blob: 68f2d9e8a5ebb3b0471685b3358e30108860a5f2 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_collector.h"
#include <map>
#include <sys/stat.h>
#include <base/files/file_util.h>
#include <base/logging.h>
#include <base/strings/string_util.h>
#include <base/strings/stringprintf.h>
using base::FilePath;
using base::StringPrintf;
namespace {
const char kDefaultKernelStackSignature[] = "kernel-UnspecifiedStackSignature";
const char kDumpParentPath[] = "/sys/fs";
const char kDumpPath[] = "/sys/fs/pstore";
const char kDumpFormat[] = "dmesg-ramoops-%zu";
const char kKernelExecName[] = "kernel";
// Maximum number of records to examine in the kDumpPath.
const size_t kMaxDumpRecords = 100;
const pid_t kKernelPid = 0;
const char kKernelSignatureKey[] = "sig";
// Byte length of maximum human readable portion of a kernel crash signature.
const int kMaxHumanStringLength = 40;
const uid_t kRootUid = 0;
// Time in seconds from the final kernel log message for a call stack
// to count towards the signature of the kcrash.
const int kSignatureTimestampWindow = 2;
// Kernel log timestamp regular expression.
const char kTimestampRegex[] = "^<.*>\\[\\s*(\\d+\\.\\d+)\\]";
//
// These regular expressions enable to us capture the PC in a backtrace.
// The backtrace is obtained through dmesg or the kernel's preserved/kcrashmem
// feature.
//
// For ARM we see:
// "<5>[ 39.458982] PC is at write_breakme+0xd0/0x1b4"
// For MIPS we see:
// "<5>[ 3378.552000] epc : 804010f0 lkdtm_do_action+0x68/0x3f8"
// For x86:
// "<0>[ 37.474699] EIP: [<790ed488>] write_breakme+0x80/0x108
// SS:ESP 0068:e9dd3efc"
//
const char* const kPCRegex[] = {
0,
" PC is at ([^\\+ ]+).*",
" epc\\s+:\\s+\\S+\\s+([^\\+ ]+).*", // MIPS has an exception program counter
" EIP: \\[<.*>\\] ([^\\+ ]+).*", // X86 uses EIP for the program counter
" RIP \\[<.*>\\] ([^\\+ ]+).*", // X86_64 uses RIP for the program counter
};
static_assert(arraysize(kPCRegex) == KernelCollector::kArchCount,
"Missing Arch PC regexp");
} // namespace
KernelCollector::KernelCollector()
: is_enabled_(false),
ramoops_dump_path_(kDumpPath),
records_(0),
// We expect crash dumps in the format of architecture we are built for.
arch_(GetCompilerArch()) {
}
KernelCollector::~KernelCollector() {
}
void KernelCollector::OverridePreservedDumpPath(const FilePath &file_path) {
ramoops_dump_path_ = file_path;
}
bool KernelCollector::ReadRecordToString(std::string *contents,
size_t current_record,
bool *record_found) {
// A record is a ramoops dump. It has an associated size of "record_size".
std::string record;
std::string captured;
// Ramoops appends a header to a crash which contains ==== followed by a
// timestamp. Ignore the header.
pcrecpp::RE record_re(
"====\\d+\\.\\d+\n(.*)",
pcrecpp::RE_Options().set_multiline(true).set_dotall(true));
pcrecpp::RE sanity_check_re("\n<\\d+>\\[\\s*(\\d+\\.\\d+)\\]");
FilePath ramoops_record;
GetRamoopsRecordPath(&ramoops_record, current_record);
if (!base::ReadFileToString(ramoops_record, &record)) {
LOG(ERROR) << "Unable to open " << ramoops_record.value();
return false;
}
*record_found = false;
if (record_re.FullMatch(record, &captured)) {
// Found a ramoops header, so strip the header and append the rest.
contents->append(captured);
*record_found = true;
} else if (sanity_check_re.PartialMatch(record.substr(0, 1024))) {
// pstore compression has been added since kernel 3.12. In order to
// decompress dmesg correctly, ramoops driver has to strip the header
// before handing over the record to the pstore driver, so we don't
// need to do it here anymore. However, the sanity check is needed because
// sometimes a pstore record is just a chunk of uninitialized memory which
// is not the result of a kernel crash. See crbug.com/443764
contents->append(record);
*record_found = true;
} else {
LOG(WARNING) << "Found invalid record at " << ramoops_record.value();
}
// Remove the record from pstore after it's found.
if (*record_found)
base::DeleteFile(ramoops_record, false);
return true;
}
void KernelCollector::GetRamoopsRecordPath(FilePath *path,
size_t record) {
// Disable error "format not a string literal, argument types not checked"
// because this is valid, but GNU apparently doesn't bother checking a const
// format string.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
*path = ramoops_dump_path_.Append(StringPrintf(kDumpFormat, record));
#pragma GCC diagnostic pop
}
bool KernelCollector::LoadParameters() {
// Discover how many ramoops records are being exported by the driver.
size_t count;
for (count = 0; count < kMaxDumpRecords; ++count) {
FilePath ramoops_record;
GetRamoopsRecordPath(&ramoops_record, count);
if (!base::PathExists(ramoops_record))
break;
}
records_ = count;
return (records_ > 0);
}
bool KernelCollector::LoadPreservedDump(std::string *contents) {
// Load dumps from the preserved memory and save them in contents.
// Since the system is set to restart on oops we won't actually ever have
// multiple records (only 0 or 1), but check in case we don't restart on
// oops in the future.
bool any_records_found = false;
bool record_found = false;
// clear contents since ReadFileToString actually appends to the string.
contents->clear();
for (size_t i = 0; i < records_; ++i) {
if (!ReadRecordToString(contents, i, &record_found)) {
break;
}
if (record_found) {
any_records_found = true;
}
}
if (!any_records_found) {
LOG(ERROR) << "No valid records found in " << ramoops_dump_path_.value();
return false;
}
return true;
}
void KernelCollector::StripSensitiveData(std::string *kernel_dump) {
// Strip any data that the user might not want sent up to the crash servers.
// We'll read in from kernel_dump and also place our output there.
//
// At the moment, the only sensitive data we strip is MAC addresses.
// Get rid of things that look like MAC addresses, since they could possibly
// give information about where someone has been. This is strings that look
// like this: 11:22:33:44:55:66
// Complications:
// - Within a given kernel_dump, want to be able to tell when the same MAC
// was used more than once. Thus, we'll consistently replace the first
// MAC found with 00:00:00:00:00:01, the second with ...:02, etc.
// - ACPI commands look like MAC addresses. We'll specifically avoid getting
// rid of those.
std::ostringstream result;
std::string pre_mac_str;
std::string mac_str;
std::map<std::string, std::string> mac_map;
pcrecpp::StringPiece input(*kernel_dump);
// This RE will find the next MAC address and can return us the data preceding
// the MAC and the MAC itself.
pcrecpp::RE mac_re("(.*?)("
"[0-9a-fA-F][0-9a-fA-F]:"
"[0-9a-fA-F][0-9a-fA-F]:"
"[0-9a-fA-F][0-9a-fA-F]:"
"[0-9a-fA-F][0-9a-fA-F]:"
"[0-9a-fA-F][0-9a-fA-F]:"
"[0-9a-fA-F][0-9a-fA-F])",
pcrecpp::RE_Options()
.set_multiline(true)
.set_dotall(true));
// This RE will identify when the 'pre_mac_str' shows that the MAC address
// was really an ACPI cmd. The full string looks like this:
// ata1.00: ACPI cmd ef/10:03:00:00:00:a0 (SET FEATURES) filtered out
pcrecpp::RE acpi_re("ACPI cmd ef/$",
pcrecpp::RE_Options()
.set_multiline(true)
.set_dotall(true));
// Keep consuming, building up a result string as we go.
while (mac_re.Consume(&input, &pre_mac_str, &mac_str)) {
if (acpi_re.PartialMatch(pre_mac_str)) {
// We really saw an ACPI command; add to result w/ no stripping.
result << pre_mac_str << mac_str;
} else {
// Found a MAC address; look up in our hash for the mapping.
std::string replacement_mac = mac_map[mac_str];
if (replacement_mac == "") {
// It wasn't present, so build up a replacement string.
int mac_id = mac_map.size();
// Handle up to 2^32 unique MAC address; overkill, but doesn't hurt.
replacement_mac = StringPrintf("00:00:%02x:%02x:%02x:%02x",
(mac_id & 0xff000000) >> 24,
(mac_id & 0x00ff0000) >> 16,
(mac_id & 0x0000ff00) >> 8,
(mac_id & 0x000000ff));
mac_map[mac_str] = replacement_mac;
}
// Dump the string before the MAC and the fake MAC address into result.
result << pre_mac_str << replacement_mac;
}
}
// One last bit of data might still be in the input.
result << input;
// We'll just assign right back to kernel_dump.
*kernel_dump = result.str();
}
bool KernelCollector::DumpDirMounted() {
struct stat st_parent;
if (stat(kDumpParentPath, &st_parent)) {
PLOG(WARNING) << "Could not stat " << kDumpParentPath;
return false;
}
struct stat st_dump;
if (stat(kDumpPath, &st_dump)) {
PLOG(WARNING) << "Could not stat " << kDumpPath;
return false;
}
if (st_parent.st_dev == st_dump.st_dev) {
LOG(WARNING) << "Dump dir " << kDumpPath << " not mounted";
return false;
}
return true;
}
bool KernelCollector::Enable() {
if (arch_ == kArchUnknown || arch_ >= kArchCount ||
kPCRegex[arch_] == nullptr) {
LOG(WARNING) << "KernelCollector does not understand this architecture";
return false;
}
if (!DumpDirMounted()) {
LOG(WARNING) << "Kernel does not support crash dumping";
return false;
}
// To enable crashes, we will eventually need to set
// the chnv bit in BIOS, but it does not yet work.
LOG(INFO) << "Enabling kernel crash handling";
is_enabled_ = true;
return true;
}
// Hash a string to a number. We define our own hash function to not
// be dependent on a C++ library that might change. This function
// uses basically the same approach as tr1/functional_hash.h but with
// a larger prime number (16127 vs 131).
static unsigned HashString(const std::string &input) {
unsigned hash = 0;
for (size_t i = 0; i < input.length(); ++i)
hash = hash * 16127 + input[i];
return hash;
}
void KernelCollector::ProcessStackTrace(
pcrecpp::StringPiece kernel_dump,
bool print_diagnostics,
unsigned *hash,
float *last_stack_timestamp,
bool *is_watchdog_crash) {
pcrecpp::RE line_re("(.+)", pcrecpp::MULTILINE());
pcrecpp::RE stack_trace_start_re(std::string(kTimestampRegex) +
" (Call Trace|Backtrace):$");
// Match lines such as the following and grab out "function_name".
// The ? may or may not be present.
//
// For ARM:
// <4>[ 3498.731164] [<c0057220>] ? (function_name+0x20/0x2c) from
// [<c018062c>] (foo_bar+0xdc/0x1bc)
//
// For MIPS:
// <5>[ 3378.656000] [<804010f0>] lkdtm_do_action+0x68/0x3f8
//
// For X86:
// <4>[ 6066.849504] [<7937bcee>] ? function_name+0x66/0x6c
//
pcrecpp::RE stack_entry_re(std::string(kTimestampRegex) +
"\\s+\\[<[[:xdigit:]]+>\\]" // Matches " [<7937bcee>]"
"([\\s\\?(]+)" // Matches " ? (" (ARM) or " ? " (X86)
"([^\\+ )]+)"); // Matches until delimiter reached
std::string line;
std::string hashable;
std::string previous_hashable;
bool is_watchdog = false;
*hash = 0;
*last_stack_timestamp = 0;
// Find the last and second-to-last stack traces. The latter is used when
// the panic is from a watchdog timeout.
while (line_re.FindAndConsume(&kernel_dump, &line)) {
std::string certainty;
std::string function_name;
if (stack_trace_start_re.PartialMatch(line, last_stack_timestamp)) {
if (print_diagnostics) {
printf("Stack trace starting.%s\n",
hashable.empty() ? "" : " Saving prior trace.");
}
previous_hashable = hashable;
hashable.clear();
is_watchdog = false;
} else if (stack_entry_re.PartialMatch(line,
last_stack_timestamp,
&certainty,
&function_name)) {
bool is_certain = certainty.find('?') == std::string::npos;
if (print_diagnostics) {
printf("@%f: stack entry for %s (%s)\n",
*last_stack_timestamp,
function_name.c_str(),
is_certain ? "certain" : "uncertain");
}
// Do not include any uncertain (prefixed by '?') frames in our hash.
if (!is_certain)
continue;
if (!hashable.empty())
hashable.append("|");
if (function_name == "watchdog_timer_fn" ||
function_name == "watchdog") {
is_watchdog = true;
}
hashable.append(function_name);
}
}
// If the last stack trace contains a watchdog function we assume the panic
// is from the watchdog timer, and we hash the previous stack trace rather
// than the last one, assuming that the previous stack is that of the hung
// thread.
//
// In addition, if the hashable is empty (meaning all frames are uncertain,
// for whatever reason) also use the previous frame, as it cannot be any
// worse.
if (is_watchdog || hashable.empty()) {
hashable = previous_hashable;
}
*hash = HashString(hashable);
*is_watchdog_crash = is_watchdog;
if (print_diagnostics) {
printf("Hash based on stack trace: \"%s\" at %f.\n",
hashable.c_str(), *last_stack_timestamp);
}
}
// static
KernelCollector::ArchKind KernelCollector::GetCompilerArch() {
#if defined(COMPILER_GCC) && defined(ARCH_CPU_ARM_FAMILY)
return kArchArm;
#elif defined(COMPILER_GCC) && defined(ARCH_CPU_MIPS_FAMILY)
return kArchMips;
#elif defined(COMPILER_GCC) && defined(ARCH_CPU_X86_64)
return kArchX86_64;
#elif defined(COMPILER_GCC) && defined(ARCH_CPU_X86_FAMILY)
return kArchX86;
#else
return kArchUnknown;
#endif
}
bool KernelCollector::FindCrashingFunction(
pcrecpp::StringPiece kernel_dump,
bool print_diagnostics,
float stack_trace_timestamp,
std::string *crashing_function) {
float timestamp = 0;
// Use the correct regex for this architecture.
pcrecpp::RE eip_re(std::string(kTimestampRegex) + kPCRegex[arch_],
pcrecpp::MULTILINE());
while (eip_re.FindAndConsume(&kernel_dump, &timestamp, crashing_function)) {
if (print_diagnostics) {
printf("@%f: found crashing function %s\n",
timestamp,
crashing_function->c_str());
}
}
if (timestamp == 0) {
if (print_diagnostics) {
printf("Found no crashing function.\n");
}
return false;
}
if (stack_trace_timestamp != 0 &&
abs(static_cast<int>(stack_trace_timestamp - timestamp))
> kSignatureTimestampWindow) {
if (print_diagnostics) {
printf("Found crashing function but not within window.\n");
}
return false;
}
if (print_diagnostics) {
printf("Found crashing function %s\n", crashing_function->c_str());
}
return true;
}
bool KernelCollector::FindPanicMessage(pcrecpp::StringPiece kernel_dump,
bool print_diagnostics,
std::string *panic_message) {
// Match lines such as the following and grab out "Fatal exception"
// <0>[ 342.841135] Kernel panic - not syncing: Fatal exception
pcrecpp::RE kernel_panic_re(std::string(kTimestampRegex) +
" Kernel panic[^\\:]*\\:\\s*(.*)",
pcrecpp::MULTILINE());
float timestamp = 0;
while (kernel_panic_re.FindAndConsume(&kernel_dump,
&timestamp,
panic_message)) {
if (print_diagnostics) {
printf("@%f: panic message %s\n",
timestamp,
panic_message->c_str());
}
}
if (timestamp == 0) {
if (print_diagnostics) {
printf("Found no panic message.\n");
}
return false;
}
return true;
}
bool KernelCollector::ComputeKernelStackSignature(
const std::string &kernel_dump,
std::string *kernel_signature,
bool print_diagnostics) {
unsigned stack_hash = 0;
float last_stack_timestamp = 0;
std::string human_string;
bool is_watchdog_crash;
ProcessStackTrace(kernel_dump,
print_diagnostics,
&stack_hash,
&last_stack_timestamp,
&is_watchdog_crash);
if (!FindCrashingFunction(kernel_dump,
print_diagnostics,
last_stack_timestamp,
&human_string)) {
if (!FindPanicMessage(kernel_dump, print_diagnostics, &human_string)) {
if (print_diagnostics) {
printf("Found no human readable string, using empty string.\n");
}
human_string.clear();
}
}
if (human_string.empty() && stack_hash == 0) {
if (print_diagnostics) {
printf("Found neither a stack nor a human readable string, failing.\n");
}
return false;
}
human_string = human_string.substr(0, kMaxHumanStringLength);
*kernel_signature = StringPrintf("%s-%s%s-%08X",
kKernelExecName,
(is_watchdog_crash ? "(HANG)-" : ""),
human_string.c_str(),
stack_hash);
return true;
}
bool KernelCollector::Collect() {
std::string kernel_dump;
FilePath root_crash_directory;
if (!LoadParameters()) {
return false;
}
if (!LoadPreservedDump(&kernel_dump)) {
return false;
}
StripSensitiveData(&kernel_dump);
if (kernel_dump.empty()) {
return false;
}
std::string signature;
if (!ComputeKernelStackSignature(kernel_dump, &signature, false)) {
signature = kDefaultKernelStackSignature;
}
std::string reason = "handling";
bool feedback = true;
if (IsDeveloperImage()) {
reason = "developer build - always dumping";
feedback = true;
} else if (!is_feedback_allowed_function_()) {
reason = "ignoring - no consent";
feedback = false;
}
LOG(INFO) << "Received prior crash notification from "
<< "kernel (signature " << signature << ") (" << reason << ")";
if (feedback) {
count_crash_function_();
if (!GetCreatedCrashDirectoryByEuid(kRootUid,
&root_crash_directory,
nullptr)) {
return true;
}
std::string dump_basename =
FormatDumpBasename(kKernelExecName, time(nullptr), kKernelPid);
FilePath kernel_crash_path = root_crash_directory.Append(
StringPrintf("%s.kcrash", dump_basename.c_str()));
// We must use WriteNewFile instead of base::WriteFile as we
// do not want to write with root access to a symlink that an attacker
// might have created.
if (WriteNewFile(kernel_crash_path,
kernel_dump.data(),
kernel_dump.length()) !=
static_cast<int>(kernel_dump.length())) {
LOG(INFO) << "Failed to write kernel dump to "
<< kernel_crash_path.value().c_str();
return true;
}
AddCrashMetaData(kKernelSignatureKey, signature);
WriteCrashMetaData(
root_crash_directory.Append(
StringPrintf("%s.meta", dump_basename.c_str())),
kKernelExecName,
kernel_crash_path.value());
LOG(INFO) << "Stored kcrash to " << kernel_crash_path.value();
}
return true;
}