.ydrdy); |
| if (i==2) CONTEXT_LOAD(c, iterators.ydgdy); |
| if (i==3) CONTEXT_LOAD(c, iterators.ydbdy); |
| parts.argb[i].reg = c; |
| |
| if (mInfo[i].smooth) { |
| parts.argb_dx[i].reg = (parts.reload & 2) ? t1 : obtainReg(); |
| const int dvdx = parts.argb_dx[i].reg; |
| CONTEXT_LOAD(dvdx, generated_vars.argb[i].dx); |
| MLA(AL, 0, c, x.reg, dvdx, c); |
| |
| // adjust the color iterator to make sure it won't overflow |
| if (!mAA) { |
| // this is not needed when we're using anti-aliasing |
| // because we will (have to) clamp the components |
| // anyway. |
| int end = scratches.obtain(); |
| MOV(AL, 0, end, reg_imm(parts.count.reg, LSR, 16)); |
| MLA(AL, 1, end, dvdx, end, c); |
| SUB(MI, 0, c, c, end); |
| BIC(AL, 0, c, c, reg_imm(c, ASR, 31)); |
| scratches.recycle(end); |
| } |
| } |
| |
| if (parts.reload & 1) { |
| CONTEXT_STORE(c, generated_vars.argb[i].c); |
| } |
| } |
| } else { |
| // We're not smoothed, so we can |
| // just use a packed version of the color and extract the |
| // components as needed (or not at all if we don't blend) |
| |
| // figure out if we need the iterated color |
| int load = 0; |
| for (int i=0 ; i<4 ; i++) { |
| component_info_t& info = mInfo[i]; |
| if ((info.inDest || info.needed) && !info.replaced) |
| load |= 1; |
| } |
| |
| parts.iterated_packed = 1; |
| parts.packed = (!mTextureMachine.mask && !mBlending |
| && !mFog && !mDithering); |
| parts.reload = 0; |
| if (load || parts.packed) { |
| if (mBlending || mDithering || mInfo[GGLFormat::ALPHA].needed) { |
| comment("load initial iterated color (8888 packed)"); |
| parts.iterated.setTo(obtainReg(), |
| &(c->formats[GGL_PIXEL_FORMAT_RGBA_8888])); |
| CONTEXT_LOAD(parts.iterated.reg, packed8888); |
| } else { |
| comment("load initial iterated color (dest format packed)"); |
| |
| parts.iterated.setTo(obtainReg(), &mCbFormat); |
| |
| // pre-mask the iterated color |
| const int bits = parts.iterated.size(); |
| const uint32_t size = ((bits>=32) ? 0 : (1LU << bits)) - 1; |
| uint32_t mask = 0; |
| if (mMasking) { |
| for (int i=0 ; i<4 ; i++) { |
| const int component_mask = 1<<i; |
| const int h = parts.iterated.format.c[i].h; |
| const int l = parts.iterated.format.c[i].l; |
| if (h && (!(mMasking & component_mask))) { |
| mask |= ((1<<(h-l))-1) << l; |
| } |
| } |
| } |
| |
| if (mMasking && ((mask & size)==0)) { |
| // none of the components are present in the mask |
| } else { |
| CONTEXT_LOAD(parts.iterated.reg, packed); |
| if (mCbFormat.size == 1) { |
| AND(AL, 0, parts.iterated.reg, |
| parts.iterated.reg, imm(0xFF)); |
| } else if (mCbFormat.size == 2) { |
| MOV(AL, 0, parts.iterated.reg, |
| reg_imm(parts.iterated.reg, LSR, 16)); |
| } |
| } |
| |
| // pre-mask the iterated color |
| if (mMasking) { |
| build_and_immediate(parts.iterated.reg, parts.iterated.reg, |
| mask, bits); |
| } |
| } |
| } |
| } |
| } |
| |
| void GGLAssembler::build_iterated_color( |
| component_t& fragment, |
| const fragment_parts_t& parts, |
| int component, |
| Scratch& regs) |
| { |
| fragment.setTo( regs.obtain(), 0, 32, CORRUPTIBLE); |
| |
| if (!mInfo[component].iterated) |
| return; |
| |
| if (parts.iterated_packed) { |
| // iterated colors are packed, extract the one we need |
| extract(fragment, parts.iterated, component); |
| } else { |
| fragment.h = GGL_COLOR_BITS; |
| fragment.l = GGL_COLOR_BITS - 8; |
| fragment.flags |= CLEAR_LO; |
| // iterated colors are held in their own register, |
| // (smooth and/or dithering case) |
| if (parts.reload==3) { |
| // this implies mSmooth |
| Scratch scratches(registerFile()); |
| int dx = scratches.obtain(); |
| CONTEXT_LOAD(fragment.reg, generated_vars.argb[component].c); |
| CONTEXT_LOAD(dx, generated_vars.argb[component].dx); |
| ADD(AL, 0, dx, fragment.reg, dx); |
| CONTEXT_STORE(dx, generated_vars.argb[component].c); |
| } else if (parts.reload & 1) { |
| CONTEXT_LOAD(fragment.reg, generated_vars.argb[component].c); |
| } else { |
| // we don't reload, so simply rename the register and mark as |
| // non CORRUPTIBLE so that the texture env or blending code |
| // won't modify this (renamed) register |
| regs.recycle(fragment.reg); |
| fragment.reg = parts.argb[component].reg; |
| fragment.flags &= ~CORRUPTIBLE; |
| } |
| if (mInfo[component].smooth && mAA) { |
| // when using smooth shading AND anti-aliasing, we need to clamp |
| // the iterators because there is always an extra pixel on the |
| // edges, which most of the time will cause an overflow |
| // (since technically its outside of the domain). |
| BIC(AL, 0, fragment.reg, fragment.reg, |
| reg_imm(fragment.reg, ASR, 31)); |
| component_sat(fragment); |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::decodeLogicOpNeeds(const needs_t& needs) |
| { |
| // gather some informations about the components we need to process... |
| const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR; |
| switch(opcode) { |
| case GGL_COPY: |
| mLogicOp = 0; |
| break; |
| case GGL_CLEAR: |
| case GGL_SET: |
| mLogicOp = LOGIC_OP; |
| break; |
| case GGL_AND: |
| case GGL_AND_REVERSE: |
| case GGL_AND_INVERTED: |
| case GGL_XOR: |
| case GGL_OR: |
| case GGL_NOR: |
| case GGL_EQUIV: |
| case GGL_OR_REVERSE: |
| case GGL_OR_INVERTED: |
| case GGL_NAND: |
| mLogicOp = LOGIC_OP|LOGIC_OP_SRC|LOGIC_OP_DST; |
| break; |
| case GGL_NOOP: |
| case GGL_INVERT: |
| mLogicOp = LOGIC_OP|LOGIC_OP_DST; |
| break; |
| case GGL_COPY_INVERTED: |
| mLogicOp = LOGIC_OP|LOGIC_OP_SRC; |
| break; |
| }; |
| } |
| |
| void GGLAssembler::decodeTMUNeeds(const needs_t& needs, context_t const* c) |
| { |
| uint8_t replaced=0; |
| mTextureMachine.mask = 0; |
| mTextureMachine.activeUnits = 0; |
| for (int i=GGL_TEXTURE_UNIT_COUNT-1 ; i>=0 ; i--) { |
| texture_unit_t& tmu = mTextureMachine.tmu[i]; |
| if (replaced == 0xF) { |
| // all components are replaced, skip this TMU. |
| tmu.format_idx = 0; |
| tmu.mask = 0; |
| tmu.replaced = replaced; |
| continue; |
| } |
| tmu.format_idx = GGL_READ_NEEDS(T_FORMAT, needs.t[i]); |
| tmu.format = c->formats[tmu.format_idx]; |
| tmu.bits = tmu.format.size*8; |
| tmu.swrap = GGL_READ_NEEDS(T_S_WRAP, needs.t[i]); |
| tmu.twrap = GGL_READ_NEEDS(T_T_WRAP, needs.t[i]); |
| tmu.env = ggl_needs_to_env(GGL_READ_NEEDS(T_ENV, needs.t[i])); |
| tmu.pot = GGL_READ_NEEDS(T_POT, needs.t[i]); |
| tmu.linear = GGL_READ_NEEDS(T_LINEAR, needs.t[i]) |
| && tmu.format.size!=3; // XXX: only 8, 16 and 32 modes for now |
| |
| // 5551 linear filtering is not supported |
| if (tmu.format_idx == GGL_PIXEL_FORMAT_RGBA_5551) |
| tmu.linear = 0; |
| |
| tmu.mask = 0; |
| tmu.replaced = replaced; |
| |
| if (tmu.format_idx) { |
| mTextureMachine.activeUnits++; |
| if (tmu.format.c[0].h) tmu.mask |= 0x1; |
| if (tmu.format.c[1].h) tmu.mask |= 0x2; |
| if (tmu.format.c[2].h) tmu.mask |= 0x4; |
| if (tmu.format.c[3].h) tmu.mask |= 0x8; |
| if (tmu.env == GGL_REPLACE) { |
| replaced |= tmu.mask; |
| } else if (tmu.env == GGL_DECAL) { |
| if (!tmu.format.c[GGLFormat::ALPHA].h) { |
| // if we don't have alpha, decal does nothing |
| tmu.mask = 0; |
| } else { |
| // decal always ignores At |
| tmu.mask &= ~(1<<GGLFormat::ALPHA); |
| } |
| } |
| } |
| mTextureMachine.mask |= tmu.mask; |
| //printf("%d: mask=%08lx, replaced=%08lx\n", |
| // i, int(tmu.mask), int(tmu.replaced)); |
| } |
| mTextureMachine.replaced = replaced; |
| mTextureMachine.directTexture = 0; |
| //printf("replaced=%08lx\n", mTextureMachine.replaced); |
| } |
| |
| |
| void GGLAssembler::init_textures( |
| tex_coord_t* coords, |
| const reg_t& x, const reg_t& y) |
| { |
| context_t const* c = mBuilderContext.c; |
| const needs_t& needs = mBuilderContext.needs; |
| int Rctx = mBuilderContext.Rctx; |
| int Rx = x.reg; |
| int Ry = y.reg; |
| |
| if (mTextureMachine.mask) { |
| comment("compute texture coordinates"); |
| } |
| |
| // init texture coordinates for each tmu |
| const int cb_format_idx = GGL_READ_NEEDS(CB_FORMAT, needs.n); |
| const bool multiTexture = mTextureMachine.activeUnits > 1; |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) { |
| const texture_unit_t& tmu = mTextureMachine.tmu[i]; |
| if (tmu.format_idx == 0) |
| continue; |
| if ((tmu.swrap == GGL_NEEDS_WRAP_11) && |
| (tmu.twrap == GGL_NEEDS_WRAP_11)) |
| { |
| // 1:1 texture |
| pointer_t& txPtr = coords[i].ptr; |
| txPtr.setTo(obtainReg(), tmu.bits); |
| CONTEXT_LOAD(txPtr.reg, state.texture[i].iterators.ydsdy); |
| ADD(AL, 0, Rx, Rx, reg_imm(txPtr.reg, ASR, 16)); // x += (s>>16) |
| CONTEXT_LOAD(txPtr.reg, state.texture[i].iterators.ydtdy); |
| ADD(AL, 0, Ry, Ry, reg_imm(txPtr.reg, ASR, 16)); // y += (t>>16) |
| // merge base & offset |
| CONTEXT_LOAD(txPtr.reg, generated_vars.texture[i].stride); |
| SMLABB(AL, Rx, Ry, txPtr.reg, Rx); // x+y*stride |
| CONTEXT_ADDR_LOAD(txPtr.reg, generated_vars.texture[i].data); |
| base_offset(txPtr, txPtr, Rx); |
| } else { |
| Scratch scratches(registerFile()); |
| reg_t& s = coords[i].s; |
| reg_t& t = coords[i].t; |
| // s = (x * dsdx)>>16 + ydsdy |
| // s = (x * dsdx)>>16 + (y*dsdy)>>16 + s0 |
| // t = (x * dtdx)>>16 + ydtdy |
| // t = (x * dtdx)>>16 + (y*dtdy)>>16 + t0 |
| s.setTo(obtainReg()); |
| t.setTo(obtainReg()); |
| const int need_w = GGL_READ_NEEDS(W, needs.n); |
| if (need_w) { |
| CONTEXT_LOAD(s.reg, state.texture[i].iterators.ydsdy); |
| CONTEXT_LOAD(t.reg, state.texture[i].iterators.ydtdy); |
| } else { |
| int ydsdy = scratches.obtain(); |
| int ydtdy = scratches.obtain(); |
| CONTEXT_LOAD(s.reg, generated_vars.texture[i].dsdx); |
| CONTEXT_LOAD(ydsdy, state.texture[i].iterators.ydsdy); |
| CONTEXT_LOAD(t.reg, generated_vars.texture[i].dtdx); |
| CONTEXT_LOAD(ydtdy, state.texture[i].iterators.ydtdy); |
| MLA(AL, 0, s.reg, Rx, s.reg, ydsdy); |
| MLA(AL, 0, t.reg, Rx, t.reg, ydtdy); |
| } |
| |
| if ((mOptLevel&1)==0) { |
| CONTEXT_STORE(s.reg, generated_vars.texture[i].spill[0]); |
| CONTEXT_STORE(t.reg, generated_vars.texture[i].spill[1]); |
| recycleReg(s.reg); |
| recycleReg(t.reg); |
| } |
| } |
| |
| // direct texture? |
| if (!multiTexture && !mBlending && !mDithering && !mFog && |
| cb_format_idx == tmu.format_idx && !tmu.linear && |
| mTextureMachine.replaced == tmu.mask) |
| { |
| mTextureMachine.directTexture = i + 1; |
| } |
| } |
| } |
| |
| void GGLAssembler::build_textures( fragment_parts_t& parts, |
| Scratch& regs) |
| { |
| context_t const* c = mBuilderContext.c; |
| const needs_t& needs = mBuilderContext.needs; |
| int Rctx = mBuilderContext.Rctx; |
| |
| // We don't have a way to spill registers automatically |
| // spill depth and AA regs, when we know we may have to. |
| // build the spill list... |
| uint32_t spill_list = 0; |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) { |
| const texture_unit_t& tmu = mTextureMachine.tmu[i]; |
| if (tmu.format_idx == 0) |
| continue; |
| if (tmu.linear) { |
| // we may run out of register if we have linear filtering |
| // at 1 or 4 bytes / pixel on any texture unit. |
| if (tmu.format.size == 1) { |
| // if depth and AA enabled, we'll run out of 1 register |
| if (parts.z.reg > 0 && parts.covPtr.reg > 0) |
| spill_list |= 1<<parts.covPtr.reg; |
| } |
| if (tmu.format.size == 4) { |
| // if depth or AA enabled, we'll run out of 1 or 2 registers |
| if (parts.z.reg > 0) |
| spill_list |= 1<<parts.z.reg; |
| if (parts.covPtr.reg > 0) |
| spill_list |= 1<<parts.covPtr.reg; |
| } |
| } |
| } |
| |
| Spill spill(registerFile(), *this, spill_list); |
| |
| const bool multiTexture = mTextureMachine.activeUnits > 1; |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) { |
| const texture_unit_t& tmu = mTextureMachine.tmu[i]; |
| if (tmu.format_idx == 0) |
| continue; |
| |
| pointer_t& txPtr = parts.coords[i].ptr; |
| pixel_t& texel = parts.texel[i]; |
| |
| // repeat... |
| if ((tmu.swrap == GGL_NEEDS_WRAP_11) && |
| (tmu.twrap == GGL_NEEDS_WRAP_11)) |
| { // 1:1 textures |
| comment("fetch texel"); |
| texel.setTo(regs.obtain(), &tmu.format); |
| load(txPtr, texel, WRITE_BACK); |
| } else { |
| Scratch scratches(registerFile()); |
| reg_t& s = parts.coords[i].s; |
| reg_t& t = parts.coords[i].t; |
| if ((mOptLevel&1)==0) { |
| comment("reload s/t (multitexture or linear filtering)"); |
| s.reg = scratches.obtain(); |
| t.reg = scratches.obtain(); |
| CONTEXT_LOAD(s.reg, generated_vars.texture[i].spill[0]); |
| CONTEXT_LOAD(t.reg, generated_vars.texture[i].spill[1]); |
| } |
| |
| if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS) |
| return; |
| |
| comment("compute repeat/clamp"); |
| int u = scratches.obtain(); |
| int v = scratches.obtain(); |
| int width = scratches.obtain(); |
| int height = scratches.obtain(); |
| int U = 0; |
| int V = 0; |
| |
| if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS) |
| return; |
| |
| CONTEXT_LOAD(width, generated_vars.texture[i].width); |
| CONTEXT_LOAD(height, generated_vars.texture[i].height); |
| |
| int FRAC_BITS = 0; |
| if (tmu.linear) { |
| // linear interpolation |
| if (tmu.format.size == 1) { |
| // for 8-bits textures, we can afford |
| // 7 bits of fractional precision at no |
| // additional cost (we can't do 8 bits |
| // because filter8 uses signed 16 bits muls) |
| FRAC_BITS = 7; |
| } else if (tmu.format.size == 2) { |
| // filter16() is internally limited to 4 bits, so: |
| // FRAC_BITS=2 generates less instructions, |
| // FRAC_BITS=3,4,5 creates unpleasant artifacts, |
| // FRAC_BITS=6+ looks good |
| FRAC_BITS = 6; |
| } else if (tmu.format.size == 4) { |
| // filter32() is internally limited to 8 bits, so: |
| // FRAC_BITS=4 looks good |
| // FRAC_BITS=5+ looks better, but generates 3 extra ipp |
| FRAC_BITS = 6; |
| } else { |
| // for all other cases we use 4 bits. |
| FRAC_BITS = 4; |
| } |
| } |
| wrapping(u, s.reg, width, tmu.swrap, FRAC_BITS); |
| wrapping(v, t.reg, height, tmu.twrap, FRAC_BITS); |
| |
| if (tmu.linear) { |
| comment("compute linear filtering offsets"); |
| // pixel size scale |
| const int shift = 31 - gglClz(tmu.format.size); |
| U = scratches.obtain(); |
| V = scratches.obtain(); |
| |
| if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS) |
| return; |
| |
| // sample the texel center |
| SUB(AL, 0, u, u, imm(1<<(FRAC_BITS-1))); |
| SUB(AL, 0, v, v, imm(1<<(FRAC_BITS-1))); |
| |
| // get the fractionnal part of U,V |
| AND(AL, 0, U, u, imm((1<<FRAC_BITS)-1)); |
| AND(AL, 0, V, v, imm((1<<FRAC_BITS)-1)); |
| |
| // compute width-1 and height-1 |
| SUB(AL, 0, width, width, imm(1)); |
| SUB(AL, 0, height, height, imm(1)); |
| |
| // get the integer part of U,V and clamp/wrap |
| // and compute offset to the next texel |
| if (tmu.swrap == GGL_NEEDS_WRAP_REPEAT) { |
| // u has already been REPEATed |
| MOV(AL, 1, u, reg_imm(u, ASR, FRAC_BITS)); |
| MOV(MI, 0, u, width); |
| CMP(AL, u, width); |
| MOV(LT, 0, width, imm(1 << shift)); |
| if (shift) |
| MOV(GE, 0, width, reg_imm(width, LSL, shift)); |
| RSB(GE, 0, width, width, imm(0)); |
| } else { |
| // u has not been CLAMPed yet |
| // algorithm: |
| // if ((u>>4) >= width) |
| // u = width<<4 |
| // width = 0 |
| // else |
| // width = 1<<shift |
| // u = u>>4; // get integer part |
| // if (u<0) |
| // u = 0 |
| // width = 0 |
| // generated_vars.rt = width |
| |
| CMP(AL, width, reg_imm(u, ASR, FRAC_BITS)); |
| MOV(LE, 0, u, reg_imm(width, LSL, FRAC_BITS)); |
| MOV(LE, 0, width, imm(0)); |
| MOV(GT, 0, width, imm(1 << shift)); |
| MOV(AL, 1, u, reg_imm(u, ASR, FRAC_BITS)); |
| MOV(MI, 0, u, imm(0)); |
| MOV(MI, 0, width, imm(0)); |
| } |
| CONTEXT_STORE(width, generated_vars.rt); |
| |
| const int stride = width; |
| CONTEXT_LOAD(stride, generated_vars.texture[i].stride); |
| if (tmu.twrap == GGL_NEEDS_WRAP_REPEAT) { |
| // v has already been REPEATed |
| MOV(AL, 1, v, reg_imm(v, ASR, FRAC_BITS)); |
| MOV(MI, 0, v, height); |
| CMP(AL, v, height); |
| MOV(LT, 0, height, imm(1 << shift)); |
| if (shift) |
| MOV(GE, 0, height, reg_imm(height, LSL, shift)); |
| RSB(GE, 0, height, height, imm(0)); |
| MUL(AL, 0, height, stride, height); |
| } else { |
| // v has not been CLAMPed yet |
| CMP(AL, height, reg_imm(v, ASR, FRAC_BITS)); |
| MOV(LE, 0, v, reg_imm(height, LSL, FRAC_BITS)); |
| MOV(LE, 0, height, imm(0)); |
| if (shift) { |
| MOV(GT, 0, height, reg_imm(stride, LSL, shift)); |
| } else { |
| MOV(GT, 0, height, stride); |
| } |
| MOV(AL, 1, v, reg_imm(v, ASR, FRAC_BITS)); |
| MOV(MI, 0, v, imm(0)); |
| MOV(MI, 0, height, imm(0)); |
| } |
| CONTEXT_STORE(height, generated_vars.lb); |
| } |
| |
| scratches.recycle(width); |
| scratches.recycle(height); |
| |
| // iterate texture coordinates... |
| comment("iterate s,t"); |
| int dsdx = scratches.obtain(); |
| int dtdx = scratches.obtain(); |
| |
| if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS) |
| return; |
| |
| CONTEXT_LOAD(dsdx, generated_vars.texture[i].dsdx); |
| CONTEXT_LOAD(dtdx, generated_vars.texture[i].dtdx); |
| ADD(AL, 0, s.reg, s.reg, dsdx); |
| ADD(AL, 0, t.reg, t.reg, dtdx); |
| if ((mOptLevel&1)==0) { |
| CONTEXT_STORE(s.reg, generated_vars.texture[i].spill[0]); |
| CONTEXT_STORE(t.reg, generated_vars.texture[i].spill[1]); |
| scratches.recycle(s.reg); |
| scratches.recycle(t.reg); |
| } |
| scratches.recycle(dsdx); |
| scratches.recycle(dtdx); |
| |
| // merge base & offset... |
| comment("merge base & offset"); |
| texel.setTo(regs.obtain(), &tmu.format); |
| txPtr.setTo(texel.reg, tmu.bits); |
| int stride = scratches.obtain(); |
| |
| if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS) |
| return; |
| |
| CONTEXT_LOAD(stride, generated_vars.texture[i].stride); |
| CONTEXT_ADDR_LOAD(txPtr.reg, generated_vars.texture[i].data); |
| SMLABB(AL, u, v, stride, u); // u+v*stride |
| base_offset(txPtr, txPtr, u); |
| |
| // load texel |
| if (!tmu.linear) { |
| comment("fetch texel"); |
| load(txPtr, texel, 0); |
| } else { |
| // recycle registers we don't need anymore |
| scratches.recycle(u); |
| scratches.recycle(v); |
| scratches.recycle(stride); |
| |
| comment("fetch texel, bilinear"); |
| switch (tmu.format.size) { |
| case 1: filter8(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break; |
| case 2: filter16(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break; |
| case 3: filter24(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break; |
| case 4: filter32(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break; |
| } |
| } |
| } |
| } |
| } |
| |
| void GGLAssembler::build_iterate_texture_coordinates( |
| const fragment_parts_t& parts) |
| { |
| const bool multiTexture = mTextureMachine.activeUnits > 1; |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) { |
| const texture_unit_t& tmu = mTextureMachine.tmu[i]; |
| if (tmu.format_idx == 0) |
| continue; |
| |
| if ((tmu.swrap == GGL_NEEDS_WRAP_11) && |
| (tmu.twrap == GGL_NEEDS_WRAP_11)) |
| { // 1:1 textures |
| const pointer_t& txPtr = parts.coords[i].ptr; |
| ADD(AL, 0, txPtr.reg, txPtr.reg, imm(txPtr.size>>3)); |
| } else { |
| Scratch scratches(registerFile()); |
| int s = parts.coords[i].s.reg; |
| int t = parts.coords[i].t.reg; |
| if ((mOptLevel&1)==0) { |
| s = scratches.obtain(); |
| t = scratches.obtain(); |
| CONTEXT_LOAD(s, generated_vars.texture[i].spill[0]); |
| CONTEXT_LOAD(t, generated_vars.texture[i].spill[1]); |
| } |
| int dsdx = scratches.obtain(); |
| int dtdx = scratches.obtain(); |
| CONTEXT_LOAD(dsdx, generated_vars.texture[i].dsdx); |
| CONTEXT_LOAD(dtdx, generated_vars.texture[i].dtdx); |
| ADD(AL, 0, s, s, dsdx); |
| ADD(AL, 0, t, t, dtdx); |
| if ((mOptLevel&1)==0) { |
| CONTEXT_STORE(s, generated_vars.texture[i].spill[0]); |
| CONTEXT_STORE(t, generated_vars.texture[i].spill[1]); |
| } |
| } |
| } |
| } |
| |
| void GGLAssembler::filter8( |
| const fragment_parts_t& /*parts*/, |
| pixel_t& texel, const texture_unit_t& tmu, |
| int U, int V, pointer_t& txPtr, |
| int FRAC_BITS) |
| { |
| if (tmu.format.components != GGL_ALPHA && |
| tmu.format.components != GGL_LUMINANCE) |
| { |
| // this is a packed format, and we don't support |
| // linear filtering (it's probably RGB 332) |
| // Should not happen with OpenGL|ES |
| LDRB(AL, texel.reg, txPtr.reg); |
| return; |
| } |
| |
| // ------------------------ |
| // about ~22 cycles / pixel |
| Scratch scratches(registerFile()); |
| |
| int pixel= scratches.obtain(); |
| int d = scratches.obtain(); |
| int u = scratches.obtain(); |
| int k = scratches.obtain(); |
| int rt = scratches.obtain(); |
| int lb = scratches.obtain(); |
| |
| // RB -> U * V |
| |
| CONTEXT_LOAD(rt, generated_vars.rt); |
| CONTEXT_LOAD(lb, generated_vars.lb); |
| |
| int offset = pixel; |
| ADD(AL, 0, offset, lb, rt); |
| LDRB(AL, pixel, txPtr.reg, reg_scale_pre(offset)); |
| SMULBB(AL, u, U, V); |
| SMULBB(AL, d, pixel, u); |
| RSB(AL, 0, k, u, imm(1<<(FRAC_BITS*2))); |
| |
| // LB -> (1-U) * V |
| RSB(AL, 0, U, U, imm(1<<FRAC_BITS)); |
| LDRB(AL, pixel, txPtr.reg, reg_scale_pre(lb)); |
| SMULBB(AL, u, U, V); |
| SMLABB(AL, d, pixel, u, d); |
| SUB(AL, 0, k, k, u); |
| |
| // LT -> (1-U)*(1-V) |
| RSB(AL, 0, V, V, imm(1<<FRAC_BITS)); |
| LDRB(AL, pixel, txPtr.reg); |
| SMULBB(AL, u, U, V); |
| SMLABB(AL, d, pixel, u, d); |
| |
| // RT -> U*(1-V) |
| LDRB(AL, pixel, txPtr.reg, reg_scale_pre(rt)); |
| SUB(AL, 0, u, k, u); |
| SMLABB(AL, texel.reg, pixel, u, d); |
| |
| for (int i=0 ; i<4 ; i++) { |
| if (!texel.format.c[i].h) continue; |
| texel.format.c[i].h = FRAC_BITS*2+8; |
| texel.format.c[i].l = FRAC_BITS*2; // keeping 8 bits in enough |
| } |
| texel.format.size = 4; |
| texel.format.bitsPerPixel = 32; |
| texel.flags |= CLEAR_LO; |
| } |
| |
| void GGLAssembler::filter16( |
| const fragment_parts_t& /*parts*/, |
| pixel_t& texel, const texture_unit_t& tmu, |
| int U, int V, pointer_t& txPtr, |
| int FRAC_BITS) |
| { |
| // compute the mask |
| // XXX: it would be nice if the mask below could be computed |
| // automatically. |
| uint32_t mask = 0; |
| int shift = 0; |
| int prec = 0; |
| switch (tmu.format_idx) { |
| case GGL_PIXEL_FORMAT_RGB_565: |
| // source: 00000ggg.ggg00000 | rrrrr000.000bbbbb |
| // result: gggggggg.gggrrrrr | rrrrr0bb.bbbbbbbb |
| mask = 0x07E0F81F; |
| shift = 16; |
| prec = 5; |
| break; |
| case GGL_PIXEL_FORMAT_RGBA_4444: |
| // 0000,1111,0000,1111 | 0000,1111,0000,1111 |
| mask = 0x0F0F0F0F; |
| shift = 12; |
| prec = 4; |
| break; |
| case GGL_PIXEL_FORMAT_LA_88: |
| // 0000,0000,1111,1111 | 0000,0000,1111,1111 |
| // AALL -> 00AA | 00LL |
| mask = 0x00FF00FF; |
| shift = 8; |
| prec = 8; |
| break; |
| default: |
| // unsupported format, do something sensical... |
| ALOGE("Unsupported 16-bits texture format (%d)", tmu.format_idx); |
| LDRH(AL, texel.reg, txPtr.reg); |
| return; |
| } |
| |
| const int adjust = FRAC_BITS*2 - prec; |
| const int round = 0; |
| |
| // update the texel format |
| texel.format.size = 4; |
| texel.format.bitsPerPixel = 32; |
| texel.flags |= CLEAR_HI|CLEAR_LO; |
| for (int i=0 ; i<4 ; i++) { |
| if (!texel.format.c[i].h) continue; |
| const uint32_t offset = (mask & tmu.format.mask(i)) ? 0 : shift; |
| texel.format.c[i].h = tmu.format.c[i].h + offset + prec; |
| texel.format.c[i].l = texel.format.c[i].h - (tmu.format.bits(i) + prec); |
| } |
| |
| // ------------------------ |
| // about ~40 cycles / pixel |
| Scratch scratches(registerFile()); |
| |
| int pixel= scratches.obtain(); |
| int d = scratches.obtain(); |
| int u = scratches.obtain(); |
| int k = scratches.obtain(); |
| |
| // RB -> U * V |
| int offset = pixel; |
| CONTEXT_LOAD(offset, generated_vars.rt); |
| CONTEXT_LOAD(u, generated_vars.lb); |
| ADD(AL, 0, offset, offset, u); |
| |
| LDRH(AL, pixel, txPtr.reg, reg_pre(offset)); |
| SMULBB(AL, u, U, V); |
| ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift)); |
| build_and_immediate(pixel, pixel, mask, 32); |
| if (adjust) { |
| if (round) |
| ADD(AL, 0, u, u, imm(1<<(adjust-1))); |
| MOV(AL, 0, u, reg_imm(u, LSR, adjust)); |
| } |
| MUL(AL, 0, d, pixel, u); |
| RSB(AL, 0, k, u, imm(1<<prec)); |
| |
| // LB -> (1-U) * V |
| CONTEXT_LOAD(offset, generated_vars.lb); |
| RSB(AL, 0, U, U, imm(1<<FRAC_BITS)); |
| LDRH(AL, pixel, txPtr.reg, reg_pre(offset)); |
| SMULBB(AL, u, U, V); |
| ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift)); |
| build_and_immediate(pixel, pixel, mask, 32); |
| if (adjust) { |
| if (round) |
| ADD(AL, 0, u, u, imm(1<<(adjust-1))); |
| MOV(AL, 0, u, reg_imm(u, LSR, adjust)); |
| } |
| MLA(AL, 0, d, pixel, u, d); |
| SUB(AL, 0, k, k, u); |
| |
| // LT -> (1-U)*(1-V) |
| RSB(AL, 0, V, V, imm(1<<FRAC_BITS)); |
| LDRH(AL, pixel, txPtr.reg); |
| SMULBB(AL, u, U, V); |
| ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift)); |
| build_and_immediate(pixel, pixel, mask, 32); |
| if (adjust) { |
| if (round) |
| ADD(AL, 0, u, u, imm(1<<(adjust-1))); |
| MOV(AL, 0, u, reg_imm(u, LSR, adjust)); |
| } |
| MLA(AL, 0, d, pixel, u, d); |
| |
| // RT -> U*(1-V) |
| CONTEXT_LOAD(offset, generated_vars.rt); |
| LDRH(AL, pixel, txPtr.reg, reg_pre(offset)); |
| SUB(AL, 0, u, k, u); |
| ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift)); |
| build_and_immediate(pixel, pixel, mask, 32); |
| MLA(AL, 0, texel.reg, pixel, u, d); |
| } |
| |
| void GGLAssembler::filter24( |
| const fragment_parts_t& /*parts*/, |
| pixel_t& texel, const texture_unit_t& /*tmu*/, |
| int /*U*/, int /*V*/, pointer_t& txPtr, |
| int /*FRAC_BITS*/) |
| { |
| // not supported yet (currently disabled) |
| load(txPtr, texel, 0); |
| } |
| |
| void GGLAssembler::filter32( |
| const fragment_parts_t& /*parts*/, |
| pixel_t& texel, const texture_unit_t& /*tmu*/, |
| int U, int V, pointer_t& txPtr, |
| int FRAC_BITS) |
| { |
| const int adjust = FRAC_BITS*2 - 8; |
| const int round = 0; |
| |
| // ------------------------ |
| // about ~38 cycles / pixel |
| Scratch scratches(registerFile()); |
| |
| int pixel= scratches.obtain(); |
| int dh = scratches.obtain(); |
| int u = scratches.obtain(); |
| int k = scratches.obtain(); |
| |
| int temp = scratches.obtain(); |
| int dl = scratches.obtain(); |
| int mask = scratches.obtain(); |
| |
| MOV(AL, 0, mask, imm(0xFF)); |
| ORR(AL, 0, mask, mask, imm(0xFF0000)); |
| |
| // RB -> U * V |
| int offset = pixel; |
| CONTEXT_LOAD(offset, generated_vars.rt); |
| CONTEXT_LOAD(u, generated_vars.lb); |
| ADD(AL, 0, offset, offset, u); |
| |
| LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset)); |
| SMULBB(AL, u, U, V); |
| AND(AL, 0, temp, mask, pixel); |
| if (adjust) { |
| if (round) |
| ADD(AL, 0, u, u, imm(1<<(adjust-1))); |
| MOV(AL, 0, u, reg_imm(u, LSR, adjust)); |
| } |
| MUL(AL, 0, dh, temp, u); |
| AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8)); |
| MUL(AL, 0, dl, temp, u); |
| RSB(AL, 0, k, u, imm(0x100)); |
| |
| // LB -> (1-U) * V |
| CONTEXT_LOAD(offset, generated_vars.lb); |
| RSB(AL, 0, U, U, imm(1<<FRAC_BITS)); |
| LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset)); |
| SMULBB(AL, u, U, V); |
| AND(AL, 0, temp, mask, pixel); |
| if (adjust) { |
| if (round) |
| ADD(AL, 0, u, u, imm(1<<(adjust-1))); |
| MOV(AL, 0, u, reg_imm(u, LSR, adjust)); |
| } |
| MLA(AL, 0, dh, temp, u, dh); |
| AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8)); |
| MLA(AL, 0, dl, temp, u, dl); |
| SUB(AL, 0, k, k, u); |
| |
| // LT -> (1-U)*(1-V) |
| RSB(AL, 0, V, V, imm(1<<FRAC_BITS)); |
| LDR(AL, pixel, txPtr.reg); |
| SMULBB(AL, u, U, V); |
| AND(AL, 0, temp, mask, pixel); |
| if (adjust) { |
| if (round) |
| ADD(AL, 0, u, u, imm(1<<(adjust-1))); |
| MOV(AL, 0, u, reg_imm(u, LSR, adjust)); |
| } |
| MLA(AL, 0, dh, temp, u, dh); |
| AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8)); |
| MLA(AL, 0, dl, temp, u, dl); |
| |
| // RT -> U*(1-V) |
| CONTEXT_LOAD(offset, generated_vars.rt); |
| LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset)); |
| SUB(AL, 0, u, k, u); |
| AND(AL, 0, temp, mask, pixel); |
| MLA(AL, 0, dh, temp, u, dh); |
| AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8)); |
| MLA(AL, 0, dl, temp, u, dl); |
| |
| AND(AL, 0, dh, mask, reg_imm(dh, LSR, 8)); |
| AND(AL, 0, dl, dl, reg_imm(mask, LSL, 8)); |
| ORR(AL, 0, texel.reg, dh, dl); |
| } |
| |
| void GGLAssembler::build_texture_environment( |
| component_t& fragment, |
| const fragment_parts_t& parts, |
| int component, |
| Scratch& regs) |
| { |
| const uint32_t component_mask = 1<<component; |
| const bool multiTexture = mTextureMachine.activeUnits > 1; |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) { |
| texture_unit_t& tmu = mTextureMachine.tmu[i]; |
| |
| if (tmu.mask & component_mask) { |
| // replace or modulate with this texture |
| if ((tmu.replaced & component_mask) == 0) { |
| // not replaced by a later tmu... |
| |
| Scratch scratches(registerFile()); |
| pixel_t texel(parts.texel[i]); |
| |
| if (multiTexture && |
| tmu.swrap == GGL_NEEDS_WRAP_11 && |
| tmu.twrap == GGL_NEEDS_WRAP_11) |
| { |
| texel.reg = scratches.obtain(); |
| texel.flags |= CORRUPTIBLE; |
| comment("fetch texel (multitexture 1:1)"); |
| load(parts.coords[i].ptr, texel, WRITE_BACK); |
| } |
| |
| component_t incoming(fragment); |
| modify(fragment, regs); |
| |
| switch (tmu.env) { |
| case GGL_REPLACE: |
| extract(fragment, texel, component); |
| break; |
| case GGL_MODULATE: |
| modulate(fragment, incoming, texel, component); |
| break; |
| case GGL_DECAL: |
| decal(fragment, incoming, texel, component); |
| break; |
| case GGL_BLEND: |
| blend(fragment, incoming, texel, component, i); |
| break; |
| case GGL_ADD: |
| add(fragment, incoming, texel, component); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::wrapping( |
| int d, |
| int coord, int size, |
| int tx_wrap, int tx_linear) |
| { |
| // notes: |
| // if tx_linear is set, we need 4 extra bits of precision on the result |
| // SMULL/UMULL is 3 cycles |
| Scratch scratches(registerFile()); |
| int c = coord; |
| if (tx_wrap == GGL_NEEDS_WRAP_REPEAT) { |
| // UMULL takes 4 cycles (interlocked), and we can get away with |
| // 2 cycles using SMULWB, but we're loosing 16 bits of precision |
| // out of 32 (this is not a problem because the iterator keeps |
| // its full precision) |
| // UMULL(AL, 0, size, d, c, size); |
| // note: we can't use SMULTB because it's signed. |
| MOV(AL, 0, d, reg_imm(c, LSR, 16-tx_linear)); |
| SMULWB(AL, d, d, size); |
| } else if (tx_wrap == GGL_NEEDS_WRAP_CLAMP_TO_EDGE) { |
| if (tx_linear) { |
| // 1 cycle |
| MOV(AL, 0, d, reg_imm(coord, ASR, 16-tx_linear)); |
| } else { |
| // 4 cycles (common case) |
| MOV(AL, 0, d, reg_imm(coord, ASR, 16)); |
| BIC(AL, 0, d, d, reg_imm(d, ASR, 31)); |
| CMP(AL, d, size); |
| SUB(GE, 0, d, size, imm(1)); |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::modulate( |
| component_t& dest, |
| const component_t& incoming, |
| const pixel_t& incomingTexel, int component) |
| { |
| Scratch locals(registerFile()); |
| integer_t texel(locals.obtain(), 32, CORRUPTIBLE); |
| extract(texel, incomingTexel, component); |
| |
| const int Nt = texel.size(); |
| // Nt should always be less than 10 bits because it comes |
| // from the TMU. |
| |
| int Ni = incoming.size(); |
| // Ni could be big because it comes from previous MODULATEs |
| |
| if (Nt == 1) { |
| // texel acts as a bit-mask |
| // dest = incoming & ((texel << incoming.h)-texel) |
| RSB(AL, 0, dest.reg, texel.reg, reg_imm(texel.reg, LSL, incoming.h)); |
| AND(AL, 0, dest.reg, dest.reg, incoming.reg); |
| dest.l = incoming.l; |
| dest.h = incoming.h; |
| dest.flags |= (incoming.flags & CLEAR_LO); |
| } else if (Ni == 1) { |
| MOV(AL, 0, dest.reg, reg_imm(incoming.reg, LSL, 31-incoming.h)); |
| AND(AL, 0, dest.reg, texel.reg, reg_imm(dest.reg, ASR, 31)); |
| dest.l = 0; |
| dest.h = Nt; |
| } else { |
| int inReg = incoming.reg; |
| int shift = incoming.l; |
| if ((Nt + Ni) > 32) { |
| // we will overflow, reduce the precision of Ni to 8 bits |
| // (Note Nt cannot be more than 10 bits which happens with |
| // 565 textures and GGL_LINEAR) |
| shift += Ni-8; |
| Ni = 8; |
| } |
| |
| // modulate by the component with the lowest precision |
| if (Nt >= Ni) { |
| if (shift) { |
| // XXX: we should be able to avoid this shift |
| // when shift==16 && Nt<16 && Ni<16, in which |
| // we could use SMULBT below. |
| MOV(AL, 0, dest.reg, reg_imm(inReg, LSR, shift)); |
| inReg = dest.reg; |
| shift = 0; |
| } |
| // operation: (Cf*Ct)/((1<<Ni)-1) |
| // approximated with: Cf*(Ct + Ct>>(Ni-1))>>Ni |
| // this operation doesn't change texel's size |
| ADD(AL, 0, dest.reg, inReg, reg_imm(inReg, LSR, Ni-1)); |
| if (Nt<16 && Ni<16) SMULBB(AL, dest.reg, texel.reg, dest.reg); |
| else MUL(AL, 0, dest.reg, texel.reg, dest.reg); |
| dest.l = Ni; |
| dest.h = Nt + Ni; |
| } else { |
| if (shift && (shift != 16)) { |
| // if shift==16, we can use 16-bits mul instructions later |
| MOV(AL, 0, dest.reg, reg_imm(inReg, LSR, shift)); |
| inReg = dest.reg; |
| shift = 0; |
| } |
| // operation: (Cf*Ct)/((1<<Nt)-1) |
| // approximated with: Ct*(Cf + Cf>>(Nt-1))>>Nt |
| // this operation doesn't change incoming's size |
| Scratch scratches(registerFile()); |
| int t = (texel.flags & CORRUPTIBLE) ? texel.reg : dest.reg; |
| if (t == inReg) |
| t = scratches.obtain(); |
| ADD(AL, 0, t, texel.reg, reg_imm(texel.reg, LSR, Nt-1)); |
| if (Nt<16 && Ni<16) { |
| if (shift==16) SMULBT(AL, dest.reg, t, inReg); |
| else SMULBB(AL, dest.reg, t, inReg); |
| } else MUL(AL, 0, dest.reg, t, inReg); |
| dest.l = Nt; |
| dest.h = Nt + Ni; |
| } |
| |
| // low bits are not valid |
| dest.flags |= CLEAR_LO; |
| |
| // no need to keep more than 8 bits/component |
| if (dest.size() > 8) |
| dest.l = dest.h-8; |
| } |
| } |
| |
| void GGLAssembler::decal( |
| component_t& dest, |
| const component_t& incoming, |
| const pixel_t& incomingTexel, int component) |
| { |
| // RGBA: |
| // Cv = Cf*(1 - At) + Ct*At = Cf + (Ct - Cf)*At |
| // Av = Af |
| Scratch locals(registerFile()); |
| integer_t texel(locals.obtain(), 32, CORRUPTIBLE); |
| integer_t factor(locals.obtain(), 32, CORRUPTIBLE); |
| extract(texel, incomingTexel, component); |
| extract(factor, incomingTexel, GGLFormat::ALPHA); |
| |
| // no need to keep more than 8-bits for decal |
| int Ni = incoming.size(); |
| int shift = incoming.l; |
| if (Ni > 8) { |
| shift += Ni-8; |
| Ni = 8; |
| } |
| integer_t incomingNorm(incoming.reg, Ni, incoming.flags); |
| if (shift) { |
| MOV(AL, 0, dest.reg, reg_imm(incomingNorm.reg, LSR, shift)); |
| incomingNorm.reg = dest.reg; |
| incomingNorm.flags |= CORRUPTIBLE; |
| } |
| ADD(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, LSR, factor.s-1)); |
| build_blendOneMinusFF(dest, factor, incomingNorm, texel); |
| } |
| |
| void GGLAssembler::blend( |
| component_t& dest, |
| const component_t& incoming, |
| const pixel_t& incomingTexel, int component, int tmu) |
| { |
| // RGBA: |
| // Cv = (1 - Ct)*Cf + Ct*Cc = Cf + (Cc - Cf)*Ct |
| // Av = At*Af |
| |
| if (component == GGLFormat::ALPHA) { |
| modulate(dest, incoming, incomingTexel, component); |
| return; |
| } |
| |
| Scratch locals(registerFile()); |
| integer_t color(locals.obtain(), 8, CORRUPTIBLE); |
| integer_t factor(locals.obtain(), 32, CORRUPTIBLE); |
| LDRB(AL, color.reg, mBuilderContext.Rctx, |
| immed12_pre(GGL_OFFSETOF(state.texture[tmu].env_color[component]))); |
| extract(factor, incomingTexel, component); |
| |
| // no need to keep more than 8-bits for blend |
| int Ni = incoming.size(); |
| int shift = incoming.l; |
| if (Ni > 8) { |
| shift += Ni-8; |
| Ni = 8; |
| } |
| integer_t incomingNorm(incoming.reg, Ni, incoming.flags); |
| if (shift) { |
| MOV(AL, 0, dest.reg, reg_imm(incomingNorm.reg, LSR, shift)); |
| incomingNorm.reg = dest.reg; |
| incomingNorm.flags |= CORRUPTIBLE; |
| } |
| ADD(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, LSR, factor.s-1)); |
| build_blendOneMinusFF(dest, factor, incomingNorm, color); |
| } |
| |
| void GGLAssembler::add( |
| component_t& dest, |
| const component_t& incoming, |
| const pixel_t& incomingTexel, int component) |
| { |
| // RGBA: |
| // Cv = Cf + Ct; |
| Scratch locals(registerFile()); |
| |
| component_t incomingTemp(incoming); |
| |
| // use "dest" as a temporary for extracting the texel, unless "dest" |
| // overlaps "incoming". |
| integer_t texel(dest.reg, 32, CORRUPTIBLE); |
| if (dest.reg == incomingTemp.reg) |
| texel.reg = locals.obtain(); |
| extract(texel, incomingTexel, component); |
| |
| if (texel.s < incomingTemp.size()) { |
| expand(texel, texel, incomingTemp.size()); |
| } else if (texel.s > incomingTemp.size()) { |
| if (incomingTemp.flags & CORRUPTIBLE) { |
| expand(incomingTemp, incomingTemp, texel.s); |
| } else { |
| incomingTemp.reg = locals.obtain(); |
| expand(incomingTemp, incoming, texel.s); |
| } |
| } |
| |
| if (incomingTemp.l) { |
| ADD(AL, 0, dest.reg, texel.reg, |
| reg_imm(incomingTemp.reg, LSR, incomingTemp.l)); |
| } else { |
| ADD(AL, 0, dest.reg, texel.reg, incomingTemp.reg); |
| } |
| dest.l = 0; |
| dest.h = texel.size(); |
| component_sat(dest); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| }; // namespace android |
| |