| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <dirent.h> |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/ptrace.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| #include <backtrace/Backtrace.h> |
| #include <backtrace/BacktraceMap.h> |
| #include <UniquePtr.h> |
| |
| #include <cutils/atomic.h> |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <vector> |
| |
| #include "thread_utils.h" |
| |
| // Number of microseconds per milliseconds. |
| #define US_PER_MSEC 1000 |
| |
| // Number of nanoseconds in a second. |
| #define NS_PER_SEC 1000000000ULL |
| |
| // Number of simultaneous dumping operations to perform. |
| #define NUM_THREADS 20 |
| |
| // Number of simultaneous threads running in our forked process. |
| #define NUM_PTRACE_THREADS 5 |
| |
| struct thread_t { |
| pid_t tid; |
| int32_t state; |
| pthread_t threadId; |
| }; |
| |
| struct dump_thread_t { |
| thread_t thread; |
| Backtrace* backtrace; |
| int32_t* now; |
| int32_t done; |
| }; |
| |
| extern "C" { |
| // Prototypes for functions in the test library. |
| int test_level_one(int, int, int, int, void (*)(void*), void*); |
| |
| int test_recursive_call(int, void (*)(void*), void*); |
| } |
| |
| uint64_t NanoTime() { |
| struct timespec t = { 0, 0 }; |
| clock_gettime(CLOCK_MONOTONIC, &t); |
| return static_cast<uint64_t>(t.tv_sec * NS_PER_SEC + t.tv_nsec); |
| } |
| |
| void DumpFrames(Backtrace* backtrace) { |
| if (backtrace->NumFrames() == 0) { |
| printf(" No frames to dump\n"); |
| return; |
| } |
| |
| for (size_t i = 0; i < backtrace->NumFrames(); i++) { |
| printf(" %s\n", backtrace->FormatFrameData(i).c_str()); |
| } |
| } |
| |
| void WaitForStop(pid_t pid) { |
| uint64_t start = NanoTime(); |
| |
| siginfo_t si; |
| while (ptrace(PTRACE_GETSIGINFO, pid, 0, &si) < 0 && (errno == EINTR || errno == ESRCH)) { |
| if ((NanoTime() - start) > NS_PER_SEC) { |
| printf("The process did not get to a stopping point in 1 second.\n"); |
| break; |
| } |
| usleep(US_PER_MSEC); |
| } |
| } |
| |
| bool ReadyLevelBacktrace(Backtrace* backtrace) { |
| // See if test_level_four is in the backtrace. |
| bool found = false; |
| for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) { |
| if (it->func_name == "test_level_four") { |
| found = true; |
| break; |
| } |
| } |
| |
| return found; |
| } |
| |
| void VerifyLevelDump(Backtrace* backtrace) { |
| ASSERT_GT(backtrace->NumFrames(), static_cast<size_t>(0)); |
| ASSERT_LT(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)); |
| |
| // Look through the frames starting at the highest to find the |
| // frame we want. |
| size_t frame_num = 0; |
| for (size_t i = backtrace->NumFrames()-1; i > 2; i--) { |
| if (backtrace->GetFrame(i)->func_name == "test_level_one") { |
| frame_num = i; |
| break; |
| } |
| } |
| ASSERT_LT(static_cast<size_t>(0), frame_num); |
| ASSERT_LE(static_cast<size_t>(3), frame_num); |
| |
| ASSERT_EQ(backtrace->GetFrame(frame_num)->func_name, "test_level_one"); |
| ASSERT_EQ(backtrace->GetFrame(frame_num-1)->func_name, "test_level_two"); |
| ASSERT_EQ(backtrace->GetFrame(frame_num-2)->func_name, "test_level_three"); |
| ASSERT_EQ(backtrace->GetFrame(frame_num-3)->func_name, "test_level_four"); |
| } |
| |
| void VerifyLevelBacktrace(void*) { |
| UniquePtr<Backtrace> backtrace( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != NULL); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| |
| VerifyLevelDump(backtrace.get()); |
| } |
| |
| bool ReadyMaxBacktrace(Backtrace* backtrace) { |
| return (backtrace->NumFrames() == MAX_BACKTRACE_FRAMES); |
| } |
| |
| void VerifyMaxDump(Backtrace* backtrace) { |
| ASSERT_EQ(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)); |
| // Verify that the last frame is our recursive call. |
| ASSERT_EQ(backtrace->GetFrame(MAX_BACKTRACE_FRAMES-1)->func_name, |
| "test_recursive_call"); |
| } |
| |
| void VerifyMaxBacktrace(void*) { |
| UniquePtr<Backtrace> backtrace( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != NULL); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| |
| VerifyMaxDump(backtrace.get()); |
| } |
| |
| void ThreadSetState(void* data) { |
| thread_t* thread = reinterpret_cast<thread_t*>(data); |
| android_atomic_acquire_store(1, &thread->state); |
| volatile int i = 0; |
| while (thread->state) { |
| i++; |
| } |
| } |
| |
| void VerifyThreadTest(pid_t tid, void (*VerifyFunc)(Backtrace*)) { |
| UniquePtr<Backtrace> backtrace(Backtrace::Create(getpid(), tid)); |
| ASSERT_TRUE(backtrace.get() != NULL); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| |
| VerifyFunc(backtrace.get()); |
| } |
| |
| bool WaitForNonZero(int32_t* value, uint64_t seconds) { |
| uint64_t start = NanoTime(); |
| do { |
| if (android_atomic_acquire_load(value)) { |
| return true; |
| } |
| } while ((NanoTime() - start) < seconds * NS_PER_SEC); |
| return false; |
| } |
| |
| TEST(libbacktrace, local_trace) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelBacktrace, NULL), 0); |
| } |
| |
| void VerifyIgnoreFrames( |
| Backtrace* bt_all, Backtrace* bt_ign1, |
| Backtrace* bt_ign2, const char* cur_proc) { |
| EXPECT_EQ(bt_all->NumFrames(), bt_ign1->NumFrames() + 1); |
| EXPECT_EQ(bt_all->NumFrames(), bt_ign2->NumFrames() + 2); |
| |
| // Check all of the frames are the same > the current frame. |
| bool check = (cur_proc == NULL); |
| for (size_t i = 0; i < bt_ign2->NumFrames(); i++) { |
| if (check) { |
| EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_ign1->GetFrame(i+1)->pc); |
| EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_ign1->GetFrame(i+1)->sp); |
| EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_ign1->GetFrame(i+1)->stack_size); |
| |
| EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_all->GetFrame(i+2)->pc); |
| EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_all->GetFrame(i+2)->sp); |
| EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_all->GetFrame(i+2)->stack_size); |
| } |
| if (!check && bt_ign2->GetFrame(i)->func_name == cur_proc) { |
| check = true; |
| } |
| } |
| } |
| |
| void VerifyLevelIgnoreFrames(void*) { |
| UniquePtr<Backtrace> all( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(all.get() != NULL); |
| ASSERT_TRUE(all->Unwind(0)); |
| |
| UniquePtr<Backtrace> ign1( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(ign1.get() != NULL); |
| ASSERT_TRUE(ign1->Unwind(1)); |
| |
| UniquePtr<Backtrace> ign2( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(ign2.get() != NULL); |
| ASSERT_TRUE(ign2->Unwind(2)); |
| |
| VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), "VerifyLevelIgnoreFrames"); |
| } |
| |
| TEST(libbacktrace, local_trace_ignore_frames) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelIgnoreFrames, NULL), 0); |
| } |
| |
| TEST(libbacktrace, local_max_trace) { |
| ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxBacktrace, NULL), 0); |
| } |
| |
| void VerifyProcTest(pid_t pid, pid_t tid, bool share_map, |
| bool (*ReadyFunc)(Backtrace*), |
| void (*VerifyFunc)(Backtrace*)) { |
| pid_t ptrace_tid; |
| if (tid < 0) { |
| ptrace_tid = pid; |
| } else { |
| ptrace_tid = tid; |
| } |
| uint64_t start = NanoTime(); |
| bool verified = false; |
| do { |
| usleep(US_PER_MSEC); |
| if (ptrace(PTRACE_ATTACH, ptrace_tid, 0, 0) == 0) { |
| // Wait for the process to get to a stopping point. |
| WaitForStop(ptrace_tid); |
| |
| UniquePtr<BacktraceMap> map; |
| if (share_map) { |
| map.reset(BacktraceMap::Create(pid)); |
| } |
| UniquePtr<Backtrace> backtrace(Backtrace::Create(pid, tid, map.get())); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_TRUE(backtrace.get() != NULL); |
| if (ReadyFunc(backtrace.get())) { |
| VerifyFunc(backtrace.get()); |
| verified = true; |
| } |
| |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, ptrace_tid, 0, 0) == 0); |
| } |
| // If 5 seconds have passed, then we are done. |
| } while (!verified && (NanoTime() - start) <= 5 * NS_PER_SEC); |
| ASSERT_TRUE(verified); |
| } |
| |
| TEST(libbacktrace, ptrace_trace) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0); |
| _exit(1); |
| } |
| VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyLevelBacktrace, VerifyLevelDump); |
| |
| kill(pid, SIGKILL); |
| int status; |
| ASSERT_EQ(waitpid(pid, &status, 0), pid); |
| } |
| |
| TEST(libbacktrace, ptrace_trace_shared_map) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0); |
| _exit(1); |
| } |
| |
| VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, true, ReadyLevelBacktrace, VerifyLevelDump); |
| |
| kill(pid, SIGKILL); |
| int status; |
| ASSERT_EQ(waitpid(pid, &status, 0), pid); |
| } |
| |
| TEST(libbacktrace, ptrace_max_trace) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, NULL, NULL), 0); |
| _exit(1); |
| } |
| VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyMaxBacktrace, VerifyMaxDump); |
| |
| kill(pid, SIGKILL); |
| int status; |
| ASSERT_EQ(waitpid(pid, &status, 0), pid); |
| } |
| |
| void VerifyProcessIgnoreFrames(Backtrace* bt_all) { |
| UniquePtr<Backtrace> ign1(Backtrace::Create(bt_all->Pid(), BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(ign1.get() != NULL); |
| ASSERT_TRUE(ign1->Unwind(1)); |
| |
| UniquePtr<Backtrace> ign2(Backtrace::Create(bt_all->Pid(), BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(ign2.get() != NULL); |
| ASSERT_TRUE(ign2->Unwind(2)); |
| |
| VerifyIgnoreFrames(bt_all, ign1.get(), ign2.get(), NULL); |
| } |
| |
| TEST(libbacktrace, ptrace_ignore_frames) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0); |
| _exit(1); |
| } |
| VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyLevelBacktrace, VerifyProcessIgnoreFrames); |
| |
| kill(pid, SIGKILL); |
| int status; |
| ASSERT_EQ(waitpid(pid, &status, 0), pid); |
| } |
| |
| // Create a process with multiple threads and dump all of the threads. |
| void* PtraceThreadLevelRun(void*) { |
| EXPECT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0); |
| return NULL; |
| } |
| |
| void GetThreads(pid_t pid, std::vector<pid_t>* threads) { |
| // Get the list of tasks. |
| char task_path[128]; |
| snprintf(task_path, sizeof(task_path), "/proc/%d/task", pid); |
| |
| DIR* tasks_dir = opendir(task_path); |
| ASSERT_TRUE(tasks_dir != NULL); |
| struct dirent* entry; |
| while ((entry = readdir(tasks_dir)) != NULL) { |
| char* end; |
| pid_t tid = strtoul(entry->d_name, &end, 10); |
| if (*end == '\0') { |
| threads->push_back(tid); |
| } |
| } |
| closedir(tasks_dir); |
| } |
| |
| TEST(libbacktrace, ptrace_threads) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| for (size_t i = 0; i < NUM_PTRACE_THREADS; i++) { |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| |
| pthread_t thread; |
| ASSERT_TRUE(pthread_create(&thread, &attr, PtraceThreadLevelRun, NULL) == 0); |
| } |
| ASSERT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0); |
| _exit(1); |
| } |
| |
| // Check to see that all of the threads are running before unwinding. |
| std::vector<pid_t> threads; |
| uint64_t start = NanoTime(); |
| do { |
| usleep(US_PER_MSEC); |
| threads.clear(); |
| GetThreads(pid, &threads); |
| } while ((threads.size() != NUM_PTRACE_THREADS + 1) && |
| ((NanoTime() - start) <= 5 * NS_PER_SEC)); |
| ASSERT_EQ(threads.size(), static_cast<size_t>(NUM_PTRACE_THREADS + 1)); |
| |
| ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); |
| WaitForStop(pid); |
| for (std::vector<int>::const_iterator it = threads.begin(); it != threads.end(); ++it) { |
| // Skip the current forked process, we only care about the threads. |
| if (pid == *it) { |
| continue; |
| } |
| VerifyProcTest(pid, *it, false, ReadyLevelBacktrace, VerifyLevelDump); |
| } |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); |
| |
| kill(pid, SIGKILL); |
| int status; |
| ASSERT_EQ(waitpid(pid, &status, 0), pid); |
| } |
| |
| void VerifyLevelThread(void*) { |
| UniquePtr<Backtrace> backtrace(Backtrace::Create(getpid(), gettid())); |
| ASSERT_TRUE(backtrace.get() != NULL); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| |
| VerifyLevelDump(backtrace.get()); |
| } |
| |
| TEST(libbacktrace, thread_current_level) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelThread, NULL), 0); |
| } |
| |
| void VerifyMaxThread(void*) { |
| UniquePtr<Backtrace> backtrace(Backtrace::Create(getpid(), gettid())); |
| ASSERT_TRUE(backtrace.get() != NULL); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| |
| VerifyMaxDump(backtrace.get()); |
| } |
| |
| TEST(libbacktrace, thread_current_max) { |
| ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxThread, NULL), 0); |
| } |
| |
| void* ThreadLevelRun(void* data) { |
| thread_t* thread = reinterpret_cast<thread_t*>(data); |
| |
| thread->tid = gettid(); |
| EXPECT_NE(test_level_one(1, 2, 3, 4, ThreadSetState, data), 0); |
| return NULL; |
| } |
| |
| TEST(libbacktrace, thread_level_trace) { |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| |
| thread_t thread_data = { 0, 0, 0 }; |
| pthread_t thread; |
| ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0); |
| |
| // Wait up to 2 seconds for the tid to be set. |
| ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); |
| |
| // Save the current signal action and make sure it is restored afterwards. |
| struct sigaction cur_action; |
| ASSERT_TRUE(sigaction(SIGURG, NULL, &cur_action) == 0); |
| |
| UniquePtr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(backtrace.get() != NULL); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| |
| VerifyLevelDump(backtrace.get()); |
| |
| // Tell the thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &thread_data.state); |
| |
| // Verify that the old action was restored. |
| struct sigaction new_action; |
| ASSERT_TRUE(sigaction(SIGURG, NULL, &new_action) == 0); |
| EXPECT_EQ(cur_action.sa_sigaction, new_action.sa_sigaction); |
| EXPECT_EQ(cur_action.sa_flags, new_action.sa_flags); |
| } |
| |
| TEST(libbacktrace, thread_ignore_frames) { |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| |
| thread_t thread_data = { 0, 0, 0 }; |
| pthread_t thread; |
| ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0); |
| |
| // Wait up to 2 seconds for the tid to be set. |
| ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); |
| |
| UniquePtr<Backtrace> all(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(all.get() != NULL); |
| ASSERT_TRUE(all->Unwind(0)); |
| |
| UniquePtr<Backtrace> ign1(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(ign1.get() != NULL); |
| ASSERT_TRUE(ign1->Unwind(1)); |
| |
| UniquePtr<Backtrace> ign2(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(ign2.get() != NULL); |
| ASSERT_TRUE(ign2->Unwind(2)); |
| |
| VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), NULL); |
| |
| // Tell the thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &thread_data.state); |
| } |
| |
| void* ThreadMaxRun(void* data) { |
| thread_t* thread = reinterpret_cast<thread_t*>(data); |
| |
| thread->tid = gettid(); |
| EXPECT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, ThreadSetState, data), 0); |
| return NULL; |
| } |
| |
| TEST(libbacktrace, thread_max_trace) { |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| |
| thread_t thread_data = { 0, 0, 0 }; |
| pthread_t thread; |
| ASSERT_TRUE(pthread_create(&thread, &attr, ThreadMaxRun, &thread_data) == 0); |
| |
| // Wait for the tid to be set. |
| ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); |
| |
| UniquePtr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(backtrace.get() != NULL); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| |
| VerifyMaxDump(backtrace.get()); |
| |
| // Tell the thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &thread_data.state); |
| } |
| |
| void* ThreadDump(void* data) { |
| dump_thread_t* dump = reinterpret_cast<dump_thread_t*>(data); |
| while (true) { |
| if (android_atomic_acquire_load(dump->now)) { |
| break; |
| } |
| } |
| |
| // The status of the actual unwind will be checked elsewhere. |
| dump->backtrace = Backtrace::Create(getpid(), dump->thread.tid); |
| dump->backtrace->Unwind(0); |
| |
| android_atomic_acquire_store(1, &dump->done); |
| |
| return NULL; |
| } |
| |
| TEST(libbacktrace, thread_multiple_dump) { |
| // Dump NUM_THREADS simultaneously. |
| std::vector<thread_t> runners(NUM_THREADS); |
| std::vector<dump_thread_t> dumpers(NUM_THREADS); |
| |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| for (size_t i = 0; i < NUM_THREADS; i++) { |
| // Launch the runners, they will spin in hard loops doing nothing. |
| runners[i].tid = 0; |
| runners[i].state = 0; |
| ASSERT_TRUE(pthread_create(&runners[i].threadId, &attr, ThreadMaxRun, &runners[i]) == 0); |
| } |
| |
| // Wait for tids to be set. |
| for (std::vector<thread_t>::iterator it = runners.begin(); it != runners.end(); ++it) { |
| ASSERT_TRUE(WaitForNonZero(&it->state, 10)); |
| } |
| |
| // Start all of the dumpers at once, they will spin until they are signalled |
| // to begin their dump run. |
| int32_t dump_now = 0; |
| for (size_t i = 0; i < NUM_THREADS; i++) { |
| dumpers[i].thread.tid = runners[i].tid; |
| dumpers[i].thread.state = 0; |
| dumpers[i].done = 0; |
| dumpers[i].now = &dump_now; |
| |
| ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0); |
| } |
| |
| // Start all of the dumpers going at once. |
| android_atomic_acquire_store(1, &dump_now); |
| |
| for (size_t i = 0; i < NUM_THREADS; i++) { |
| ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 10)); |
| |
| // Tell the runner thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &runners[i].state); |
| |
| ASSERT_TRUE(dumpers[i].backtrace != NULL); |
| VerifyMaxDump(dumpers[i].backtrace); |
| |
| delete dumpers[i].backtrace; |
| dumpers[i].backtrace = NULL; |
| } |
| } |
| |
| // This test is for UnwindMaps that should share the same map cursor when |
| // multiple maps are created for the current process at the same time. |
| TEST(libbacktrace, simultaneous_maps) { |
| BacktraceMap* map1 = BacktraceMap::Create(getpid()); |
| BacktraceMap* map2 = BacktraceMap::Create(getpid()); |
| BacktraceMap* map3 = BacktraceMap::Create(getpid()); |
| |
| Backtrace* back1 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map1); |
| EXPECT_TRUE(back1->Unwind(0)); |
| delete back1; |
| delete map1; |
| |
| Backtrace* back2 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map2); |
| EXPECT_TRUE(back2->Unwind(0)); |
| delete back2; |
| delete map2; |
| |
| Backtrace* back3 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map3); |
| EXPECT_TRUE(back3->Unwind(0)); |
| delete back3; |
| delete map3; |
| } |
| |
| TEST(libbacktrace, format_test) { |
| UniquePtr<Backtrace> backtrace(Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != NULL); |
| |
| backtrace_frame_data_t frame; |
| frame.num = 1; |
| frame.pc = 2; |
| frame.sp = 0; |
| frame.stack_size = 0; |
| frame.map = NULL; |
| frame.func_offset = 0; |
| |
| backtrace_map_t map; |
| map.start = 0; |
| map.end = 0; |
| |
| // Check no map set. |
| frame.num = 1; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000000000002 <unknown>", |
| #else |
| EXPECT_EQ("#01 pc 00000002 <unknown>", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| // Check map name empty, but exists. |
| frame.map = ↦ |
| map.start = 1; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000000000001 <unknown>", |
| #else |
| EXPECT_EQ("#01 pc 00000001 <unknown>", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| |
| // Check relative pc is set and map name is set. |
| frame.pc = 0x12345679; |
| frame.map = ↦ |
| map.name = "MapFake"; |
| map.start = 1; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000012345678 MapFake", |
| #else |
| EXPECT_EQ("#01 pc 12345678 MapFake", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| // Check func_name is set, but no func offset. |
| frame.func_name = "ProcFake"; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000012345678 MapFake (ProcFake)", |
| #else |
| EXPECT_EQ("#01 pc 12345678 MapFake (ProcFake)", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| // Check func_name is set, and func offset is non-zero. |
| frame.func_offset = 645; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000012345678 MapFake (ProcFake+645)", |
| #else |
| EXPECT_EQ("#01 pc 12345678 MapFake (ProcFake+645)", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| } |
| |
| struct map_test_t { |
| uintptr_t start; |
| uintptr_t end; |
| }; |
| |
| bool map_sort(map_test_t i, map_test_t j) { |
| return i.start < j.start; |
| } |
| |
| static void VerifyMap(pid_t pid) { |
| char buffer[4096]; |
| snprintf(buffer, sizeof(buffer), "/proc/%d/maps", pid); |
| |
| FILE* map_file = fopen(buffer, "r"); |
| ASSERT_TRUE(map_file != NULL); |
| std::vector<map_test_t> test_maps; |
| while (fgets(buffer, sizeof(buffer), map_file)) { |
| map_test_t map; |
| ASSERT_EQ(2, sscanf(buffer, "%" SCNxPTR "-%" SCNxPTR " ", &map.start, &map.end)); |
| test_maps.push_back(map); |
| } |
| fclose(map_file); |
| std::sort(test_maps.begin(), test_maps.end(), map_sort); |
| |
| UniquePtr<BacktraceMap> map(BacktraceMap::Create(pid)); |
| |
| // Basic test that verifies that the map is in the expected order. |
| std::vector<map_test_t>::const_iterator test_it = test_maps.begin(); |
| for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) { |
| ASSERT_TRUE(test_it != test_maps.end()); |
| ASSERT_EQ(test_it->start, it->start); |
| ASSERT_EQ(test_it->end, it->end); |
| ++test_it; |
| } |
| ASSERT_TRUE(test_it == test_maps.end()); |
| } |
| |
| TEST(libbacktrace, verify_map_remote) { |
| pid_t pid; |
| |
| if ((pid = fork()) == 0) { |
| while (true) { |
| } |
| _exit(0); |
| } |
| ASSERT_LT(0, pid); |
| |
| ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); |
| |
| // Wait for the process to get to a stopping point. |
| WaitForStop(pid); |
| |
| // The maps should match exactly since the forked process has been paused. |
| VerifyMap(pid); |
| |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); |
| |
| kill(pid, SIGKILL); |
| ASSERT_EQ(waitpid(pid, NULL, 0), pid); |
| } |
| |
| #if defined(ENABLE_PSS_TESTS) |
| #include "GetPss.h" |
| |
| #define MAX_LEAK_BYTES 32*1024UL |
| |
| static void CheckForLeak(pid_t pid, pid_t tid) { |
| // Do a few runs to get the PSS stable. |
| for (size_t i = 0; i < 100; i++) { |
| Backtrace* backtrace = Backtrace::Create(pid, tid); |
| ASSERT_TRUE(backtrace != NULL); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| delete backtrace; |
| } |
| size_t stable_pss = GetPssBytes(); |
| |
| // Loop enough that even a small leak should be detectable. |
| for (size_t i = 0; i < 4096; i++) { |
| Backtrace* backtrace = Backtrace::Create(pid, tid); |
| ASSERT_TRUE(backtrace != NULL); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| delete backtrace; |
| } |
| size_t new_pss = GetPssBytes(); |
| size_t abs_diff = (new_pss > stable_pss) ? new_pss - stable_pss : stable_pss - new_pss; |
| // As long as the new pss is within a certain amount, consider everything okay. |
| ASSERT_LE(abs_diff, MAX_LEAK_BYTES); |
| } |
| |
| TEST(libbacktrace, check_for_leak_local) { |
| CheckForLeak(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD); |
| } |
| |
| TEST(libbacktrace, check_for_leak_local_thread) { |
| thread_t thread_data = { 0, 0, 0 }; |
| pthread_t thread; |
| ASSERT_TRUE(pthread_create(&thread, NULL, ThreadLevelRun, &thread_data) == 0); |
| |
| // Wait up to 2 seconds for the tid to be set. |
| ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); |
| |
| CheckForLeak(BACKTRACE_CURRENT_PROCESS, thread_data.tid); |
| |
| // Tell the thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &thread_data.state); |
| |
| ASSERT_TRUE(pthread_join(thread, NULL) == 0); |
| } |
| |
| TEST(libbacktrace, check_for_leak_remote) { |
| pid_t pid; |
| |
| if ((pid = fork()) == 0) { |
| while (true) { |
| } |
| _exit(0); |
| } |
| ASSERT_LT(0, pid); |
| |
| ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); |
| |
| // Wait for the process to get to a stopping point. |
| WaitForStop(pid); |
| |
| CheckForLeak(pid, BACKTRACE_CURRENT_THREAD); |
| |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); |
| |
| kill(pid, SIGKILL); |
| ASSERT_EQ(waitpid(pid, NULL, 0), pid); |
| } |
| #endif |