blob: 3900f7246eec1adcc9c65e80141f7cf15457a65a [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "first_stage_mount.h"
#include <stdlib.h>
#include <sys/mount.h>
#include <unistd.h>
#include <chrono>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include <android-base/chrono_utils.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include <fs_avb/fs_avb.h>
#include <fs_mgr.h>
#include <fs_mgr_dm_linear.h>
#include <fs_mgr_overlayfs.h>
#include <libgsi/libgsi.h>
#include <liblp/liblp.h>
#include "devices.h"
#include "switch_root.h"
#include "uevent.h"
#include "uevent_listener.h"
#include "util.h"
using android::base::ReadFileToString;
using android::base::Split;
using android::base::Timer;
using android::fs_mgr::AvbHandle;
using android::fs_mgr::AvbHandleStatus;
using android::fs_mgr::AvbHashtreeResult;
using android::fs_mgr::AvbUniquePtr;
using android::fs_mgr::BuildGsiSystemFstabEntry;
using android::fs_mgr::Fstab;
using android::fs_mgr::FstabEntry;
using android::fs_mgr::ReadDefaultFstab;
using android::fs_mgr::ReadFstabFromDt;
using namespace std::literals;
namespace android {
namespace init {
// Class Declarations
// ------------------
class FirstStageMount {
public:
FirstStageMount(Fstab fstab);
virtual ~FirstStageMount() = default;
// The factory method to create either FirstStageMountVBootV1 or FirstStageMountVBootV2
// based on device tree configurations.
static std::unique_ptr<FirstStageMount> Create();
bool DoFirstStageMount(); // Mounts fstab entries read from device tree.
bool InitDevices();
protected:
ListenerAction HandleBlockDevice(const std::string& name, const Uevent&);
bool InitRequiredDevices();
bool InitMappedDevice(const std::string& verity_device);
bool InitDeviceMapper();
bool CreateLogicalPartitions();
bool MountPartition(const Fstab::iterator& begin, bool erase_same_mounts,
Fstab::iterator* end = nullptr);
bool MountPartitions();
bool TrySwitchSystemAsRoot();
bool TrySkipMountingPartitions();
bool IsDmLinearEnabled();
bool GetDmLinearMetadataDevice();
bool InitDmLinearBackingDevices(const android::fs_mgr::LpMetadata& metadata);
void UseGsiIfPresent();
ListenerAction UeventCallback(const Uevent& uevent);
// Pure virtual functions.
virtual bool GetDmVerityDevices() = 0;
virtual bool SetUpDmVerity(FstabEntry* fstab_entry) = 0;
bool need_dm_verity_;
bool gsi_not_on_userdata_ = false;
Fstab fstab_;
std::string lp_metadata_partition_;
std::set<std::string> required_devices_partition_names_;
std::string super_partition_name_;
std::unique_ptr<DeviceHandler> device_handler_;
UeventListener uevent_listener_;
};
class FirstStageMountVBootV1 : public FirstStageMount {
public:
FirstStageMountVBootV1(Fstab fstab) : FirstStageMount(std::move(fstab)) {}
~FirstStageMountVBootV1() override = default;
protected:
bool GetDmVerityDevices() override;
bool SetUpDmVerity(FstabEntry* fstab_entry) override;
};
class FirstStageMountVBootV2 : public FirstStageMount {
public:
friend void SetInitAvbVersionInRecovery();
FirstStageMountVBootV2(Fstab fstab);
~FirstStageMountVBootV2() override = default;
protected:
bool GetDmVerityDevices() override;
bool SetUpDmVerity(FstabEntry* fstab_entry) override;
bool InitAvbHandle();
std::vector<std::string> vbmeta_partitions_;
AvbUniquePtr avb_handle_;
};
// Static Functions
// ----------------
static inline bool IsDtVbmetaCompatible(const Fstab& fstab) {
if (std::any_of(fstab.begin(), fstab.end(),
[](const auto& entry) { return entry.fs_mgr_flags.avb; })) {
return true;
}
return is_android_dt_value_expected("vbmeta/compatible", "android,vbmeta");
}
static Fstab ReadFirstStageFstab() {
Fstab fstab;
if (!ReadFstabFromDt(&fstab)) {
if (ReadDefaultFstab(&fstab)) {
fstab.erase(std::remove_if(fstab.begin(), fstab.end(),
[](const auto& entry) {
return !entry.fs_mgr_flags.first_stage_mount;
}),
fstab.end());
} else {
LOG(INFO) << "Failed to fstab for first stage mount";
}
}
return fstab;
}
static bool GetRootEntry(FstabEntry* root_entry) {
Fstab proc_mounts;
if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) {
LOG(ERROR) << "Could not read /proc/mounts and /system not in fstab, /system will not be "
"available for overlayfs";
return false;
}
auto entry = std::find_if(proc_mounts.begin(), proc_mounts.end(), [](const auto& entry) {
return entry.mount_point == "/" && entry.fs_type != "rootfs";
});
if (entry == proc_mounts.end()) {
LOG(ERROR) << "Could not get mount point for '/' in /proc/mounts, /system will not be "
"available for overlayfs";
return false;
}
*root_entry = std::move(*entry);
// We don't know if we're avb or not, so we query device mapper as if we are avb. If we get a
// success, then mark as avb, otherwise default to verify.
auto& dm = android::dm::DeviceMapper::Instance();
if (dm.GetState("vroot") != android::dm::DmDeviceState::INVALID) {
root_entry->fs_mgr_flags.avb = true;
} else {
root_entry->fs_mgr_flags.verify = true;
}
return true;
}
static bool IsStandaloneImageRollback(const AvbHandle& builtin_vbmeta,
const AvbHandle& standalone_vbmeta,
const FstabEntry& fstab_entry) {
std::string old_spl = builtin_vbmeta.GetSecurityPatchLevel(fstab_entry);
std::string new_spl = standalone_vbmeta.GetSecurityPatchLevel(fstab_entry);
bool rollbacked = false;
if (old_spl.empty() || new_spl.empty() || new_spl < old_spl) {
rollbacked = true;
}
if (rollbacked) {
LOG(ERROR) << "Image rollback detected for " << fstab_entry.mount_point
<< ", SPL switches from '" << old_spl << "' to '" << new_spl << "'";
if (AvbHandle::IsDeviceUnlocked()) {
LOG(INFO) << "Allowing rollbacked standalone image when the device is unlocked";
return false;
}
}
return rollbacked;
}
// Class Definitions
// -----------------
FirstStageMount::FirstStageMount(Fstab fstab)
: need_dm_verity_(false), fstab_(std::move(fstab)), uevent_listener_(16 * 1024 * 1024) {
auto boot_devices = android::fs_mgr::GetBootDevices();
device_handler_ = std::make_unique<DeviceHandler>(
std::vector<Permissions>{}, std::vector<SysfsPermissions>{}, std::vector<Subsystem>{},
std::move(boot_devices), false);
super_partition_name_ = fs_mgr_get_super_partition_name();
}
std::unique_ptr<FirstStageMount> FirstStageMount::Create() {
auto fstab = ReadFirstStageFstab();
if (IsDtVbmetaCompatible(fstab)) {
return std::make_unique<FirstStageMountVBootV2>(std::move(fstab));
} else {
return std::make_unique<FirstStageMountVBootV1>(std::move(fstab));
}
}
bool FirstStageMount::DoFirstStageMount() {
if (!IsDmLinearEnabled() && fstab_.empty()) {
// Nothing to mount.
LOG(INFO) << "First stage mount skipped (missing/incompatible/empty fstab in device tree)";
return true;
}
if (!InitDevices()) return false;
if (!CreateLogicalPartitions()) return false;
if (!MountPartitions()) return false;
return true;
}
bool FirstStageMount::InitDevices() {
return GetDmLinearMetadataDevice() && GetDmVerityDevices() && InitRequiredDevices();
}
bool FirstStageMount::IsDmLinearEnabled() {
for (const auto& entry : fstab_) {
if (entry.fs_mgr_flags.logical) return true;
}
return false;
}
bool FirstStageMount::GetDmLinearMetadataDevice() {
// Add any additional devices required for dm-linear mappings.
if (!IsDmLinearEnabled()) {
return true;
}
required_devices_partition_names_.emplace(super_partition_name_);
return true;
}
// Creates devices with uevent->partition_name matching one in the member variable
// required_devices_partition_names_. Found partitions will then be removed from it
// for the subsequent member function to check which devices are NOT created.
bool FirstStageMount::InitRequiredDevices() {
if (required_devices_partition_names_.empty()) {
return true;
}
if (IsDmLinearEnabled() || need_dm_verity_) {
if (!InitDeviceMapper()) {
return false;
}
}
auto uevent_callback = [this](const Uevent& uevent) { return UeventCallback(uevent); };
uevent_listener_.RegenerateUevents(uevent_callback);
// UeventCallback() will remove found partitions from required_devices_partition_names_.
// So if it isn't empty here, it means some partitions are not found.
if (!required_devices_partition_names_.empty()) {
LOG(INFO) << __PRETTY_FUNCTION__
<< ": partition(s) not found in /sys, waiting for their uevent(s): "
<< android::base::Join(required_devices_partition_names_, ", ");
Timer t;
uevent_listener_.Poll(uevent_callback, 10s);
LOG(INFO) << "Wait for partitions returned after " << t;
}
if (!required_devices_partition_names_.empty()) {
LOG(ERROR) << __PRETTY_FUNCTION__ << ": partition(s) not found after polling timeout: "
<< android::base::Join(required_devices_partition_names_, ", ");
return false;
}
return true;
}
bool FirstStageMount::InitDeviceMapper() {
const std::string dm_path = "/devices/virtual/misc/device-mapper";
bool found = false;
auto dm_callback = [this, &dm_path, &found](const Uevent& uevent) {
if (uevent.path == dm_path) {
device_handler_->HandleUevent(uevent);
found = true;
return ListenerAction::kStop;
}
return ListenerAction::kContinue;
};
uevent_listener_.RegenerateUeventsForPath("/sys" + dm_path, dm_callback);
if (!found) {
LOG(INFO) << "device-mapper device not found in /sys, waiting for its uevent";
Timer t;
uevent_listener_.Poll(dm_callback, 10s);
LOG(INFO) << "Wait for device-mapper returned after " << t;
}
if (!found) {
LOG(ERROR) << "device-mapper device not found after polling timeout";
return false;
}
return true;
}
bool FirstStageMount::InitDmLinearBackingDevices(const android::fs_mgr::LpMetadata& metadata) {
auto partition_names = android::fs_mgr::GetBlockDevicePartitionNames(metadata);
for (const auto& partition_name : partition_names) {
// The super partition was found in the earlier pass.
if (partition_name == super_partition_name_) {
continue;
}
required_devices_partition_names_.emplace(partition_name);
}
if (required_devices_partition_names_.empty()) {
return true;
}
auto uevent_callback = [this](const Uevent& uevent) { return UeventCallback(uevent); };
uevent_listener_.RegenerateUevents(uevent_callback);
if (!required_devices_partition_names_.empty()) {
LOG(ERROR) << __PRETTY_FUNCTION__ << ": partition(s) not found after polling timeout: "
<< android::base::Join(required_devices_partition_names_, ", ");
return false;
}
return true;
}
bool FirstStageMount::CreateLogicalPartitions() {
if (!IsDmLinearEnabled()) {
return true;
}
if (lp_metadata_partition_.empty()) {
LOG(ERROR) << "Could not locate logical partition tables in partition "
<< super_partition_name_;
return false;
}
auto metadata = android::fs_mgr::ReadCurrentMetadata(lp_metadata_partition_);
if (!metadata) {
LOG(ERROR) << "Could not read logical partition metadata from " << lp_metadata_partition_;
return false;
}
if (!InitDmLinearBackingDevices(*metadata.get())) {
return false;
}
return android::fs_mgr::CreateLogicalPartitions(*metadata.get(), lp_metadata_partition_);
}
ListenerAction FirstStageMount::HandleBlockDevice(const std::string& name, const Uevent& uevent) {
// Matches partition name to create device nodes.
// Both required_devices_partition_names_ and uevent->partition_name have A/B
// suffix when A/B is used.
auto iter = required_devices_partition_names_.find(name);
if (iter != required_devices_partition_names_.end()) {
LOG(VERBOSE) << __PRETTY_FUNCTION__ << ": found partition: " << *iter;
if (IsDmLinearEnabled() && name == super_partition_name_) {
std::vector<std::string> links = device_handler_->GetBlockDeviceSymlinks(uevent);
lp_metadata_partition_ = links[0];
}
required_devices_partition_names_.erase(iter);
device_handler_->HandleUevent(uevent);
if (required_devices_partition_names_.empty()) {
return ListenerAction::kStop;
} else {
return ListenerAction::kContinue;
}
}
return ListenerAction::kContinue;
}
ListenerAction FirstStageMount::UeventCallback(const Uevent& uevent) {
// Ignores everything that is not a block device.
if (uevent.subsystem != "block") {
return ListenerAction::kContinue;
}
if (!uevent.partition_name.empty()) {
return HandleBlockDevice(uevent.partition_name, uevent);
} else {
size_t base_idx = uevent.path.rfind('/');
if (base_idx != std::string::npos) {
return HandleBlockDevice(uevent.path.substr(base_idx + 1), uevent);
}
}
// Not found a partition or find an unneeded partition, continue to find others.
return ListenerAction::kContinue;
}
// Creates "/dev/block/dm-XX" for dm-verity by running coldboot on /sys/block/dm-XX.
bool FirstStageMount::InitMappedDevice(const std::string& dm_device) {
const std::string device_name(basename(dm_device.c_str()));
const std::string syspath = "/sys/block/" + device_name;
bool found = false;
auto verity_callback = [&device_name, &dm_device, this, &found](const Uevent& uevent) {
if (uevent.device_name == device_name) {
LOG(VERBOSE) << "Creating device-mapper device : " << dm_device;
device_handler_->HandleUevent(uevent);
found = true;
return ListenerAction::kStop;
}
return ListenerAction::kContinue;
};
uevent_listener_.RegenerateUeventsForPath(syspath, verity_callback);
if (!found) {
LOG(INFO) << "dm device '" << dm_device << "' not found in /sys, waiting for its uevent";
Timer t;
uevent_listener_.Poll(verity_callback, 10s);
LOG(INFO) << "wait for dm device '" << dm_device << "' returned after " << t;
}
if (!found) {
LOG(ERROR) << "dm device '" << dm_device << "' not found after polling timeout";
return false;
}
return true;
}
bool FirstStageMount::MountPartition(const Fstab::iterator& begin, bool erase_same_mounts,
Fstab::iterator* end) {
// Sets end to begin + 1, so we can just return on failure below.
if (end) {
*end = begin + 1;
}
if (begin->fs_mgr_flags.logical) {
if (!fs_mgr_update_logical_partition(&(*begin))) {
return false;
}
if (!InitMappedDevice(begin->blk_device)) {
return false;
}
}
if (!SetUpDmVerity(&(*begin))) {
PLOG(ERROR) << "Failed to setup verity for '" << begin->mount_point << "'";
return false;
}
bool mounted = (fs_mgr_do_mount_one(*begin) == 0);
// Try other mounts with the same mount point.
Fstab::iterator current = begin + 1;
for (; current != fstab_.end() && current->mount_point == begin->mount_point; current++) {
if (!mounted) {
// blk_device is already updated to /dev/dm-<N> by SetUpDmVerity() above.
// Copy it from the begin iterator.
current->blk_device = begin->blk_device;
mounted = (fs_mgr_do_mount_one(*current) == 0);
}
}
if (erase_same_mounts) {
current = fstab_.erase(begin, current);
}
if (end) {
*end = current;
}
return mounted;
}
// If system is in the fstab then we're not a system-as-root device, and in
// this case, we mount system first then pivot to it. From that point on,
// we are effectively identical to a system-as-root device.
bool FirstStageMount::TrySwitchSystemAsRoot() {
auto metadata_partition = std::find_if(fstab_.begin(), fstab_.end(), [](const auto& entry) {
return entry.mount_point == "/metadata";
});
if (metadata_partition != fstab_.end()) {
if (MountPartition(metadata_partition, true /* erase_same_mounts */)) {
UseGsiIfPresent();
}
}
auto system_partition = std::find_if(fstab_.begin(), fstab_.end(), [](const auto& entry) {
return entry.mount_point == "/system";
});
if (system_partition == fstab_.end()) return true;
if (MountPartition(system_partition, false /* erase_same_mounts */)) {
if (gsi_not_on_userdata_ && fs_mgr_verity_is_check_at_most_once(*system_partition)) {
LOG(ERROR) << "check_most_at_once forbidden on external media";
return false;
}
SwitchRoot("/system");
} else {
PLOG(ERROR) << "Failed to mount /system";
return false;
}
return true;
}
// For GSI to skip mounting /product and /product_services, until there are
// well-defined interfaces between them and /system. Otherwise, the GSI flashed
// on /system might not be able to work with /product and /product_services.
// When they're skipped here, /system/product and /system/product_services in
// GSI will be used.
bool FirstStageMount::TrySkipMountingPartitions() {
constexpr const char kSkipMountConfig[] = "/system/etc/init/config/skip_mount.cfg";
std::string skip_config;
if (!ReadFileToString(kSkipMountConfig, &skip_config)) {
return true;
}
for (const auto& skip_mount_point : Split(skip_config, "\n")) {
if (skip_mount_point.empty()) {
continue;
}
auto it = std::remove_if(fstab_.begin(), fstab_.end(),
[&skip_mount_point](const auto& entry) {
return entry.mount_point == skip_mount_point;
});
fstab_.erase(it, fstab_.end());
LOG(INFO) << "Skip mounting partition: " << skip_mount_point;
}
return true;
}
bool FirstStageMount::MountPartitions() {
if (!TrySwitchSystemAsRoot()) return false;
if (!TrySkipMountingPartitions()) return false;
for (auto current = fstab_.begin(); current != fstab_.end();) {
// We've already mounted /system above.
if (current->mount_point == "/system") {
++current;
continue;
}
Fstab::iterator end;
if (!MountPartition(current, false /* erase_same_mounts */, &end)) {
if (current->fs_mgr_flags.no_fail) {
LOG(INFO) << "Failed to mount " << current->mount_point
<< ", ignoring mount for no_fail partition";
} else if (current->fs_mgr_flags.formattable) {
LOG(INFO) << "Failed to mount " << current->mount_point
<< ", ignoring mount for formattable partition";
} else {
PLOG(ERROR) << "Failed to mount " << current->mount_point;
return false;
}
}
current = end;
}
// If we don't see /system or / in the fstab, then we need to create an root entry for
// overlayfs.
if (!GetEntryForMountPoint(&fstab_, "/system") && !GetEntryForMountPoint(&fstab_, "/")) {
FstabEntry root_entry;
if (GetRootEntry(&root_entry)) {
fstab_.emplace_back(std::move(root_entry));
}
}
// heads up for instantiating required device(s) for overlayfs logic
const auto devices = fs_mgr_overlayfs_required_devices(&fstab_);
for (auto const& device : devices) {
if (android::base::StartsWith(device, "/dev/block/by-name/")) {
required_devices_partition_names_.emplace(basename(device.c_str()));
auto uevent_callback = [this](const Uevent& uevent) { return UeventCallback(uevent); };
uevent_listener_.RegenerateUevents(uevent_callback);
if (!required_devices_partition_names_.empty()) {
uevent_listener_.Poll(uevent_callback, 10s);
if (!required_devices_partition_names_.empty()) {
LOG(ERROR) << __PRETTY_FUNCTION__
<< ": partition(s) not found after polling timeout: "
<< android::base::Join(required_devices_partition_names_, ", ");
}
}
} else {
InitMappedDevice(device);
}
}
fs_mgr_overlayfs_mount_all(&fstab_);
return true;
}
void FirstStageMount::UseGsiIfPresent() {
std::string metadata_file, error;
if (!android::gsi::CanBootIntoGsi(&metadata_file, &error)) {
LOG(INFO) << "GSI " << error << ", proceeding with normal boot";
return;
}
auto metadata = android::fs_mgr::ReadFromImageFile(metadata_file.c_str());
if (!metadata) {
LOG(ERROR) << "GSI partition layout could not be read";
return;
}
if (!InitDmLinearBackingDevices(*metadata.get())) {
return;
}
// Device-mapper might not be ready if the device doesn't use DAP or verity
// (for example, hikey).
if (access("/dev/device-mapper", F_OK) && !InitDeviceMapper()) {
return;
}
// Find the name of the super partition for the GSI. It will either be
// "userdata", or a block device such as an sdcard. There are no by-name
// partitions other than userdata that we support installing GSIs to.
auto super = GetMetadataSuperBlockDevice(*metadata.get());
std::string super_name = android::fs_mgr::GetBlockDevicePartitionName(*super);
std::string super_path;
if (super_name == "userdata") {
super_path = "/dev/block/by-name/" + super_name;
} else {
super_path = "/dev/block/" + super_name;
}
if (!android::fs_mgr::CreateLogicalPartitions(*metadata.get(), super_path)) {
LOG(ERROR) << "GSI partition layout could not be instantiated";
return;
}
if (!android::gsi::MarkSystemAsGsi()) {
PLOG(ERROR) << "GSI indicator file could not be written";
return;
}
// Replace the existing system fstab entry.
auto system_partition = std::find_if(fstab_.begin(), fstab_.end(), [](const auto& entry) {
return entry.mount_point == "/system";
});
if (system_partition != fstab_.end()) {
fstab_.erase(system_partition);
}
fstab_.emplace_back(BuildGsiSystemFstabEntry());
gsi_not_on_userdata_ = (super_name != "userdata");
}
bool FirstStageMountVBootV1::GetDmVerityDevices() {
std::string verity_loc_device;
need_dm_verity_ = false;
for (const auto& fstab_entry : fstab_) {
// Don't allow verifyatboot in the first stage.
if (fstab_entry.fs_mgr_flags.verify_at_boot) {
LOG(ERROR) << "Partitions can't be verified at boot";
return false;
}
// Checks for verified partitions.
if (fstab_entry.fs_mgr_flags.verify) {
need_dm_verity_ = true;
}
// Checks if verity metadata is on a separate partition. Note that it is
// not partition specific, so there must be only one additional partition
// that carries verity state.
if (!fstab_entry.verity_loc.empty()) {
if (verity_loc_device.empty()) {
verity_loc_device = fstab_entry.verity_loc;
} else if (verity_loc_device != fstab_entry.verity_loc) {
LOG(ERROR) << "More than one verity_loc found: " << verity_loc_device << ", "
<< fstab_entry.verity_loc;
return false;
}
}
}
// Includes the partition names of fstab records and verity_loc_device (if any).
// Notes that fstab_rec->blk_device has A/B suffix updated by fs_mgr when A/B is used.
for (const auto& fstab_entry : fstab_) {
if (!fstab_entry.fs_mgr_flags.logical) {
required_devices_partition_names_.emplace(basename(fstab_entry.blk_device.c_str()));
}
}
if (!verity_loc_device.empty()) {
required_devices_partition_names_.emplace(basename(verity_loc_device.c_str()));
}
return true;
}
bool FirstStageMountVBootV1::SetUpDmVerity(FstabEntry* fstab_entry) {
if (fstab_entry->fs_mgr_flags.verify) {
int ret = fs_mgr_setup_verity(fstab_entry, false /* wait_for_verity_dev */);
switch (ret) {
case FS_MGR_SETUP_VERITY_SKIPPED:
case FS_MGR_SETUP_VERITY_DISABLED:
LOG(INFO) << "Verity disabled/skipped for '" << fstab_entry->mount_point << "'";
return true;
case FS_MGR_SETUP_VERITY_SUCCESS:
// The exact block device name (fstab_rec->blk_device) is changed to
// "/dev/block/dm-XX". Needs to create it because ueventd isn't started in init
// first stage.
return InitMappedDevice(fstab_entry->blk_device);
default:
return false;
}
}
return true; // Returns true to mount the partition.
}
// First retrieve any vbmeta partitions from device tree (legacy) then read through the fstab
// for any further vbmeta partitions.
FirstStageMountVBootV2::FirstStageMountVBootV2(Fstab fstab)
: FirstStageMount(std::move(fstab)), avb_handle_(nullptr) {
std::string device_tree_vbmeta_parts;
read_android_dt_file("vbmeta/parts", &device_tree_vbmeta_parts);
for (auto&& partition : Split(device_tree_vbmeta_parts, ",")) {
if (!partition.empty()) {
vbmeta_partitions_.emplace_back(std::move(partition));
}
}
for (const auto& entry : fstab_) {
if (!entry.vbmeta_partition.empty()) {
vbmeta_partitions_.emplace_back(entry.vbmeta_partition);
}
}
if (vbmeta_partitions_.empty()) {
LOG(ERROR) << "Failed to read vbmeta partitions.";
}
}
bool FirstStageMountVBootV2::GetDmVerityDevices() {
need_dm_verity_ = false;
std::set<std::string> logical_partitions;
// fstab_rec->blk_device has A/B suffix.
for (const auto& fstab_entry : fstab_) {
if (fstab_entry.fs_mgr_flags.avb) {
need_dm_verity_ = true;
}
if (fstab_entry.fs_mgr_flags.logical) {
// Don't try to find logical partitions via uevent regeneration.
logical_partitions.emplace(basename(fstab_entry.blk_device.c_str()));
} else {
required_devices_partition_names_.emplace(basename(fstab_entry.blk_device.c_str()));
}
}
// Any partitions needed for verifying the partitions used in first stage mount, e.g. vbmeta
// must be provided as vbmeta_partitions.
if (need_dm_verity_) {
if (vbmeta_partitions_.empty()) {
LOG(ERROR) << "Missing vbmeta partitions";
return false;
}
std::string ab_suffix = fs_mgr_get_slot_suffix();
for (const auto& partition : vbmeta_partitions_) {
std::string partition_name = partition + ab_suffix;
if (logical_partitions.count(partition_name)) {
continue;
}
// required_devices_partition_names_ is of type std::set so it's not an issue
// to emplace a partition twice. e.g., /vendor might be in both places:
// - device_tree_vbmeta_parts_ = "vbmeta,boot,system,vendor"
// - mount_fstab_recs_: /vendor_a
required_devices_partition_names_.emplace(partition_name);
}
}
return true;
}
bool FirstStageMountVBootV2::SetUpDmVerity(FstabEntry* fstab_entry) {
AvbHashtreeResult hashtree_result;
// It's possible for a fstab_entry to have both avb_keys and avb flag.
// In this case, try avb_keys first, then fallback to avb flag.
if (!fstab_entry->avb_keys.empty()) {
if (!InitAvbHandle()) return false;
// Checks if hashtree should be disabled from the top-level /vbmeta.
if (avb_handle_->status() == AvbHandleStatus::kHashtreeDisabled ||
avb_handle_->status() == AvbHandleStatus::kVerificationDisabled) {
LOG(ERROR) << "Top-level vbmeta is disabled, skip Hashtree setup for "
<< fstab_entry->mount_point;
return true; // Returns true to mount the partition directly.
} else {
auto avb_standalone_handle = AvbHandle::LoadAndVerifyVbmeta(*fstab_entry);
if (!avb_standalone_handle) {
LOG(ERROR) << "Failed to load offline vbmeta for " << fstab_entry->mount_point;
// Fallbacks to built-in hashtree if fs_mgr_flags.avb is set.
if (!fstab_entry->fs_mgr_flags.avb) return false;
LOG(INFO) << "Fallback to built-in hashtree for " << fstab_entry->mount_point;
hashtree_result =
avb_handle_->SetUpAvbHashtree(fstab_entry, false /* wait_for_verity_dev */);
} else {
// Sets up hashtree via the standalone handle.
if (IsStandaloneImageRollback(*avb_handle_, *avb_standalone_handle, *fstab_entry)) {
return false;
}
hashtree_result = avb_standalone_handle->SetUpAvbHashtree(
fstab_entry, false /* wait_for_verity_dev */);
}
}
} else if (fstab_entry->fs_mgr_flags.avb) {
if (!InitAvbHandle()) return false;
hashtree_result =
avb_handle_->SetUpAvbHashtree(fstab_entry, false /* wait_for_verity_dev */);
} else {
return true; // No need AVB, returns true to mount the partition directly.
}
switch (hashtree_result) {
case AvbHashtreeResult::kDisabled:
return true; // Returns true to mount the partition.
case AvbHashtreeResult::kSuccess:
// The exact block device name (fstab_rec->blk_device) is changed to
// "/dev/block/dm-XX". Needs to create it because ueventd isn't started in init
// first stage.
return InitMappedDevice(fstab_entry->blk_device);
default:
return false;
}
}
bool FirstStageMountVBootV2::InitAvbHandle() {
if (avb_handle_) return true; // Returns true if the handle is already initialized.
avb_handle_ = AvbHandle::Open();
if (!avb_handle_) {
PLOG(ERROR) << "Failed to open AvbHandle";
return false;
}
// Sets INIT_AVB_VERSION here for init to set ro.boot.avb_version in the second stage.
setenv("INIT_AVB_VERSION", avb_handle_->avb_version().c_str(), 1);
return true;
}
// Public functions
// ----------------
// Mounts partitions specified by fstab in device tree.
bool DoFirstStageMount() {
// Skips first stage mount if we're in recovery mode.
if (IsRecoveryMode()) {
LOG(INFO) << "First stage mount skipped (recovery mode)";
return true;
}
std::unique_ptr<FirstStageMount> handle = FirstStageMount::Create();
if (!handle) {
LOG(ERROR) << "Failed to create FirstStageMount";
return false;
}
return handle->DoFirstStageMount();
}
void SetInitAvbVersionInRecovery() {
if (!IsRecoveryMode()) {
LOG(INFO) << "Skipped setting INIT_AVB_VERSION (not in recovery mode)";
return;
}
auto fstab = ReadFirstStageFstab();
if (!IsDtVbmetaCompatible(fstab)) {
LOG(INFO) << "Skipped setting INIT_AVB_VERSION (not vbmeta compatible)";
return;
}
// Initializes required devices for the subsequent AvbHandle::Open()
// to verify AVB metadata on all partitions in the verified chain.
// We only set INIT_AVB_VERSION when the AVB verification succeeds, i.e., the
// Open() function returns a valid handle.
// We don't need to mount partitions here in recovery mode.
FirstStageMountVBootV2 avb_first_mount(std::move(fstab));
if (!avb_first_mount.InitDevices()) {
LOG(ERROR) << "Failed to init devices for INIT_AVB_VERSION";
return;
}
AvbUniquePtr avb_handle = AvbHandle::Open();
if (!avb_handle) {
PLOG(ERROR) << "Failed to open AvbHandle for INIT_AVB_VERSION";
return;
}
setenv("INIT_AVB_VERSION", avb_handle->avb_version().c_str(), 1);
}
} // namespace init
} // namespace android