| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define TRACE_TAG TRACE_SYSDEPS |
| |
| #include "sysdeps.h" |
| |
| #include <winsock2.h> /* winsock.h *must* be included before windows.h. */ |
| #include <windows.h> |
| |
| #include <errno.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include "adb.h" |
| |
| extern void fatal(const char *fmt, ...); |
| |
| /* forward declarations */ |
| |
| typedef const struct FHClassRec_* FHClass; |
| typedef struct FHRec_* FH; |
| typedef struct EventHookRec_* EventHook; |
| |
| typedef struct FHClassRec_ { |
| void (*_fh_init)(FH); |
| int (*_fh_close)(FH); |
| int (*_fh_lseek)(FH, int, int); |
| int (*_fh_read)(FH, void*, int); |
| int (*_fh_write)(FH, const void*, int); |
| void (*_fh_hook)(FH, int, EventHook); |
| } FHClassRec; |
| |
| static void _fh_file_init(FH); |
| static int _fh_file_close(FH); |
| static int _fh_file_lseek(FH, int, int); |
| static int _fh_file_read(FH, void*, int); |
| static int _fh_file_write(FH, const void*, int); |
| static void _fh_file_hook(FH, int, EventHook); |
| |
| static const FHClassRec _fh_file_class = { |
| _fh_file_init, |
| _fh_file_close, |
| _fh_file_lseek, |
| _fh_file_read, |
| _fh_file_write, |
| _fh_file_hook |
| }; |
| |
| static void _fh_socket_init(FH); |
| static int _fh_socket_close(FH); |
| static int _fh_socket_lseek(FH, int, int); |
| static int _fh_socket_read(FH, void*, int); |
| static int _fh_socket_write(FH, const void*, int); |
| static void _fh_socket_hook(FH, int, EventHook); |
| |
| static const FHClassRec _fh_socket_class = { |
| _fh_socket_init, |
| _fh_socket_close, |
| _fh_socket_lseek, |
| _fh_socket_read, |
| _fh_socket_write, |
| _fh_socket_hook |
| }; |
| |
| #define assert(cond) do { if (!(cond)) fatal( "assertion failed '%s' on %s:%ld\n", #cond, __FILE__, __LINE__ ); } while (0) |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** replaces libs/cutils/load_file.c *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| void *load_file(const char *fn, unsigned *_sz) |
| { |
| HANDLE file; |
| char *data; |
| DWORD file_size; |
| |
| file = CreateFile( fn, |
| GENERIC_READ, |
| FILE_SHARE_READ, |
| NULL, |
| OPEN_EXISTING, |
| 0, |
| NULL ); |
| |
| if (file == INVALID_HANDLE_VALUE) |
| return NULL; |
| |
| file_size = GetFileSize( file, NULL ); |
| data = NULL; |
| |
| if (file_size > 0) { |
| data = (char*) malloc( file_size + 1 ); |
| if (data == NULL) { |
| D("load_file: could not allocate %ld bytes\n", file_size ); |
| file_size = 0; |
| } else { |
| DWORD out_bytes; |
| |
| if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) || |
| out_bytes != file_size ) |
| { |
| D("load_file: could not read %ld bytes from '%s'\n", file_size, fn); |
| free(data); |
| data = NULL; |
| file_size = 0; |
| } |
| } |
| } |
| CloseHandle( file ); |
| |
| *_sz = (unsigned) file_size; |
| return data; |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** common file descriptor handling *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| /* used to emulate unix-domain socket pairs */ |
| typedef struct SocketPairRec_* SocketPair; |
| |
| typedef struct FHRec_ |
| { |
| FHClass clazz; |
| int used; |
| int eof; |
| union { |
| HANDLE handle; |
| SOCKET socket; |
| SocketPair pair; |
| } u; |
| |
| HANDLE event; |
| int mask; |
| |
| char name[32]; |
| |
| } FHRec; |
| |
| #define fh_handle u.handle |
| #define fh_socket u.socket |
| #define fh_pair u.pair |
| |
| #define WIN32_FH_BASE 100 |
| |
| #define WIN32_MAX_FHS 128 |
| |
| static adb_mutex_t _win32_lock; |
| static FHRec _win32_fhs[ WIN32_MAX_FHS ]; |
| static int _win32_fh_count; |
| |
| static FH |
| _fh_from_int( int fd ) |
| { |
| FH f; |
| |
| fd -= WIN32_FH_BASE; |
| |
| if (fd < 0 || fd >= _win32_fh_count) { |
| D( "_fh_from_int: invalid fd %d\n", fd + WIN32_FH_BASE ); |
| errno = EBADF; |
| return NULL; |
| } |
| |
| f = &_win32_fhs[fd]; |
| |
| if (f->used == 0) { |
| D( "_fh_from_int: invalid fd %d\n", fd + WIN32_FH_BASE ); |
| errno = EBADF; |
| return NULL; |
| } |
| |
| return f; |
| } |
| |
| |
| static int |
| _fh_to_int( FH f ) |
| { |
| if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS) |
| return (int)(f - _win32_fhs) + WIN32_FH_BASE; |
| |
| return -1; |
| } |
| |
| static FH |
| _fh_alloc( FHClass clazz ) |
| { |
| int nn; |
| FH f = NULL; |
| |
| adb_mutex_lock( &_win32_lock ); |
| |
| if (_win32_fh_count < WIN32_MAX_FHS) { |
| f = &_win32_fhs[ _win32_fh_count++ ]; |
| goto Exit; |
| } |
| |
| for (nn = 0; nn < WIN32_MAX_FHS; nn++) { |
| if ( _win32_fhs[nn].clazz == NULL) { |
| f = &_win32_fhs[nn]; |
| goto Exit; |
| } |
| } |
| D( "_fh_alloc: no more free file descriptors\n" ); |
| Exit: |
| if (f) { |
| f->clazz = clazz; |
| f->used = 1; |
| f->eof = 0; |
| clazz->_fh_init(f); |
| } |
| adb_mutex_unlock( &_win32_lock ); |
| return f; |
| } |
| |
| |
| static int |
| _fh_close( FH f ) |
| { |
| if ( f->used ) { |
| f->clazz->_fh_close( f ); |
| f->used = 0; |
| f->eof = 0; |
| f->clazz = NULL; |
| } |
| return 0; |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** file-based descriptor handling *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| static void _fh_file_init( FH f ) { |
| f->fh_handle = INVALID_HANDLE_VALUE; |
| } |
| |
| static int _fh_file_close( FH f ) { |
| CloseHandle( f->fh_handle ); |
| f->fh_handle = INVALID_HANDLE_VALUE; |
| return 0; |
| } |
| |
| static int _fh_file_read( FH f, void* buf, int len ) { |
| DWORD read_bytes; |
| |
| if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) { |
| D( "adb_read: could not read %d bytes from %s\n", len, f->name ); |
| errno = EIO; |
| return -1; |
| } else if (read_bytes < (DWORD)len) { |
| f->eof = 1; |
| } |
| return (int)read_bytes; |
| } |
| |
| static int _fh_file_write( FH f, const void* buf, int len ) { |
| DWORD wrote_bytes; |
| |
| if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) { |
| D( "adb_file_write: could not write %d bytes from %s\n", len, f->name ); |
| errno = EIO; |
| return -1; |
| } else if (wrote_bytes < (DWORD)len) { |
| f->eof = 1; |
| } |
| return (int)wrote_bytes; |
| } |
| |
| static int _fh_file_lseek( FH f, int pos, int origin ) { |
| DWORD method; |
| DWORD result; |
| |
| switch (origin) |
| { |
| case SEEK_SET: method = FILE_BEGIN; break; |
| case SEEK_CUR: method = FILE_CURRENT; break; |
| case SEEK_END: method = FILE_END; break; |
| default: |
| errno = EINVAL; |
| return -1; |
| } |
| |
| result = SetFilePointer( f->fh_handle, pos, NULL, method ); |
| if (result == INVALID_SET_FILE_POINTER) { |
| errno = EIO; |
| return -1; |
| } else { |
| f->eof = 0; |
| } |
| return (int)result; |
| } |
| |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** file-based descriptor handling *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| int adb_open(const char* path, int options) |
| { |
| FH f; |
| |
| DWORD desiredAccess = 0; |
| DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE; |
| |
| switch (options) { |
| case O_RDONLY: |
| desiredAccess = GENERIC_READ; |
| break; |
| case O_WRONLY: |
| desiredAccess = GENERIC_WRITE; |
| break; |
| case O_RDWR: |
| desiredAccess = GENERIC_READ | GENERIC_WRITE; |
| break; |
| default: |
| D("adb_open: invalid options (0x%0x)\n", options); |
| errno = EINVAL; |
| return -1; |
| } |
| |
| f = _fh_alloc( &_fh_file_class ); |
| if ( !f ) { |
| errno = ENOMEM; |
| return -1; |
| } |
| |
| f->fh_handle = CreateFile( path, desiredAccess, shareMode, NULL, OPEN_EXISTING, |
| 0, NULL ); |
| |
| if ( f->fh_handle == INVALID_HANDLE_VALUE ) { |
| _fh_close(f); |
| D( "adb_open: could not open '%s':", path ); |
| switch (GetLastError()) { |
| case ERROR_FILE_NOT_FOUND: |
| D( "file not found\n" ); |
| errno = ENOENT; |
| return -1; |
| |
| case ERROR_PATH_NOT_FOUND: |
| D( "path not found\n" ); |
| errno = ENOTDIR; |
| return -1; |
| |
| default: |
| D( "unknown error\n" ); |
| errno = ENOENT; |
| return -1; |
| } |
| } |
| |
| snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path ); |
| D( "adb_open: '%s' => fd %d\n", path, _fh_to_int(f) ); |
| return _fh_to_int(f); |
| } |
| |
| /* ignore mode on Win32 */ |
| int adb_creat(const char* path, int mode) |
| { |
| FH f; |
| |
| f = _fh_alloc( &_fh_file_class ); |
| if ( !f ) { |
| errno = ENOMEM; |
| return -1; |
| } |
| |
| f->fh_handle = CreateFile( path, GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, |
| NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, |
| NULL ); |
| |
| if ( f->fh_handle == INVALID_HANDLE_VALUE ) { |
| _fh_close(f); |
| D( "adb_creat: could not open '%s':", path ); |
| switch (GetLastError()) { |
| case ERROR_FILE_NOT_FOUND: |
| D( "file not found\n" ); |
| errno = ENOENT; |
| return -1; |
| |
| case ERROR_PATH_NOT_FOUND: |
| D( "path not found\n" ); |
| errno = ENOTDIR; |
| return -1; |
| |
| default: |
| D( "unknown error\n" ); |
| errno = ENOENT; |
| return -1; |
| } |
| } |
| snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path ); |
| D( "adb_creat: '%s' => fd %d\n", path, _fh_to_int(f) ); |
| return _fh_to_int(f); |
| } |
| |
| |
| int adb_read(int fd, void* buf, int len) |
| { |
| FH f = _fh_from_int(fd); |
| |
| if (f == NULL) { |
| return -1; |
| } |
| |
| return f->clazz->_fh_read( f, buf, len ); |
| } |
| |
| |
| int adb_write(int fd, const void* buf, int len) |
| { |
| FH f = _fh_from_int(fd); |
| |
| if (f == NULL) { |
| return -1; |
| } |
| |
| return f->clazz->_fh_write(f, buf, len); |
| } |
| |
| |
| int adb_lseek(int fd, int pos, int where) |
| { |
| FH f = _fh_from_int(fd); |
| |
| if (!f) { |
| return -1; |
| } |
| |
| return f->clazz->_fh_lseek(f, pos, where); |
| } |
| |
| |
| int adb_shutdown(int fd) |
| { |
| FH f = _fh_from_int(fd); |
| |
| if (!f || f->clazz != &_fh_socket_class) { |
| D("adb_shutdown: invalid fd %d\n", fd); |
| return -1; |
| } |
| |
| D( "adb_shutdown: %s\n", f->name); |
| shutdown( f->fh_socket, SD_BOTH ); |
| return 0; |
| } |
| |
| |
| int adb_close(int fd) |
| { |
| FH f = _fh_from_int(fd); |
| |
| if (!f) { |
| return -1; |
| } |
| |
| D( "adb_close: %s\n", f->name); |
| _fh_close(f); |
| return 0; |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** socket-based file descriptors *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| #undef setsockopt |
| |
| static void _socket_set_errno( void ) { |
| switch (WSAGetLastError()) { |
| case 0: errno = 0; break; |
| case WSAEWOULDBLOCK: errno = EAGAIN; break; |
| case WSAEINTR: errno = EINTR; break; |
| default: |
| D( "_socket_set_errno: unhandled value %d\n", WSAGetLastError() ); |
| errno = EINVAL; |
| } |
| } |
| |
| static void _fh_socket_init( FH f ) { |
| f->fh_socket = INVALID_SOCKET; |
| f->event = WSACreateEvent(); |
| f->mask = 0; |
| } |
| |
| static int _fh_socket_close( FH f ) { |
| /* gently tell any peer that we're closing the socket */ |
| shutdown( f->fh_socket, SD_BOTH ); |
| closesocket( f->fh_socket ); |
| f->fh_socket = INVALID_SOCKET; |
| CloseHandle( f->event ); |
| f->mask = 0; |
| return 0; |
| } |
| |
| static int _fh_socket_lseek( FH f, int pos, int origin ) { |
| errno = EPIPE; |
| return -1; |
| } |
| |
| static int _fh_socket_read(FH f, void* buf, int len) { |
| int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0); |
| if (result == SOCKET_ERROR) { |
| _socket_set_errno(); |
| result = -1; |
| } |
| return result; |
| } |
| |
| static int _fh_socket_write(FH f, const void* buf, int len) { |
| int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0); |
| if (result == SOCKET_ERROR) { |
| _socket_set_errno(); |
| result = -1; |
| } |
| return result; |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** replacement for libs/cutils/socket_xxxx.c *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| #include <winsock2.h> |
| |
| static int _winsock_init; |
| |
| static void |
| _cleanup_winsock( void ) |
| { |
| WSACleanup(); |
| } |
| |
| static void |
| _init_winsock( void ) |
| { |
| if (!_winsock_init) { |
| WSADATA wsaData; |
| int rc = WSAStartup( MAKEWORD(2,2), &wsaData); |
| if (rc != 0) { |
| fatal( "adb: could not initialize Winsock\n" ); |
| } |
| atexit( _cleanup_winsock ); |
| _winsock_init = 1; |
| } |
| } |
| |
| int socket_loopback_client(int port, int type) |
| { |
| FH f = _fh_alloc( &_fh_socket_class ); |
| struct sockaddr_in addr; |
| SOCKET s; |
| |
| if (!f) |
| return -1; |
| |
| if (!_winsock_init) |
| _init_winsock(); |
| |
| memset(&addr, 0, sizeof(addr)); |
| addr.sin_family = AF_INET; |
| addr.sin_port = htons(port); |
| addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); |
| |
| s = socket(AF_INET, type, 0); |
| if(s == INVALID_SOCKET) { |
| D("socket_loopback_client: could not create socket\n" ); |
| _fh_close(f); |
| return -1; |
| } |
| |
| f->fh_socket = s; |
| if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) { |
| D("socket_loopback_client: could not connect to %s:%d\n", type != SOCK_STREAM ? "udp" : "tcp", port ); |
| _fh_close(f); |
| return -1; |
| } |
| snprintf( f->name, sizeof(f->name), "%d(lo-client:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port ); |
| D( "socket_loopback_client: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) ); |
| return _fh_to_int(f); |
| } |
| |
| #define LISTEN_BACKLOG 4 |
| |
| int socket_loopback_server(int port, int type) |
| { |
| FH f = _fh_alloc( &_fh_socket_class ); |
| struct sockaddr_in addr; |
| SOCKET s; |
| int n; |
| |
| if (!f) { |
| return -1; |
| } |
| |
| if (!_winsock_init) |
| _init_winsock(); |
| |
| memset(&addr, 0, sizeof(addr)); |
| addr.sin_family = AF_INET; |
| addr.sin_port = htons(port); |
| addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); |
| |
| s = socket(AF_INET, type, 0); |
| if(s == INVALID_SOCKET) return -1; |
| |
| f->fh_socket = s; |
| |
| n = 1; |
| setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)); |
| |
| if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) { |
| _fh_close(f); |
| return -1; |
| } |
| if (type == SOCK_STREAM) { |
| int ret; |
| |
| ret = listen(s, LISTEN_BACKLOG); |
| if (ret < 0) { |
| _fh_close(f); |
| return -1; |
| } |
| } |
| snprintf( f->name, sizeof(f->name), "%d(lo-server:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port ); |
| D( "socket_loopback_server: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) ); |
| return _fh_to_int(f); |
| } |
| |
| |
| int socket_network_client(const char *host, int port, int type) |
| { |
| FH f = _fh_alloc( &_fh_socket_class ); |
| struct hostent *hp; |
| struct sockaddr_in addr; |
| SOCKET s; |
| |
| if (!f) |
| return -1; |
| |
| if (!_winsock_init) |
| _init_winsock(); |
| |
| hp = gethostbyname(host); |
| if(hp == 0) { |
| _fh_close(f); |
| return -1; |
| } |
| |
| memset(&addr, 0, sizeof(addr)); |
| addr.sin_family = hp->h_addrtype; |
| addr.sin_port = htons(port); |
| memcpy(&addr.sin_addr, hp->h_addr, hp->h_length); |
| |
| s = socket(hp->h_addrtype, type, 0); |
| if(s == INVALID_SOCKET) { |
| _fh_close(f); |
| return -1; |
| } |
| f->fh_socket = s; |
| |
| if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) { |
| _fh_close(f); |
| return -1; |
| } |
| |
| snprintf( f->name, sizeof(f->name), "%d(net-client:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port ); |
| D( "socket_network_client: host '%s' port %d type %s => fd %d\n", host, port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) ); |
| return _fh_to_int(f); |
| } |
| |
| |
| int socket_network_client_timeout(const char *host, int port, int type, int timeout) |
| { |
| // TODO: implement timeouts for Windows. |
| return socket_network_client(host, port, type); |
| } |
| |
| |
| int socket_inaddr_any_server(int port, int type) |
| { |
| FH f = _fh_alloc( &_fh_socket_class ); |
| struct sockaddr_in addr; |
| SOCKET s; |
| int n; |
| |
| if (!f) |
| return -1; |
| |
| if (!_winsock_init) |
| _init_winsock(); |
| |
| memset(&addr, 0, sizeof(addr)); |
| addr.sin_family = AF_INET; |
| addr.sin_port = htons(port); |
| addr.sin_addr.s_addr = htonl(INADDR_ANY); |
| |
| s = socket(AF_INET, type, 0); |
| if(s == INVALID_SOCKET) { |
| _fh_close(f); |
| return -1; |
| } |
| |
| f->fh_socket = s; |
| n = 1; |
| setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)); |
| |
| if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) { |
| _fh_close(f); |
| return -1; |
| } |
| |
| if (type == SOCK_STREAM) { |
| int ret; |
| |
| ret = listen(s, LISTEN_BACKLOG); |
| if (ret < 0) { |
| _fh_close(f); |
| return -1; |
| } |
| } |
| snprintf( f->name, sizeof(f->name), "%d(any-server:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port ); |
| D( "socket_inaddr_server: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) ); |
| return _fh_to_int(f); |
| } |
| |
| #undef accept |
| int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t *addrlen) |
| { |
| FH serverfh = _fh_from_int(serverfd); |
| FH fh; |
| |
| if ( !serverfh || serverfh->clazz != &_fh_socket_class ) { |
| D( "adb_socket_accept: invalid fd %d\n", serverfd ); |
| return -1; |
| } |
| |
| fh = _fh_alloc( &_fh_socket_class ); |
| if (!fh) { |
| D( "adb_socket_accept: not enough memory to allocate accepted socket descriptor\n" ); |
| return -1; |
| } |
| |
| fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen ); |
| if (fh->fh_socket == INVALID_SOCKET) { |
| _fh_close( fh ); |
| D( "adb_socket_accept: accept on fd %d return error %ld\n", serverfd, GetLastError() ); |
| return -1; |
| } |
| |
| snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", _fh_to_int(fh), serverfh->name ); |
| D( "adb_socket_accept on fd %d returns fd %d\n", serverfd, _fh_to_int(fh) ); |
| return _fh_to_int(fh); |
| } |
| |
| |
| int adb_setsockopt( int fd, int level, int optname, const void* optval, socklen_t optlen ) |
| { |
| FH fh = _fh_from_int(fd); |
| |
| if ( !fh || fh->clazz != &_fh_socket_class ) { |
| D("adb_setsockopt: invalid fd %d\n", fd); |
| return -1; |
| } |
| |
| return setsockopt( fh->fh_socket, level, optname, reinterpret_cast<const char*>(optval), optlen ); |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** emulated socketpairs *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| /* we implement socketpairs directly in use space for the following reasons: |
| * - it avoids copying data from/to the Nt kernel |
| * - it allows us to implement fdevent hooks easily and cheaply, something |
| * that is not possible with standard Win32 pipes !! |
| * |
| * basically, we use two circular buffers, each one corresponding to a given |
| * direction. |
| * |
| * each buffer is implemented as two regions: |
| * |
| * region A which is (a_start,a_end) |
| * region B which is (0, b_end) with b_end <= a_start |
| * |
| * an empty buffer has: a_start = a_end = b_end = 0 |
| * |
| * a_start is the pointer where we start reading data |
| * a_end is the pointer where we start writing data, unless it is BUFFER_SIZE, |
| * then you start writing at b_end |
| * |
| * the buffer is full when b_end == a_start && a_end == BUFFER_SIZE |
| * |
| * there is room when b_end < a_start || a_end < BUFER_SIZE |
| * |
| * when reading, a_start is incremented, it a_start meets a_end, then |
| * we do: a_start = 0, a_end = b_end, b_end = 0, and keep going on.. |
| */ |
| |
| #define BIP_BUFFER_SIZE 4096 |
| |
| #if 0 |
| #include <stdio.h> |
| # define BIPD(x) D x |
| # define BIPDUMP bip_dump_hex |
| |
| static void bip_dump_hex( const unsigned char* ptr, size_t len ) |
| { |
| int nn, len2 = len; |
| |
| if (len2 > 8) len2 = 8; |
| |
| for (nn = 0; nn < len2; nn++) |
| printf("%02x", ptr[nn]); |
| printf(" "); |
| |
| for (nn = 0; nn < len2; nn++) { |
| int c = ptr[nn]; |
| if (c < 32 || c > 127) |
| c = '.'; |
| printf("%c", c); |
| } |
| printf("\n"); |
| fflush(stdout); |
| } |
| |
| #else |
| # define BIPD(x) do {} while (0) |
| # define BIPDUMP(p,l) BIPD(p) |
| #endif |
| |
| typedef struct BipBufferRec_ |
| { |
| int a_start; |
| int a_end; |
| int b_end; |
| int fdin; |
| int fdout; |
| int closed; |
| int can_write; /* boolean */ |
| HANDLE evt_write; /* event signaled when one can write to a buffer */ |
| int can_read; /* boolean */ |
| HANDLE evt_read; /* event signaled when one can read from a buffer */ |
| CRITICAL_SECTION lock; |
| unsigned char buff[ BIP_BUFFER_SIZE ]; |
| |
| } BipBufferRec, *BipBuffer; |
| |
| static void |
| bip_buffer_init( BipBuffer buffer ) |
| { |
| D( "bit_buffer_init %p\n", buffer ); |
| buffer->a_start = 0; |
| buffer->a_end = 0; |
| buffer->b_end = 0; |
| buffer->can_write = 1; |
| buffer->can_read = 0; |
| buffer->fdin = 0; |
| buffer->fdout = 0; |
| buffer->closed = 0; |
| buffer->evt_write = CreateEvent( NULL, TRUE, TRUE, NULL ); |
| buffer->evt_read = CreateEvent( NULL, TRUE, FALSE, NULL ); |
| InitializeCriticalSection( &buffer->lock ); |
| } |
| |
| static void |
| bip_buffer_close( BipBuffer bip ) |
| { |
| bip->closed = 1; |
| |
| if (!bip->can_read) { |
| SetEvent( bip->evt_read ); |
| } |
| if (!bip->can_write) { |
| SetEvent( bip->evt_write ); |
| } |
| } |
| |
| static void |
| bip_buffer_done( BipBuffer bip ) |
| { |
| BIPD(( "bip_buffer_done: %d->%d\n", bip->fdin, bip->fdout )); |
| CloseHandle( bip->evt_read ); |
| CloseHandle( bip->evt_write ); |
| DeleteCriticalSection( &bip->lock ); |
| } |
| |
| static int |
| bip_buffer_write( BipBuffer bip, const void* src, int len ) |
| { |
| int avail, count = 0; |
| |
| if (len <= 0) |
| return 0; |
| |
| BIPD(( "bip_buffer_write: enter %d->%d len %d\n", bip->fdin, bip->fdout, len )); |
| BIPDUMP( src, len ); |
| |
| EnterCriticalSection( &bip->lock ); |
| |
| while (!bip->can_write) { |
| int ret; |
| LeaveCriticalSection( &bip->lock ); |
| |
| if (bip->closed) { |
| errno = EPIPE; |
| return -1; |
| } |
| /* spinlocking here is probably unfair, but let's live with it */ |
| ret = WaitForSingleObject( bip->evt_write, INFINITE ); |
| if (ret != WAIT_OBJECT_0) { /* buffer probably closed */ |
| D( "bip_buffer_write: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError() ); |
| return 0; |
| } |
| if (bip->closed) { |
| errno = EPIPE; |
| return -1; |
| } |
| EnterCriticalSection( &bip->lock ); |
| } |
| |
| BIPD(( "bip_buffer_write: exec %d->%d len %d\n", bip->fdin, bip->fdout, len )); |
| |
| avail = BIP_BUFFER_SIZE - bip->a_end; |
| if (avail > 0) |
| { |
| /* we can append to region A */ |
| if (avail > len) |
| avail = len; |
| |
| memcpy( bip->buff + bip->a_end, src, avail ); |
| src = (const char *)src + avail; |
| count += avail; |
| len -= avail; |
| |
| bip->a_end += avail; |
| if (bip->a_end == BIP_BUFFER_SIZE && bip->a_start == 0) { |
| bip->can_write = 0; |
| ResetEvent( bip->evt_write ); |
| goto Exit; |
| } |
| } |
| |
| if (len == 0) |
| goto Exit; |
| |
| avail = bip->a_start - bip->b_end; |
| assert( avail > 0 ); /* since can_write is TRUE */ |
| |
| if (avail > len) |
| avail = len; |
| |
| memcpy( bip->buff + bip->b_end, src, avail ); |
| count += avail; |
| bip->b_end += avail; |
| |
| if (bip->b_end == bip->a_start) { |
| bip->can_write = 0; |
| ResetEvent( bip->evt_write ); |
| } |
| |
| Exit: |
| assert( count > 0 ); |
| |
| if ( !bip->can_read ) { |
| bip->can_read = 1; |
| SetEvent( bip->evt_read ); |
| } |
| |
| BIPD(( "bip_buffer_write: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n", |
| bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read )); |
| LeaveCriticalSection( &bip->lock ); |
| |
| return count; |
| } |
| |
| static int |
| bip_buffer_read( BipBuffer bip, void* dst, int len ) |
| { |
| int avail, count = 0; |
| |
| if (len <= 0) |
| return 0; |
| |
| BIPD(( "bip_buffer_read: enter %d->%d len %d\n", bip->fdin, bip->fdout, len )); |
| |
| EnterCriticalSection( &bip->lock ); |
| while ( !bip->can_read ) |
| { |
| #if 0 |
| LeaveCriticalSection( &bip->lock ); |
| errno = EAGAIN; |
| return -1; |
| #else |
| int ret; |
| LeaveCriticalSection( &bip->lock ); |
| |
| if (bip->closed) { |
| errno = EPIPE; |
| return -1; |
| } |
| |
| ret = WaitForSingleObject( bip->evt_read, INFINITE ); |
| if (ret != WAIT_OBJECT_0) { /* probably closed buffer */ |
| D( "bip_buffer_read: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError()); |
| return 0; |
| } |
| if (bip->closed) { |
| errno = EPIPE; |
| return -1; |
| } |
| EnterCriticalSection( &bip->lock ); |
| #endif |
| } |
| |
| BIPD(( "bip_buffer_read: exec %d->%d len %d\n", bip->fdin, bip->fdout, len )); |
| |
| avail = bip->a_end - bip->a_start; |
| assert( avail > 0 ); /* since can_read is TRUE */ |
| |
| if (avail > len) |
| avail = len; |
| |
| memcpy( dst, bip->buff + bip->a_start, avail ); |
| dst = (char *)dst + avail; |
| count += avail; |
| len -= avail; |
| |
| bip->a_start += avail; |
| if (bip->a_start < bip->a_end) |
| goto Exit; |
| |
| bip->a_start = 0; |
| bip->a_end = bip->b_end; |
| bip->b_end = 0; |
| |
| avail = bip->a_end; |
| if (avail > 0) { |
| if (avail > len) |
| avail = len; |
| memcpy( dst, bip->buff, avail ); |
| count += avail; |
| bip->a_start += avail; |
| |
| if ( bip->a_start < bip->a_end ) |
| goto Exit; |
| |
| bip->a_start = bip->a_end = 0; |
| } |
| |
| bip->can_read = 0; |
| ResetEvent( bip->evt_read ); |
| |
| Exit: |
| assert( count > 0 ); |
| |
| if (!bip->can_write ) { |
| bip->can_write = 1; |
| SetEvent( bip->evt_write ); |
| } |
| |
| BIPDUMP( (const unsigned char*)dst - count, count ); |
| BIPD(( "bip_buffer_read: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n", |
| bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read )); |
| LeaveCriticalSection( &bip->lock ); |
| |
| return count; |
| } |
| |
| typedef struct SocketPairRec_ |
| { |
| BipBufferRec a2b_bip; |
| BipBufferRec b2a_bip; |
| FH a_fd; |
| int used; |
| |
| } SocketPairRec; |
| |
| void _fh_socketpair_init( FH f ) |
| { |
| f->fh_pair = NULL; |
| } |
| |
| static int |
| _fh_socketpair_close( FH f ) |
| { |
| if ( f->fh_pair ) { |
| SocketPair pair = f->fh_pair; |
| |
| if ( f == pair->a_fd ) { |
| pair->a_fd = NULL; |
| } |
| |
| bip_buffer_close( &pair->b2a_bip ); |
| bip_buffer_close( &pair->a2b_bip ); |
| |
| if ( --pair->used == 0 ) { |
| bip_buffer_done( &pair->b2a_bip ); |
| bip_buffer_done( &pair->a2b_bip ); |
| free( pair ); |
| } |
| f->fh_pair = NULL; |
| } |
| return 0; |
| } |
| |
| static int |
| _fh_socketpair_lseek( FH f, int pos, int origin ) |
| { |
| errno = ESPIPE; |
| return -1; |
| } |
| |
| static int |
| _fh_socketpair_read( FH f, void* buf, int len ) |
| { |
| SocketPair pair = f->fh_pair; |
| BipBuffer bip; |
| |
| if (!pair) |
| return -1; |
| |
| if ( f == pair->a_fd ) |
| bip = &pair->b2a_bip; |
| else |
| bip = &pair->a2b_bip; |
| |
| return bip_buffer_read( bip, buf, len ); |
| } |
| |
| static int |
| _fh_socketpair_write( FH f, const void* buf, int len ) |
| { |
| SocketPair pair = f->fh_pair; |
| BipBuffer bip; |
| |
| if (!pair) |
| return -1; |
| |
| if ( f == pair->a_fd ) |
| bip = &pair->a2b_bip; |
| else |
| bip = &pair->b2a_bip; |
| |
| return bip_buffer_write( bip, buf, len ); |
| } |
| |
| |
| static void _fh_socketpair_hook( FH f, int event, EventHook hook ); /* forward */ |
| |
| static const FHClassRec _fh_socketpair_class = |
| { |
| _fh_socketpair_init, |
| _fh_socketpair_close, |
| _fh_socketpair_lseek, |
| _fh_socketpair_read, |
| _fh_socketpair_write, |
| _fh_socketpair_hook |
| }; |
| |
| |
| int adb_socketpair(int sv[2]) { |
| SocketPair pair; |
| |
| FH fa = _fh_alloc(&_fh_socketpair_class); |
| FH fb = _fh_alloc(&_fh_socketpair_class); |
| |
| if (!fa || !fb) |
| goto Fail; |
| |
| pair = reinterpret_cast<SocketPair>(malloc(sizeof(*pair))); |
| if (pair == NULL) { |
| D("adb_socketpair: not enough memory to allocate pipes\n" ); |
| goto Fail; |
| } |
| |
| bip_buffer_init( &pair->a2b_bip ); |
| bip_buffer_init( &pair->b2a_bip ); |
| |
| fa->fh_pair = pair; |
| fb->fh_pair = pair; |
| pair->used = 2; |
| pair->a_fd = fa; |
| |
| sv[0] = _fh_to_int(fa); |
| sv[1] = _fh_to_int(fb); |
| |
| pair->a2b_bip.fdin = sv[0]; |
| pair->a2b_bip.fdout = sv[1]; |
| pair->b2a_bip.fdin = sv[1]; |
| pair->b2a_bip.fdout = sv[0]; |
| |
| snprintf( fa->name, sizeof(fa->name), "%d(pair:%d)", sv[0], sv[1] ); |
| snprintf( fb->name, sizeof(fb->name), "%d(pair:%d)", sv[1], sv[0] ); |
| D( "adb_socketpair: returns (%d, %d)\n", sv[0], sv[1] ); |
| return 0; |
| |
| Fail: |
| _fh_close(fb); |
| _fh_close(fa); |
| return -1; |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** fdevents emulation *****/ |
| /***** *****/ |
| /***** this is a very simple implementation, we rely on the fact *****/ |
| /***** that ADB doesn't use FDE_ERROR. *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| #define FATAL(x...) fatal(__FUNCTION__, x) |
| |
| #if DEBUG |
| static void dump_fde(fdevent *fde, const char *info) |
| { |
| fprintf(stderr,"FDE #%03d %c%c%c %s\n", fde->fd, |
| fde->state & FDE_READ ? 'R' : ' ', |
| fde->state & FDE_WRITE ? 'W' : ' ', |
| fde->state & FDE_ERROR ? 'E' : ' ', |
| info); |
| } |
| #else |
| #define dump_fde(fde, info) do { } while(0) |
| #endif |
| |
| #define FDE_EVENTMASK 0x00ff |
| #define FDE_STATEMASK 0xff00 |
| |
| #define FDE_ACTIVE 0x0100 |
| #define FDE_PENDING 0x0200 |
| #define FDE_CREATED 0x0400 |
| |
| static void fdevent_plist_enqueue(fdevent *node); |
| static void fdevent_plist_remove(fdevent *node); |
| static fdevent *fdevent_plist_dequeue(void); |
| |
| static fdevent list_pending = { |
| .next = &list_pending, |
| .prev = &list_pending, |
| }; |
| |
| static fdevent **fd_table = 0; |
| static int fd_table_max = 0; |
| |
| typedef struct EventLooperRec_* EventLooper; |
| |
| typedef struct EventHookRec_ |
| { |
| EventHook next; |
| FH fh; |
| HANDLE h; |
| int wanted; /* wanted event flags */ |
| int ready; /* ready event flags */ |
| void* aux; |
| void (*prepare)( EventHook hook ); |
| int (*start) ( EventHook hook ); |
| void (*stop) ( EventHook hook ); |
| int (*check) ( EventHook hook ); |
| int (*peek) ( EventHook hook ); |
| } EventHookRec; |
| |
| static EventHook _free_hooks; |
| |
| static EventHook |
| event_hook_alloc(FH fh) { |
| EventHook hook = _free_hooks; |
| if (hook != NULL) { |
| _free_hooks = hook->next; |
| } else { |
| hook = reinterpret_cast<EventHook>(malloc(sizeof(*hook))); |
| if (hook == NULL) |
| fatal( "could not allocate event hook\n" ); |
| } |
| hook->next = NULL; |
| hook->fh = fh; |
| hook->wanted = 0; |
| hook->ready = 0; |
| hook->h = INVALID_HANDLE_VALUE; |
| hook->aux = NULL; |
| |
| hook->prepare = NULL; |
| hook->start = NULL; |
| hook->stop = NULL; |
| hook->check = NULL; |
| hook->peek = NULL; |
| |
| return hook; |
| } |
| |
| static void |
| event_hook_free( EventHook hook ) |
| { |
| hook->fh = NULL; |
| hook->wanted = 0; |
| hook->ready = 0; |
| hook->next = _free_hooks; |
| _free_hooks = hook; |
| } |
| |
| |
| static void |
| event_hook_signal( EventHook hook ) |
| { |
| FH f = hook->fh; |
| int fd = _fh_to_int(f); |
| fdevent* fde = fd_table[ fd - WIN32_FH_BASE ]; |
| |
| if (fde != NULL && fde->fd == fd) { |
| if ((fde->state & FDE_PENDING) == 0) { |
| fde->state |= FDE_PENDING; |
| fdevent_plist_enqueue( fde ); |
| } |
| fde->events |= hook->wanted; |
| } |
| } |
| |
| |
| #define MAX_LOOPER_HANDLES WIN32_MAX_FHS |
| |
| typedef struct EventLooperRec_ |
| { |
| EventHook hooks; |
| HANDLE htab[ MAX_LOOPER_HANDLES ]; |
| int htab_count; |
| |
| } EventLooperRec; |
| |
| static EventHook* |
| event_looper_find_p( EventLooper looper, FH fh ) |
| { |
| EventHook *pnode = &looper->hooks; |
| EventHook node = *pnode; |
| for (;;) { |
| if ( node == NULL || node->fh == fh ) |
| break; |
| pnode = &node->next; |
| node = *pnode; |
| } |
| return pnode; |
| } |
| |
| static void |
| event_looper_hook( EventLooper looper, int fd, int events ) |
| { |
| FH f = _fh_from_int(fd); |
| EventHook *pnode; |
| EventHook node; |
| |
| if (f == NULL) /* invalid arg */ { |
| D("event_looper_hook: invalid fd=%d\n", fd); |
| return; |
| } |
| |
| pnode = event_looper_find_p( looper, f ); |
| node = *pnode; |
| if ( node == NULL ) { |
| node = event_hook_alloc( f ); |
| node->next = *pnode; |
| *pnode = node; |
| } |
| |
| if ( (node->wanted & events) != events ) { |
| /* this should update start/stop/check/peek */ |
| D("event_looper_hook: call hook for %d (new=%x, old=%x)\n", |
| fd, node->wanted, events); |
| f->clazz->_fh_hook( f, events & ~node->wanted, node ); |
| node->wanted |= events; |
| } else { |
| D("event_looper_hook: ignoring events %x for %d wanted=%x)\n", |
| events, fd, node->wanted); |
| } |
| } |
| |
| static void |
| event_looper_unhook( EventLooper looper, int fd, int events ) |
| { |
| FH fh = _fh_from_int(fd); |
| EventHook *pnode = event_looper_find_p( looper, fh ); |
| EventHook node = *pnode; |
| |
| if (node != NULL) { |
| int events2 = events & node->wanted; |
| if ( events2 == 0 ) { |
| D( "event_looper_unhook: events %x not registered for fd %d\n", events, fd ); |
| return; |
| } |
| node->wanted &= ~events2; |
| if (!node->wanted) { |
| *pnode = node->next; |
| event_hook_free( node ); |
| } |
| } |
| } |
| |
| /* |
| * A fixer for WaitForMultipleObjects on condition that there are more than 64 |
| * handles to wait on. |
| * |
| * In cetain cases DDMS may establish more than 64 connections with ADB. For |
| * instance, this may happen if there are more than 64 processes running on a |
| * device, or there are multiple devices connected (including the emulator) with |
| * the combined number of running processes greater than 64. In this case using |
| * WaitForMultipleObjects to wait on connection events simply wouldn't cut, |
| * because of the API limitations (64 handles max). So, we need to provide a way |
| * to scale WaitForMultipleObjects to accept an arbitrary number of handles. The |
| * easiest (and "Microsoft recommended") way to do that would be dividing the |
| * handle array into chunks with the chunk size less than 64, and fire up as many |
| * waiting threads as there are chunks. Then each thread would wait on a chunk of |
| * handles, and will report back to the caller which handle has been set. |
| * Here is the implementation of that algorithm. |
| */ |
| |
| /* Number of handles to wait on in each wating thread. */ |
| #define WAIT_ALL_CHUNK_SIZE 63 |
| |
| /* Descriptor for a wating thread */ |
| typedef struct WaitForAllParam { |
| /* A handle to an event to signal when waiting is over. This handle is shared |
| * accross all the waiting threads, so each waiting thread knows when any |
| * other thread has exited, so it can exit too. */ |
| HANDLE main_event; |
| /* Upon exit from a waiting thread contains the index of the handle that has |
| * been signaled. The index is an absolute index of the signaled handle in |
| * the original array. This pointer is shared accross all the waiting threads |
| * and it's not guaranteed (due to a race condition) that when all the |
| * waiting threads exit, the value contained here would indicate the first |
| * handle that was signaled. This is fine, because the caller cares only |
| * about any handle being signaled. It doesn't care about the order, nor |
| * about the whole list of handles that were signaled. */ |
| LONG volatile *signaled_index; |
| /* Array of handles to wait on in a waiting thread. */ |
| HANDLE* handles; |
| /* Number of handles in 'handles' array to wait on. */ |
| int handles_count; |
| /* Index inside the main array of the first handle in the 'handles' array. */ |
| int first_handle_index; |
| /* Waiting thread handle. */ |
| HANDLE thread; |
| } WaitForAllParam; |
| |
| /* Waiting thread routine. */ |
| static unsigned __stdcall |
| _in_waiter_thread(void* arg) |
| { |
| HANDLE wait_on[WAIT_ALL_CHUNK_SIZE + 1]; |
| int res; |
| WaitForAllParam* const param = (WaitForAllParam*)arg; |
| |
| /* We have to wait on the main_event in order to be notified when any of the |
| * sibling threads is exiting. */ |
| wait_on[0] = param->main_event; |
| /* The rest of the handles go behind the main event handle. */ |
| memcpy(wait_on + 1, param->handles, param->handles_count * sizeof(HANDLE)); |
| |
| res = WaitForMultipleObjects(param->handles_count + 1, wait_on, FALSE, INFINITE); |
| if (res > 0 && res < (param->handles_count + 1)) { |
| /* One of the original handles got signaled. Save its absolute index into |
| * the output variable. */ |
| InterlockedCompareExchange(param->signaled_index, |
| res - 1L + param->first_handle_index, -1L); |
| } |
| |
| /* Notify the caller (and the siblings) that the wait is over. */ |
| SetEvent(param->main_event); |
| |
| _endthreadex(0); |
| return 0; |
| } |
| |
| /* WaitForMultipeObjects fixer routine. |
| * Param: |
| * handles Array of handles to wait on. |
| * handles_count Number of handles in the array. |
| * Return: |
| * (>= 0 && < handles_count) - Index of the signaled handle in the array, or |
| * WAIT_FAILED on an error. |
| */ |
| static int |
| _wait_for_all(HANDLE* handles, int handles_count) |
| { |
| WaitForAllParam* threads; |
| HANDLE main_event; |
| int chunks, chunk, remains; |
| |
| /* This variable is going to be accessed by several threads at the same time, |
| * this is bound to fail randomly when the core is run on multi-core machines. |
| * To solve this, we need to do the following (1 _and_ 2): |
| * 1. Use the "volatile" qualifier to ensure the compiler doesn't optimize |
| * out the reads/writes in this function unexpectedly. |
| * 2. Ensure correct memory ordering. The "simple" way to do that is to wrap |
| * all accesses inside a critical section. But we can also use |
| * InterlockedCompareExchange() which always provide a full memory barrier |
| * on Win32. |
| */ |
| volatile LONG sig_index = -1; |
| |
| /* Calculate number of chunks, and allocate thread param array. */ |
| chunks = handles_count / WAIT_ALL_CHUNK_SIZE; |
| remains = handles_count % WAIT_ALL_CHUNK_SIZE; |
| threads = (WaitForAllParam*)malloc((chunks + (remains ? 1 : 0)) * |
| sizeof(WaitForAllParam)); |
| if (threads == NULL) { |
| D("Unable to allocate thread array for %d handles.", handles_count); |
| return (int)WAIT_FAILED; |
| } |
| |
| /* Create main event to wait on for all waiting threads. This is a "manualy |
| * reset" event that will remain set once it was set. */ |
| main_event = CreateEvent(NULL, TRUE, FALSE, NULL); |
| if (main_event == NULL) { |
| D("Unable to create main event. Error: %d", (int)GetLastError()); |
| free(threads); |
| return (int)WAIT_FAILED; |
| } |
| |
| /* |
| * Initialize waiting thread parameters. |
| */ |
| |
| for (chunk = 0; chunk < chunks; chunk++) { |
| threads[chunk].main_event = main_event; |
| threads[chunk].signaled_index = &sig_index; |
| threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk; |
| threads[chunk].handles = handles + threads[chunk].first_handle_index; |
| threads[chunk].handles_count = WAIT_ALL_CHUNK_SIZE; |
| } |
| if (remains) { |
| threads[chunk].main_event = main_event; |
| threads[chunk].signaled_index = &sig_index; |
| threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk; |
| threads[chunk].handles = handles + threads[chunk].first_handle_index; |
| threads[chunk].handles_count = remains; |
| chunks++; |
| } |
| |
| /* Start the waiting threads. */ |
| for (chunk = 0; chunk < chunks; chunk++) { |
| /* Note that using adb_thread_create is not appropriate here, since we |
| * need a handle to wait on for thread termination. */ |
| threads[chunk].thread = (HANDLE)_beginthreadex(NULL, 0, _in_waiter_thread, |
| &threads[chunk], 0, NULL); |
| if (threads[chunk].thread == NULL) { |
| /* Unable to create a waiter thread. Collapse. */ |
| D("Unable to create a waiting thread %d of %d. errno=%d", |
| chunk, chunks, errno); |
| chunks = chunk; |
| SetEvent(main_event); |
| break; |
| } |
| } |
| |
| /* Wait on any of the threads to get signaled. */ |
| WaitForSingleObject(main_event, INFINITE); |
| |
| /* Wait on all the waiting threads to exit. */ |
| for (chunk = 0; chunk < chunks; chunk++) { |
| WaitForSingleObject(threads[chunk].thread, INFINITE); |
| CloseHandle(threads[chunk].thread); |
| } |
| |
| CloseHandle(main_event); |
| free(threads); |
| |
| |
| const int ret = (int)InterlockedCompareExchange(&sig_index, -1, -1); |
| return (ret >= 0) ? ret : (int)WAIT_FAILED; |
| } |
| |
| static EventLooperRec win32_looper; |
| |
| static void fdevent_init(void) |
| { |
| win32_looper.htab_count = 0; |
| win32_looper.hooks = NULL; |
| } |
| |
| static void fdevent_connect(fdevent *fde) |
| { |
| EventLooper looper = &win32_looper; |
| int events = fde->state & FDE_EVENTMASK; |
| |
| if (events != 0) |
| event_looper_hook( looper, fde->fd, events ); |
| } |
| |
| static void fdevent_disconnect(fdevent *fde) |
| { |
| EventLooper looper = &win32_looper; |
| int events = fde->state & FDE_EVENTMASK; |
| |
| if (events != 0) |
| event_looper_unhook( looper, fde->fd, events ); |
| } |
| |
| static void fdevent_update(fdevent *fde, unsigned events) |
| { |
| EventLooper looper = &win32_looper; |
| unsigned events0 = fde->state & FDE_EVENTMASK; |
| |
| if (events != events0) { |
| int removes = events0 & ~events; |
| int adds = events & ~events0; |
| if (removes) { |
| D("fdevent_update: remove %x from %d\n", removes, fde->fd); |
| event_looper_unhook( looper, fde->fd, removes ); |
| } |
| if (adds) { |
| D("fdevent_update: add %x to %d\n", adds, fde->fd); |
| event_looper_hook ( looper, fde->fd, adds ); |
| } |
| } |
| } |
| |
| static void fdevent_process() |
| { |
| EventLooper looper = &win32_looper; |
| EventHook hook; |
| int gotone = 0; |
| |
| /* if we have at least one ready hook, execute it/them */ |
| for (hook = looper->hooks; hook; hook = hook->next) { |
| hook->ready = 0; |
| if (hook->prepare) { |
| hook->prepare(hook); |
| if (hook->ready != 0) { |
| event_hook_signal( hook ); |
| gotone = 1; |
| } |
| } |
| } |
| |
| /* nothing's ready yet, so wait for something to happen */ |
| if (!gotone) |
| { |
| looper->htab_count = 0; |
| |
| for (hook = looper->hooks; hook; hook = hook->next) |
| { |
| if (hook->start && !hook->start(hook)) { |
| D( "fdevent_process: error when starting a hook\n" ); |
| return; |
| } |
| if (hook->h != INVALID_HANDLE_VALUE) { |
| int nn; |
| |
| for (nn = 0; nn < looper->htab_count; nn++) |
| { |
| if ( looper->htab[nn] == hook->h ) |
| goto DontAdd; |
| } |
| looper->htab[ looper->htab_count++ ] = hook->h; |
| DontAdd: |
| ; |
| } |
| } |
| |
| if (looper->htab_count == 0) { |
| D( "fdevent_process: nothing to wait for !!\n" ); |
| return; |
| } |
| |
| do |
| { |
| int wait_ret; |
| |
| D( "adb_win32: waiting for %d events\n", looper->htab_count ); |
| if (looper->htab_count > MAXIMUM_WAIT_OBJECTS) { |
| D("handle count %d exceeds MAXIMUM_WAIT_OBJECTS.\n", looper->htab_count); |
| wait_ret = _wait_for_all(looper->htab, looper->htab_count); |
| } else { |
| wait_ret = WaitForMultipleObjects( looper->htab_count, looper->htab, FALSE, INFINITE ); |
| } |
| if (wait_ret == (int)WAIT_FAILED) { |
| D( "adb_win32: wait failed, error %ld\n", GetLastError() ); |
| } else { |
| D( "adb_win32: got one (index %d)\n", wait_ret ); |
| |
| /* according to Cygwin, some objects like consoles wake up on "inappropriate" events |
| * like mouse movements. we need to filter these with the "check" function |
| */ |
| if ((unsigned)wait_ret < (unsigned)looper->htab_count) |
| { |
| for (hook = looper->hooks; hook; hook = hook->next) |
| { |
| if ( looper->htab[wait_ret] == hook->h && |
| (!hook->check || hook->check(hook)) ) |
| { |
| D( "adb_win32: signaling %s for %x\n", hook->fh->name, hook->ready ); |
| event_hook_signal( hook ); |
| gotone = 1; |
| break; |
| } |
| } |
| } |
| } |
| } |
| while (!gotone); |
| |
| for (hook = looper->hooks; hook; hook = hook->next) { |
| if (hook->stop) |
| hook->stop( hook ); |
| } |
| } |
| |
| for (hook = looper->hooks; hook; hook = hook->next) { |
| if (hook->peek && hook->peek(hook)) |
| event_hook_signal( hook ); |
| } |
| } |
| |
| |
| static void fdevent_register(fdevent *fde) |
| { |
| int fd = fde->fd - WIN32_FH_BASE; |
| |
| if(fd < 0) { |
| FATAL("bogus negative fd (%d)\n", fde->fd); |
| } |
| |
| if(fd >= fd_table_max) { |
| int oldmax = fd_table_max; |
| if(fde->fd > 32000) { |
| FATAL("bogus huuuuge fd (%d)\n", fde->fd); |
| } |
| if(fd_table_max == 0) { |
| fdevent_init(); |
| fd_table_max = 256; |
| } |
| while(fd_table_max <= fd) { |
| fd_table_max *= 2; |
| } |
| fd_table = reinterpret_cast<fdevent**>(realloc(fd_table, sizeof(fdevent*) * fd_table_max)); |
| if(fd_table == 0) { |
| FATAL("could not expand fd_table to %d entries\n", fd_table_max); |
| } |
| memset(fd_table + oldmax, 0, sizeof(int) * (fd_table_max - oldmax)); |
| } |
| |
| fd_table[fd] = fde; |
| } |
| |
| static void fdevent_unregister(fdevent *fde) |
| { |
| int fd = fde->fd - WIN32_FH_BASE; |
| |
| if((fd < 0) || (fd >= fd_table_max)) { |
| FATAL("fd out of range (%d)\n", fde->fd); |
| } |
| |
| if(fd_table[fd] != fde) { |
| FATAL("fd_table out of sync"); |
| } |
| |
| fd_table[fd] = 0; |
| |
| if(!(fde->state & FDE_DONT_CLOSE)) { |
| dump_fde(fde, "close"); |
| adb_close(fde->fd); |
| } |
| } |
| |
| static void fdevent_plist_enqueue(fdevent *node) |
| { |
| fdevent *list = &list_pending; |
| |
| node->next = list; |
| node->prev = list->prev; |
| node->prev->next = node; |
| list->prev = node; |
| } |
| |
| static void fdevent_plist_remove(fdevent *node) |
| { |
| node->prev->next = node->next; |
| node->next->prev = node->prev; |
| node->next = 0; |
| node->prev = 0; |
| } |
| |
| static fdevent *fdevent_plist_dequeue(void) |
| { |
| fdevent *list = &list_pending; |
| fdevent *node = list->next; |
| |
| if(node == list) return 0; |
| |
| list->next = node->next; |
| list->next->prev = list; |
| node->next = 0; |
| node->prev = 0; |
| |
| return node; |
| } |
| |
| fdevent *fdevent_create(int fd, fd_func func, void *arg) |
| { |
| fdevent *fde = (fdevent*) malloc(sizeof(fdevent)); |
| if(fde == 0) return 0; |
| fdevent_install(fde, fd, func, arg); |
| fde->state |= FDE_CREATED; |
| return fde; |
| } |
| |
| void fdevent_destroy(fdevent *fde) |
| { |
| if(fde == 0) return; |
| if(!(fde->state & FDE_CREATED)) { |
| FATAL("fde %p not created by fdevent_create()\n", fde); |
| } |
| fdevent_remove(fde); |
| } |
| |
| void fdevent_install(fdevent *fde, int fd, fd_func func, void *arg) |
| { |
| memset(fde, 0, sizeof(fdevent)); |
| fde->state = FDE_ACTIVE; |
| fde->fd = fd; |
| fde->func = func; |
| fde->arg = arg; |
| |
| fdevent_register(fde); |
| dump_fde(fde, "connect"); |
| fdevent_connect(fde); |
| fde->state |= FDE_ACTIVE; |
| } |
| |
| void fdevent_remove(fdevent *fde) |
| { |
| if(fde->state & FDE_PENDING) { |
| fdevent_plist_remove(fde); |
| } |
| |
| if(fde->state & FDE_ACTIVE) { |
| fdevent_disconnect(fde); |
| dump_fde(fde, "disconnect"); |
| fdevent_unregister(fde); |
| } |
| |
| fde->state = 0; |
| fde->events = 0; |
| } |
| |
| |
| void fdevent_set(fdevent *fde, unsigned events) |
| { |
| events &= FDE_EVENTMASK; |
| |
| if((fde->state & FDE_EVENTMASK) == (int)events) return; |
| |
| if(fde->state & FDE_ACTIVE) { |
| fdevent_update(fde, events); |
| dump_fde(fde, "update"); |
| } |
| |
| fde->state = (fde->state & FDE_STATEMASK) | events; |
| |
| if(fde->state & FDE_PENDING) { |
| /* if we're pending, make sure |
| ** we don't signal an event that |
| ** is no longer wanted. |
| */ |
| fde->events &= (~events); |
| if(fde->events == 0) { |
| fdevent_plist_remove(fde); |
| fde->state &= (~FDE_PENDING); |
| } |
| } |
| } |
| |
| void fdevent_add(fdevent *fde, unsigned events) |
| { |
| fdevent_set( |
| fde, (fde->state & FDE_EVENTMASK) | (events & FDE_EVENTMASK)); |
| } |
| |
| void fdevent_del(fdevent *fde, unsigned events) |
| { |
| fdevent_set( |
| fde, (fde->state & FDE_EVENTMASK) & (~(events & FDE_EVENTMASK))); |
| } |
| |
| void fdevent_loop() |
| { |
| fdevent *fde; |
| |
| for(;;) { |
| #if DEBUG |
| fprintf(stderr,"--- ---- waiting for events\n"); |
| #endif |
| fdevent_process(); |
| |
| while((fde = fdevent_plist_dequeue())) { |
| unsigned events = fde->events; |
| fde->events = 0; |
| fde->state &= (~FDE_PENDING); |
| dump_fde(fde, "callback"); |
| fde->func(fde->fd, events, fde->arg); |
| } |
| } |
| } |
| |
| /** FILE EVENT HOOKS |
| **/ |
| |
| static void _event_file_prepare( EventHook hook ) |
| { |
| if (hook->wanted & (FDE_READ|FDE_WRITE)) { |
| /* we can always read/write */ |
| hook->ready |= hook->wanted & (FDE_READ|FDE_WRITE); |
| } |
| } |
| |
| static int _event_file_peek( EventHook hook ) |
| { |
| return (hook->wanted & (FDE_READ|FDE_WRITE)); |
| } |
| |
| static void _fh_file_hook( FH f, int events, EventHook hook ) |
| { |
| hook->h = f->fh_handle; |
| hook->prepare = _event_file_prepare; |
| hook->peek = _event_file_peek; |
| } |
| |
| /** SOCKET EVENT HOOKS |
| **/ |
| |
| static void _event_socket_verify( EventHook hook, WSANETWORKEVENTS* evts ) |
| { |
| if ( evts->lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE) ) { |
| if (hook->wanted & FDE_READ) |
| hook->ready |= FDE_READ; |
| if ((evts->iErrorCode[FD_READ] != 0) && hook->wanted & FDE_ERROR) |
| hook->ready |= FDE_ERROR; |
| } |
| if ( evts->lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE) ) { |
| if (hook->wanted & FDE_WRITE) |
| hook->ready |= FDE_WRITE; |
| if ((evts->iErrorCode[FD_WRITE] != 0) && hook->wanted & FDE_ERROR) |
| hook->ready |= FDE_ERROR; |
| } |
| if ( evts->lNetworkEvents & FD_OOB ) { |
| if (hook->wanted & FDE_ERROR) |
| hook->ready |= FDE_ERROR; |
| } |
| } |
| |
| static void _event_socket_prepare( EventHook hook ) |
| { |
| WSANETWORKEVENTS evts; |
| |
| /* look if some of the events we want already happened ? */ |
| if (!WSAEnumNetworkEvents( hook->fh->fh_socket, NULL, &evts )) |
| _event_socket_verify( hook, &evts ); |
| } |
| |
| static int _socket_wanted_to_flags( int wanted ) |
| { |
| int flags = 0; |
| if (wanted & FDE_READ) |
| flags |= FD_READ | FD_ACCEPT | FD_CLOSE; |
| |
| if (wanted & FDE_WRITE) |
| flags |= FD_WRITE | FD_CONNECT | FD_CLOSE; |
| |
| if (wanted & FDE_ERROR) |
| flags |= FD_OOB; |
| |
| return flags; |
| } |
| |
| static int _event_socket_start( EventHook hook ) |
| { |
| /* create an event which we're going to wait for */ |
| FH fh = hook->fh; |
| long flags = _socket_wanted_to_flags( hook->wanted ); |
| |
| hook->h = fh->event; |
| if (hook->h == INVALID_HANDLE_VALUE) { |
| D( "_event_socket_start: no event for %s\n", fh->name ); |
| return 0; |
| } |
| |
| if ( flags != fh->mask ) { |
| D( "_event_socket_start: hooking %s for %x (flags %ld)\n", hook->fh->name, hook->wanted, flags ); |
| if ( WSAEventSelect( fh->fh_socket, hook->h, flags ) ) { |
| D( "_event_socket_start: WSAEventSelect() for %s failed, error %d\n", hook->fh->name, WSAGetLastError() ); |
| CloseHandle( hook->h ); |
| hook->h = INVALID_HANDLE_VALUE; |
| exit(1); |
| return 0; |
| } |
| fh->mask = flags; |
| } |
| return 1; |
| } |
| |
| static void _event_socket_stop( EventHook hook ) |
| { |
| hook->h = INVALID_HANDLE_VALUE; |
| } |
| |
| static int _event_socket_check( EventHook hook ) |
| { |
| int result = 0; |
| FH fh = hook->fh; |
| WSANETWORKEVENTS evts; |
| |
| if (!WSAEnumNetworkEvents( fh->fh_socket, hook->h, &evts ) ) { |
| _event_socket_verify( hook, &evts ); |
| result = (hook->ready != 0); |
| if (result) { |
| ResetEvent( hook->h ); |
| } |
| } |
| D( "_event_socket_check %s returns %d\n", fh->name, result ); |
| return result; |
| } |
| |
| static int _event_socket_peek( EventHook hook ) |
| { |
| WSANETWORKEVENTS evts; |
| FH fh = hook->fh; |
| |
| /* look if some of the events we want already happened ? */ |
| if (!WSAEnumNetworkEvents( fh->fh_socket, NULL, &evts )) { |
| _event_socket_verify( hook, &evts ); |
| if (hook->ready) |
| ResetEvent( hook->h ); |
| } |
| |
| return hook->ready != 0; |
| } |
| |
| |
| |
| static void _fh_socket_hook( FH f, int events, EventHook hook ) |
| { |
| hook->prepare = _event_socket_prepare; |
| hook->start = _event_socket_start; |
| hook->stop = _event_socket_stop; |
| hook->check = _event_socket_check; |
| hook->peek = _event_socket_peek; |
| |
| _event_socket_start( hook ); |
| } |
| |
| /** SOCKETPAIR EVENT HOOKS |
| **/ |
| |
| static void _event_socketpair_prepare( EventHook hook ) |
| { |
| FH fh = hook->fh; |
| SocketPair pair = fh->fh_pair; |
| BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip; |
| BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip; |
| |
| if (hook->wanted & FDE_READ && rbip->can_read) |
| hook->ready |= FDE_READ; |
| |
| if (hook->wanted & FDE_WRITE && wbip->can_write) |
| hook->ready |= FDE_WRITE; |
| } |
| |
| static int _event_socketpair_start( EventHook hook ) |
| { |
| FH fh = hook->fh; |
| SocketPair pair = fh->fh_pair; |
| BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip; |
| BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip; |
| |
| if (hook->wanted == FDE_READ) |
| hook->h = rbip->evt_read; |
| |
| else if (hook->wanted == FDE_WRITE) |
| hook->h = wbip->evt_write; |
| |
| else { |
| D("_event_socketpair_start: can't handle FDE_READ+FDE_WRITE\n" ); |
| return 0; |
| } |
| D( "_event_socketpair_start: hook %s for %x wanted=%x\n", |
| hook->fh->name, _fh_to_int(fh), hook->wanted); |
| return 1; |
| } |
| |
| static int _event_socketpair_peek( EventHook hook ) |
| { |
| _event_socketpair_prepare( hook ); |
| return hook->ready != 0; |
| } |
| |
| static void _fh_socketpair_hook( FH fh, int events, EventHook hook ) |
| { |
| hook->prepare = _event_socketpair_prepare; |
| hook->start = _event_socketpair_start; |
| hook->peek = _event_socketpair_peek; |
| } |
| |
| |
| void |
| adb_sysdeps_init( void ) |
| { |
| #define ADB_MUTEX(x) InitializeCriticalSection( & x ); |
| #include "mutex_list.h" |
| InitializeCriticalSection( &_win32_lock ); |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** Console Window Terminal Emulation *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| // This reads input from a Win32 console window and translates it into Unix |
| // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal |
| // mode, not Application mode), which itself emulates xterm. Gnome Terminal |
| // is emulated instead of xterm because it is probably more popular than xterm: |
| // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal |
| // supports modern fonts, etc. It seems best to emulate the terminal that most |
| // Android developers use because they'll fix apps (the shell, etc.) to keep |
| // working with that terminal's emulation. |
| // |
| // The point of this emulation is not to be perfect or to solve all issues with |
| // console windows on Windows, but to be better than the original code which |
| // just called read() (which called ReadFile(), which called ReadConsoleA()) |
| // which did not support Ctrl-C, tab completion, shell input line editing |
| // keys, server echo, and more. |
| // |
| // This implementation reconfigures the console with SetConsoleMode(), then |
| // calls ReadConsoleInput() to get raw input which it remaps to Unix |
| // terminal-style sequences which is returned via unix_read() which is used |
| // by the 'adb shell' command. |
| // |
| // Code organization: |
| // |
| // * stdin_raw_init() and stdin_raw_restore() reconfigure the console. |
| // * unix_read() detects console windows (as opposed to pipes, files, etc.). |
| // * _console_read() is the main code of the emulation. |
| |
| |
| // Read an input record from the console; one that should be processed. |
| static bool _get_interesting_input_record_uncached(const HANDLE console, |
| INPUT_RECORD* const input_record) { |
| for (;;) { |
| DWORD read_count = 0; |
| memset(input_record, 0, sizeof(*input_record)); |
| if (!ReadConsoleInputA(console, input_record, 1, &read_count)) { |
| D("_get_interesting_input_record_uncached: ReadConsoleInputA() " |
| "failure, error %ld\n", GetLastError()); |
| errno = EIO; |
| return false; |
| } |
| |
| if (read_count == 0) { // should be impossible |
| fatal("ReadConsoleInputA returned 0"); |
| } |
| |
| if (read_count != 1) { // should be impossible |
| fatal("ReadConsoleInputA did not return one input record"); |
| } |
| |
| if ((input_record->EventType == KEY_EVENT) && |
| (input_record->Event.KeyEvent.bKeyDown)) { |
| if (input_record->Event.KeyEvent.wRepeatCount == 0) { |
| fatal("ReadConsoleInputA returned a key event with zero repeat" |
| " count"); |
| } |
| |
| // Got an interesting INPUT_RECORD, so return |
| return true; |
| } |
| } |
| } |
| |
| // Cached input record (in case _console_read() is passed a buffer that doesn't |
| // have enough space to fit wRepeatCount number of key sequences). A non-zero |
| // wRepeatCount indicates that a record is cached. |
| static INPUT_RECORD _win32_input_record; |
| |
| // Get the next KEY_EVENT_RECORD that should be processed. |
| static KEY_EVENT_RECORD* _get_key_event_record(const HANDLE console) { |
| // If nothing cached, read directly from the console until we get an |
| // interesting record. |
| if (_win32_input_record.Event.KeyEvent.wRepeatCount == 0) { |
| if (!_get_interesting_input_record_uncached(console, |
| &_win32_input_record)) { |
| // There was an error, so make sure wRepeatCount is zero because |
| // that signifies no cached input record. |
| _win32_input_record.Event.KeyEvent.wRepeatCount = 0; |
| return NULL; |
| } |
| } |
| |
| return &_win32_input_record.Event.KeyEvent; |
| } |
| |
| static __inline__ bool _is_shift_pressed(const DWORD control_key_state) { |
| return (control_key_state & SHIFT_PRESSED) != 0; |
| } |
| |
| static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) { |
| return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0; |
| } |
| |
| static __inline__ bool _is_alt_pressed(const DWORD control_key_state) { |
| return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0; |
| } |
| |
| static __inline__ bool _is_numlock_on(const DWORD control_key_state) { |
| return (control_key_state & NUMLOCK_ON) != 0; |
| } |
| |
| static __inline__ bool _is_capslock_on(const DWORD control_key_state) { |
| return (control_key_state & CAPSLOCK_ON) != 0; |
| } |
| |
| static __inline__ bool _is_enhanced_key(const DWORD control_key_state) { |
| return (control_key_state & ENHANCED_KEY) != 0; |
| } |
| |
| // Constants from MSDN for ToAscii(). |
| static const BYTE TOASCII_KEY_OFF = 0x00; |
| static const BYTE TOASCII_KEY_DOWN = 0x80; |
| static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock |
| |
| // Given a key event, ignore a modifier key and return the character that was |
| // entered without the modifier. Writes to *ch and returns the number of bytes |
| // written. |
| static size_t _get_char_ignoring_modifier(char* const ch, |
| const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state, |
| const WORD modifier) { |
| // If there is no character from Windows, try ignoring the specified |
| // modifier and look for a character. Note that if AltGr is being used, |
| // there will be a character from Windows. |
| if (key_event->uChar.AsciiChar == '\0') { |
| // Note that we read the control key state from the passed in argument |
| // instead of from key_event since the argument has been normalized. |
| if (((modifier == VK_SHIFT) && |
| _is_shift_pressed(control_key_state)) || |
| ((modifier == VK_CONTROL) && |
| _is_ctrl_pressed(control_key_state)) || |
| ((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) { |
| |
| BYTE key_state[256] = {0}; |
| key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ? |
| TOASCII_KEY_DOWN : TOASCII_KEY_OFF; |
| key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ? |
| TOASCII_KEY_DOWN : TOASCII_KEY_OFF; |
| key_state[VK_MENU] = _is_alt_pressed(control_key_state) ? |
| TOASCII_KEY_DOWN : TOASCII_KEY_OFF; |
| key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ? |
| TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF; |
| |
| // cause this modifier to be ignored |
| key_state[modifier] = TOASCII_KEY_OFF; |
| |
| WORD translated = 0; |
| if (ToAscii(key_event->wVirtualKeyCode, |
| key_event->wVirtualScanCode, key_state, &translated, 0) == 1) { |
| // Ignoring the modifier, we found a character. |
| *ch = (CHAR)translated; |
| return 1; |
| } |
| } |
| } |
| |
| // Just use whatever Windows told us originally. |
| *ch = key_event->uChar.AsciiChar; |
| |
| // If the character from Windows is NULL, return a size of zero. |
| return (*ch == '\0') ? 0 : 1; |
| } |
| |
| // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key, |
| // but taking into account the shift key. This is because for a sequence like |
| // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0, |
| // we want to find the character ')'. |
| // |
| // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0 |
| // because it is the default key-sequence to switch the input language. |
| // This is configurable in the Region and Language control panel. |
| static __inline__ size_t _get_non_control_char(char* const ch, |
| const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { |
| return _get_char_ignoring_modifier(ch, key_event, control_key_state, |
| VK_CONTROL); |
| } |
| |
| // Get without Alt. |
| static __inline__ size_t _get_non_alt_char(char* const ch, |
| const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { |
| return _get_char_ignoring_modifier(ch, key_event, control_key_state, |
| VK_MENU); |
| } |
| |
| // Ignore the control key, find the character from Windows, and apply any |
| // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to |
| // *pch and returns number of bytes written. |
| static size_t _get_control_character(char* const pch, |
| const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { |
| const size_t len = _get_non_control_char(pch, key_event, |
| control_key_state); |
| |
| if ((len == 1) && _is_ctrl_pressed(control_key_state)) { |
| char ch = *pch; |
| switch (ch) { |
| case '2': |
| case '@': |
| case '`': |
| ch = '\0'; |
| break; |
| case '3': |
| case '[': |
| case '{': |
| ch = '\x1b'; |
| break; |
| case '4': |
| case '\\': |
| case '|': |
| ch = '\x1c'; |
| break; |
| case '5': |
| case ']': |
| case '}': |
| ch = '\x1d'; |
| break; |
| case '6': |
| case '^': |
| case '~': |
| ch = '\x1e'; |
| break; |
| case '7': |
| case '-': |
| case '_': |
| ch = '\x1f'; |
| break; |
| case '8': |
| ch = '\x7f'; |
| break; |
| case '/': |
| if (!_is_alt_pressed(control_key_state)) { |
| ch = '\x1f'; |
| } |
| break; |
| case '?': |
| if (!_is_alt_pressed(control_key_state)) { |
| ch = '\x7f'; |
| } |
| break; |
| } |
| *pch = ch; |
| } |
| |
| return len; |
| } |
| |
| static DWORD _normalize_altgr_control_key_state( |
| const KEY_EVENT_RECORD* const key_event) { |
| DWORD control_key_state = key_event->dwControlKeyState; |
| |
| // If we're in an AltGr situation where the AltGr key is down (depending on |
| // the keyboard layout, that might be the physical right alt key which |
| // produces a control_key_state where Right-Alt and Left-Ctrl are down) or |
| // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have |
| // a character (which indicates that there was an AltGr mapping), then act |
| // as if alt and control are not really down for the purposes of modifiers. |
| // This makes it so that if the user with, say, a German keyboard layout |
| // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just |
| // output the key and we don't see the Alt and Ctrl keys. |
| if (_is_ctrl_pressed(control_key_state) && |
| _is_alt_pressed(control_key_state) |
| && (key_event->uChar.AsciiChar != '\0')) { |
| // Try to remove as few bits as possible to improve our chances of |
| // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or |
| // Left-Alt + Right-Ctrl + AltGr. |
| if ((control_key_state & RIGHT_ALT_PRESSED) != 0) { |
| // Remove Right-Alt. |
| control_key_state &= ~RIGHT_ALT_PRESSED; |
| // If uChar is set, a Ctrl key is pressed, and Right-Alt is |
| // pressed, Left-Ctrl is almost always set, except if the user |
| // presses Right-Ctrl, then AltGr (in that specific order) for |
| // whatever reason. At any rate, make sure the bit is not set. |
| control_key_state &= ~LEFT_CTRL_PRESSED; |
| } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) { |
| // Remove Left-Alt. |
| control_key_state &= ~LEFT_ALT_PRESSED; |
| // Whichever Ctrl key is down, remove it from the state. We only |
| // remove one key, to improve our chances of detecting the |
| // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl. |
| if ((control_key_state & LEFT_CTRL_PRESSED) != 0) { |
| // Remove Left-Ctrl. |
| control_key_state &= ~LEFT_CTRL_PRESSED; |
| } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) { |
| // Remove Right-Ctrl. |
| control_key_state &= ~RIGHT_CTRL_PRESSED; |
| } |
| } |
| |
| // Note that this logic isn't 100% perfect because Windows doesn't |
| // allow us to detect all combinations because a physical AltGr key |
| // press shows up as two bits, plus some combinations are ambiguous |
| // about what is actually physically pressed. |
| } |
| |
| return control_key_state; |
| } |
| |
| // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in |
| // dwControlKeyState for the following keypad keys: period, 0-9. If we detect |
| // this scenario, set the SHIFT_PRESSED bit so we can add modifiers |
| // appropriately. |
| static DWORD _normalize_keypad_control_key_state(const WORD vk, |
| const DWORD control_key_state) { |
| if (!_is_numlock_on(control_key_state)) { |
| return control_key_state; |
| } |
| if (!_is_enhanced_key(control_key_state)) { |
| switch (vk) { |
| case VK_INSERT: // 0 |
| case VK_DELETE: // . |
| case VK_END: // 1 |
| case VK_DOWN: // 2 |
| case VK_NEXT: // 3 |
| case VK_LEFT: // 4 |
| case VK_CLEAR: // 5 |
| case VK_RIGHT: // 6 |
| case VK_HOME: // 7 |
| case VK_UP: // 8 |
| case VK_PRIOR: // 9 |
| return control_key_state | SHIFT_PRESSED; |
| } |
| } |
| |
| return control_key_state; |
| } |
| |
| static const char* _get_keypad_sequence(const DWORD control_key_state, |
| const char* const normal, const char* const shifted) { |
| if (_is_shift_pressed(control_key_state)) { |
| // Shift is pressed and NumLock is off |
| return shifted; |
| } else { |
| // Shift is not pressed and NumLock is off, or, |
| // Shift is pressed and NumLock is on, in which case we want the |
| // NumLock and Shift to neutralize each other, thus, we want the normal |
| // sequence. |
| return normal; |
| } |
| // If Shift is not pressed and NumLock is on, a different virtual key code |
| // is returned by Windows, which can be taken care of by a different case |
| // statement in _console_read(). |
| } |
| |
| // Write sequence to buf and return the number of bytes written. |
| static size_t _get_modifier_sequence(char* const buf, const WORD vk, |
| DWORD control_key_state, const char* const normal) { |
| // Copy the base sequence into buf. |
| const size_t len = strlen(normal); |
| memcpy(buf, normal, len); |
| |
| int code = 0; |
| |
| control_key_state = _normalize_keypad_control_key_state(vk, |
| control_key_state); |
| |
| if (_is_shift_pressed(control_key_state)) { |
| code |= 0x1; |
| } |
| if (_is_alt_pressed(control_key_state)) { // any alt key pressed |
| code |= 0x2; |
| } |
| if (_is_ctrl_pressed(control_key_state)) { // any control key pressed |
| code |= 0x4; |
| } |
| // If some modifier was held down, then we need to insert the modifier code |
| if (code != 0) { |
| if (len == 0) { |
| // Should be impossible because caller should pass a string of |
| // non-zero length. |
| return 0; |
| } |
| size_t index = len - 1; |
| const char lastChar = buf[index]; |
| if (lastChar != '~') { |
| buf[index++] = '1'; |
| } |
| buf[index++] = ';'; // modifier separator |
| // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control, |
| // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control |
| buf[index++] = '1' + code; |
| buf[index++] = lastChar; // move ~ (or other last char) to the end |
| return index; |
| } |
| return len; |
| } |
| |
| // Write sequence to buf and return the number of bytes written. |
| static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk, |
| const DWORD control_key_state, const char* const normal, |
| const char shifted) { |
| if (_is_shift_pressed(control_key_state)) { |
| // Shift is pressed and NumLock is off |
| if (shifted != '\0') { |
| buf[0] = shifted; |
| return sizeof(buf[0]); |
| } else { |
| return 0; |
| } |
| } else { |
| // Shift is not pressed and NumLock is off, or, |
| // Shift is pressed and NumLock is on, in which case we want the |
| // NumLock and Shift to neutralize each other, thus, we want the normal |
| // sequence. |
| return _get_modifier_sequence(buf, vk, control_key_state, normal); |
| } |
| // If Shift is not pressed and NumLock is on, a different virtual key code |
| // is returned by Windows, which can be taken care of by a different case |
| // statement in _console_read(). |
| } |
| |
| // The decimal key on the keypad produces a '.' for U.S. English and a ',' for |
| // Standard German. Figure this out at runtime so we know what to output for |
| // Shift-VK_DELETE. |
| static char _get_decimal_char() { |
| return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR); |
| } |
| |
| // Prefix the len bytes in buf with the escape character, and then return the |
| // new buffer length. |
| size_t _escape_prefix(char* const buf, const size_t len) { |
| // If nothing to prefix, don't do anything. We might be called with |
| // len == 0, if alt was held down with a dead key which produced nothing. |
| if (len == 0) { |
| return 0; |
| } |
| |
| memmove(&buf[1], buf, len); |
| buf[0] = '\x1b'; |
| return len + 1; |
| } |
| |
| // Writes to buffer buf (of length len), returning number of bytes written or |
| // -1 on error. Never returns zero because Win32 consoles are never 'closed' |
| // (as far as I can tell). |
| static int _console_read(const HANDLE console, void* buf, size_t len) { |
| for (;;) { |
| KEY_EVENT_RECORD* const key_event = _get_key_event_record(console); |
| if (key_event == NULL) { |
| return -1; |
| } |
| |
| const WORD vk = key_event->wVirtualKeyCode; |
| const CHAR ch = key_event->uChar.AsciiChar; |
| const DWORD control_key_state = _normalize_altgr_control_key_state( |
| key_event); |
| |
| // The following emulation code should write the output sequence to |
| // either seqstr or to seqbuf and seqbuflen. |
| const char* seqstr = NULL; // NULL terminated C-string |
| // Enough space for max sequence string below, plus modifiers and/or |
| // escape prefix. |
| char seqbuf[16]; |
| size_t seqbuflen = 0; // Space used in seqbuf. |
| |
| #define MATCH(vk, normal) \ |
| case (vk): \ |
| { \ |
| seqstr = (normal); \ |
| } \ |
| break; |
| |
| // Modifier keys should affect the output sequence. |
| #define MATCH_MODIFIER(vk, normal) \ |
| case (vk): \ |
| { \ |
| seqbuflen = _get_modifier_sequence(seqbuf, (vk), \ |
| control_key_state, (normal)); \ |
| } \ |
| break; |
| |
| // The shift key should affect the output sequence. |
| #define MATCH_KEYPAD(vk, normal, shifted) \ |
| case (vk): \ |
| { \ |
| seqstr = _get_keypad_sequence(control_key_state, (normal), \ |
| (shifted)); \ |
| } \ |
| break; |
| |
| // The shift key and other modifier keys should affect the output |
| // sequence. |
| #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \ |
| case (vk): \ |
| { \ |
| seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \ |
| control_key_state, (normal), (shifted)); \ |
| } \ |
| break; |
| |
| #define ESC "\x1b" |
| #define CSI ESC "[" |
| #define SS3 ESC "O" |
| |
| // Only support normal mode, not application mode. |
| |
| // Enhanced keys: |
| // * 6-pack: insert, delete, home, end, page up, page down |
| // * cursor keys: up, down, right, left |
| // * keypad: divide, enter |
| // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT, |
| // VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK |
| if (_is_enhanced_key(control_key_state)) { |
| switch (vk) { |
| case VK_RETURN: // Enter key on keypad |
| if (_is_ctrl_pressed(control_key_state)) { |
| seqstr = "\n"; |
| } else { |
| seqstr = "\r"; |
| } |
| break; |
| |
| MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up |
| MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down |
| |
| // gnome-terminal currently sends SS3 "F" and SS3 "H", but that |
| // will be fixed soon to match xterm which sends CSI "F" and |
| // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764 |
| MATCH(VK_END, CSI "F"); |
| MATCH(VK_HOME, CSI "H"); |
| |
| MATCH_MODIFIER(VK_LEFT, CSI "D"); |
| MATCH_MODIFIER(VK_UP, CSI "A"); |
| MATCH_MODIFIER(VK_RIGHT, CSI "C"); |
| MATCH_MODIFIER(VK_DOWN, CSI "B"); |
| |
| MATCH_MODIFIER(VK_INSERT, CSI "2~"); |
| MATCH_MODIFIER(VK_DELETE, CSI "3~"); |
| |
| MATCH(VK_DIVIDE, "/"); |
| } |
| } else { // Non-enhanced keys: |
| switch (vk) { |
| case VK_BACK: // backspace |
| if (_is_alt_pressed(control_key_state)) { |
| seqstr = ESC "\x7f"; |
| } else { |
| seqstr = "\x7f"; |
| } |
| break; |
| |
| case VK_TAB: |
| if (_is_shift_pressed(control_key_state)) { |
| seqstr = CSI "Z"; |
| } else { |
| seqstr = "\t"; |
| } |
| break; |
| |
| // Number 5 key in keypad when NumLock is off, or if NumLock is |
| // on and Shift is down. |
| MATCH_KEYPAD(VK_CLEAR, CSI "E", "5"); |
| |
| case VK_RETURN: // Enter key on main keyboard |
| if (_is_alt_pressed(control_key_state)) { |
| seqstr = ESC "\n"; |
| } else if (_is_ctrl_pressed(control_key_state)) { |
| seqstr = "\n"; |
| } else { |
| seqstr = "\r"; |
| } |
| break; |
| |
| // VK_ESCAPE: Don't do any special handling. The OS uses many |
| // of the sequences with Escape and many of the remaining |
| // sequences don't produce bKeyDown messages, only !bKeyDown |
| // for whatever reason. |
| |
| case VK_SPACE: |
| if (_is_alt_pressed(control_key_state)) { |
| seqstr = ESC " "; |
| } else if (_is_ctrl_pressed(control_key_state)) { |
| seqbuf[0] = '\0'; // NULL char |
| seqbuflen = 1; |
| } else { |
| seqstr = " "; |
| } |
| break; |
| |
| MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up |
| MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down |
| |
| MATCH_KEYPAD(VK_END, CSI "4~", "1"); |
| MATCH_KEYPAD(VK_HOME, CSI "1~", "7"); |
| |
| MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4'); |
| MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8'); |
| MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6'); |
| MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2'); |
| |
| MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0'); |
| MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~", |
| _get_decimal_char()); |
| |
| case 0x30: // 0 |
| case 0x31: // 1 |
| case 0x39: // 9 |
| case VK_OEM_1: // ;: |
| case VK_OEM_PLUS: // =+ |
| case VK_OEM_COMMA: // ,< |
| case VK_OEM_PERIOD: // .> |
| case VK_OEM_7: // '" |
| case VK_OEM_102: // depends on keyboard, could be <> or \| |
| case VK_OEM_2: // /? |
| case VK_OEM_3: // `~ |
| case VK_OEM_4: // [{ |
| case VK_OEM_5: // \| |
| case VK_OEM_6: // ]} |
| { |
| seqbuflen = _get_control_character(seqbuf, key_event, |
| control_key_state); |
| |
| if (_is_alt_pressed(control_key_state)) { |
| seqbuflen = _escape_prefix(seqbuf, seqbuflen); |
| } |
| } |
| break; |
| |
| case 0x32: // 2 |
| case 0x36: // 6 |
| case VK_OEM_MINUS: // -_ |
| { |
| seqbuflen = _get_control_character(seqbuf, key_event, |
| control_key_state); |
| |
| // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then |
| // prefix with escape. |
| if (_is_alt_pressed(control_key_state) && |
| !(_is_ctrl_pressed(control_key_state) && |
| !_is_shift_pressed(control_key_state))) { |
| seqbuflen = _escape_prefix(seqbuf, seqbuflen); |
| } |
| } |
| break; |
| |
| case 0x33: // 3 |
| case 0x34: // 4 |
| case 0x35: // 5 |
| case 0x37: // 7 |
| case 0x38: // 8 |
| { |
| seqbuflen = _get_control_character(seqbuf, key_event, |
| control_key_state); |
| |
| // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then |
| // prefix with escape. |
| if (_is_alt_pressed(control_key_state) && |
| !(_is_ctrl_pressed(control_key_state) && |
| !_is_shift_pressed(control_key_state))) { |
| seqbuflen = _escape_prefix(seqbuf, seqbuflen); |
| } |
| } |
| break; |
| |
| case 0x41: // a |
| case 0x42: // b |
| case 0x43: // c |
| case 0x44: // d |
| case 0x45: // e |
| case 0x46: // f |
| case 0x47: // g |
| case 0x48: // h |
| case 0x49: // i |
| case 0x4a: // j |
| case 0x4b: // k |
| case 0x4c: // l |
| case 0x4d: // m |
| case 0x4e: // n |
| case 0x4f: // o |
| case 0x50: // p |
| case 0x51: // q |
| case 0x52: // r |
| case 0x53: // s |
| case 0x54: // t |
| case 0x55: // u |
| case 0x56: // v |
| case 0x57: // w |
| case 0x58: // x |
| case 0x59: // y |
| case 0x5a: // z |
| { |
| seqbuflen = _get_non_alt_char(seqbuf, key_event, |
| control_key_state); |
| |
| // If Alt is pressed, then prefix with escape. |
| if (_is_alt_pressed(control_key_state)) { |
| seqbuflen = _escape_prefix(seqbuf, seqbuflen); |
| } |
| } |
| break; |
| |
| // These virtual key codes are generated by the keys on the |
| // keypad *when NumLock is on* and *Shift is up*. |
| MATCH(VK_NUMPAD0, "0"); |
| MATCH(VK_NUMPAD1, "1"); |
| MATCH(VK_NUMPAD2, "2"); |
| MATCH(VK_NUMPAD3, "3"); |
| MATCH(VK_NUMPAD4, "4"); |
| MATCH(VK_NUMPAD5, "5"); |
| MATCH(VK_NUMPAD6, "6"); |
| MATCH(VK_NUMPAD7, "7"); |
| MATCH(VK_NUMPAD8, "8"); |
| MATCH(VK_NUMPAD9, "9"); |
| |
| MATCH(VK_MULTIPLY, "*"); |
| MATCH(VK_ADD, "+"); |
| MATCH(VK_SUBTRACT, "-"); |
| // VK_DECIMAL is generated by the . key on the keypad *when |
| // NumLock is on* and *Shift is up* and the sequence is not |
| // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the |
| // Windows Security screen to come up). |
| case VK_DECIMAL: |
| // U.S. English uses '.', Germany German uses ','. |
| seqbuflen = _get_non_control_char(seqbuf, key_event, |
| control_key_state); |
| break; |
| |
| MATCH_MODIFIER(VK_F1, SS3 "P"); |
| MATCH_MODIFIER(VK_F2, SS3 "Q"); |
| MATCH_MODIFIER(VK_F3, SS3 "R"); |
| MATCH_MODIFIER(VK_F4, SS3 "S"); |
| MATCH_MODIFIER(VK_F5, CSI "15~"); |
| MATCH_MODIFIER(VK_F6, CSI "17~"); |
| MATCH_MODIFIER(VK_F7, CSI "18~"); |
| MATCH_MODIFIER(VK_F8, CSI "19~"); |
| MATCH_MODIFIER(VK_F9, CSI "20~"); |
| MATCH_MODIFIER(VK_F10, CSI "21~"); |
| MATCH_MODIFIER(VK_F11, CSI "23~"); |
| MATCH_MODIFIER(VK_F12, CSI "24~"); |
| |
| MATCH_MODIFIER(VK_F13, CSI "25~"); |
| MATCH_MODIFIER(VK_F14, CSI "26~"); |
| MATCH_MODIFIER(VK_F15, CSI "28~"); |
| MATCH_MODIFIER(VK_F16, CSI "29~"); |
| MATCH_MODIFIER(VK_F17, CSI "31~"); |
| MATCH_MODIFIER(VK_F18, CSI "32~"); |
| MATCH_MODIFIER(VK_F19, CSI "33~"); |
| MATCH_MODIFIER(VK_F20, CSI "34~"); |
| |
| // MATCH_MODIFIER(VK_F21, ???); |
| // MATCH_MODIFIER(VK_F22, ???); |
| // MATCH_MODIFIER(VK_F23, ???); |
| // MATCH_MODIFIER(VK_F24, ???); |
| } |
| } |
| |
| #undef MATCH |
| #undef MATCH_MODIFIER |
| #undef MATCH_KEYPAD |
| #undef MATCH_MODIFIER_KEYPAD |
| #undef ESC |
| #undef CSI |
| #undef SS3 |
| |
| const char* out; |
| size_t outlen; |
| |
| // Check for output in any of: |
| // * seqstr is set (and strlen can be used to determine the length). |
| // * seqbuf and seqbuflen are set |
| // Fallback to ch from Windows. |
| if (seqstr != NULL) { |
| out = seqstr; |
| outlen = strlen(seqstr); |
| } else if (seqbuflen > 0) { |
| out = seqbuf; |
| outlen = seqbuflen; |
| } else if (ch != '\0') { |
| // Use whatever Windows told us it is. |
| seqbuf[0] = ch; |
| seqbuflen = 1; |
| out = seqbuf; |
| outlen = seqbuflen; |
| } else { |
| // No special handling for the virtual key code and Windows isn't |
| // telling us a character code, then we don't know how to translate |
| // the key press. |
| // |
| // Consume the input and 'continue' to cause us to get a new key |
| // event. |
| D("_console_read: unknown virtual key code: %d, enhanced: %s\n", |
| vk, _is_enhanced_key(control_key_state) ? "true" : "false"); |
| key_event->wRepeatCount = 0; |
| continue; |
| } |
| |
| int bytesRead = 0; |
| |
| // put output wRepeatCount times into buf/len |
| while (key_event->wRepeatCount > 0) { |
| if (len >= outlen) { |
| // Write to buf/len |
| memcpy(buf, out, outlen); |
| buf = (void*)((char*)buf + outlen); |
| len -= outlen; |
| bytesRead += outlen; |
| |
| // consume the input |
| --key_event->wRepeatCount; |
| } else { |
| // Not enough space, so just leave it in _win32_input_record |
| // for a subsequent retrieval. |
| if (bytesRead == 0) { |
| // We didn't write anything because there wasn't enough |
| // space to even write one sequence. This should never |
| // happen if the caller uses sensible buffer sizes |
| // (i.e. >= maximum sequence length which is probably a |
| // few bytes long). |
| D("_console_read: no buffer space to write one sequence; " |
| "buffer: %ld, sequence: %ld\n", (long)len, |
| (long)outlen); |
| errno = ENOMEM; |
| return -1; |
| } else { |
| // Stop trying to write to buf/len, just return whatever |
| // we wrote so far. |
| break; |
| } |
| } |
| } |
| |
| return bytesRead; |
| } |
| } |
| |
| static DWORD _old_console_mode; // previous GetConsoleMode() result |
| static HANDLE _console_handle; // when set, console mode should be restored |
| |
| void stdin_raw_init(const int fd) { |
| if (STDIN_FILENO == fd) { |
| const HANDLE in = GetStdHandle(STD_INPUT_HANDLE); |
| if ((in == INVALID_HANDLE_VALUE) || (in == NULL)) { |
| return; |
| } |
| |
| if (GetFileType(in) != FILE_TYPE_CHAR) { |
| // stdin might be a file or pipe. |
| return; |
| } |
| |
| if (!GetConsoleMode(in, &_old_console_mode)) { |
| // If GetConsoleMode() fails, stdin is probably is not a console. |
| return; |
| } |
| |
| // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of |
| // calling the process Ctrl-C routine (configured by |
| // SetConsoleCtrlHandler()). |
| // Disable ENABLE_LINE_INPUT so that input is immediately sent. |
| // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this |
| // flag also seems necessary to have proper line-ending processing. |
| if (!SetConsoleMode(in, _old_console_mode & ~(ENABLE_PROCESSED_INPUT | |
| ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT))) { |
| // This really should not fail. |
| D("stdin_raw_init: SetConsoleMode() failure, error %ld\n", |
| GetLastError()); |
| } |
| |
| // Once this is set, it means that stdin has been configured for |
| // reading from and that the old console mode should be restored later. |
| _console_handle = in; |
| |
| // Note that we don't need to configure C Runtime line-ending |
| // translation because _console_read() does not call the C Runtime to |
| // read from the console. |
| } |
| } |
| |
| void stdin_raw_restore(const int fd) { |
| if (STDIN_FILENO == fd) { |
| if (_console_handle != NULL) { |
| const HANDLE in = _console_handle; |
| _console_handle = NULL; // clear state |
| |
| if (!SetConsoleMode(in, _old_console_mode)) { |
| // This really should not fail. |
| D("stdin_raw_restore: SetConsoleMode() failure, error %ld\n", |
| GetLastError()); |
| } |
| } |
| } |
| } |
| |
| // Called by 'adb shell' command to read from stdin. |
| int unix_read(int fd, void* buf, size_t len) { |
| if ((fd == STDIN_FILENO) && (_console_handle != NULL)) { |
| // If it is a request to read from stdin, and stdin_raw_init() has been |
| // called, and it successfully configured the console, then read from |
| // the console using Win32 console APIs and partially emulate a unix |
| // terminal. |
| return _console_read(_console_handle, buf, len); |
| } else { |
| // Just call into C Runtime which can read from pipes/files and which |
| // can do LF/CR translation. |
| #undef read |
| return read(fd, buf, len); |
| } |
| } |