| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define _GNU_SOURCE 1 |
| #include <dirent.h> |
| #include <dlfcn.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <inttypes.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/ptrace.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <list> |
| #include <memory> |
| #include <ostream> |
| #include <string> |
| #include <vector> |
| |
| #include <backtrace/Backtrace.h> |
| #include <backtrace/BacktraceMap.h> |
| |
| #include <android-base/macros.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/unique_fd.h> |
| #include <cutils/atomic.h> |
| #include <cutils/threads.h> |
| |
| #include <gtest/gtest.h> |
| |
| // For the THREAD_SIGNAL definition. |
| #include "BacktraceCurrent.h" |
| #include "backtrace_testlib.h" |
| #include "thread_utils.h" |
| |
| // Number of microseconds per milliseconds. |
| #define US_PER_MSEC 1000 |
| |
| // Number of nanoseconds in a second. |
| #define NS_PER_SEC 1000000000ULL |
| |
| // Number of simultaneous dumping operations to perform. |
| #define NUM_THREADS 40 |
| |
| // Number of simultaneous threads running in our forked process. |
| #define NUM_PTRACE_THREADS 5 |
| |
| struct thread_t { |
| pid_t tid; |
| int32_t state; |
| pthread_t threadId; |
| void* data; |
| }; |
| |
| struct dump_thread_t { |
| thread_t thread; |
| Backtrace* backtrace; |
| int32_t* now; |
| int32_t done; |
| }; |
| |
| static uint64_t NanoTime() { |
| struct timespec t = { 0, 0 }; |
| clock_gettime(CLOCK_MONOTONIC, &t); |
| return static_cast<uint64_t>(t.tv_sec * NS_PER_SEC + t.tv_nsec); |
| } |
| |
| static std::string DumpFrames(Backtrace* backtrace) { |
| if (backtrace->NumFrames() == 0) { |
| return " No frames to dump.\n"; |
| } |
| |
| std::string frame; |
| for (size_t i = 0; i < backtrace->NumFrames(); i++) { |
| frame += " " + backtrace->FormatFrameData(i) + '\n'; |
| } |
| return frame; |
| } |
| |
| static void WaitForStop(pid_t pid) { |
| uint64_t start = NanoTime(); |
| |
| siginfo_t si; |
| while (ptrace(PTRACE_GETSIGINFO, pid, 0, &si) < 0 && (errno == EINTR || errno == ESRCH)) { |
| if ((NanoTime() - start) > NS_PER_SEC) { |
| printf("The process did not get to a stopping point in 1 second.\n"); |
| break; |
| } |
| usleep(US_PER_MSEC); |
| } |
| } |
| |
| static void CreateRemoteProcess(pid_t* pid) { |
| if ((*pid = fork()) == 0) { |
| while (true) |
| ; |
| _exit(0); |
| } |
| ASSERT_NE(-1, *pid); |
| |
| ASSERT_TRUE(ptrace(PTRACE_ATTACH, *pid, 0, 0) == 0); |
| |
| // Wait for the process to get to a stopping point. |
| WaitForStop(*pid); |
| } |
| |
| static void FinishRemoteProcess(pid_t pid) { |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); |
| |
| kill(pid, SIGKILL); |
| ASSERT_EQ(waitpid(pid, nullptr, 0), pid); |
| } |
| |
| static bool ReadyLevelBacktrace(Backtrace* backtrace) { |
| // See if test_level_four is in the backtrace. |
| bool found = false; |
| for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) { |
| if (it->func_name == "test_level_four") { |
| found = true; |
| break; |
| } |
| } |
| |
| return found; |
| } |
| |
| static void VerifyLevelDump(Backtrace* backtrace) { |
| ASSERT_GT(backtrace->NumFrames(), static_cast<size_t>(0)) |
| << DumpFrames(backtrace); |
| ASSERT_LT(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)) |
| << DumpFrames(backtrace); |
| |
| // Look through the frames starting at the highest to find the |
| // frame we want. |
| size_t frame_num = 0; |
| for (size_t i = backtrace->NumFrames()-1; i > 2; i--) { |
| if (backtrace->GetFrame(i)->func_name == "test_level_one") { |
| frame_num = i; |
| break; |
| } |
| } |
| ASSERT_LT(static_cast<size_t>(0), frame_num) << DumpFrames(backtrace); |
| ASSERT_LE(static_cast<size_t>(3), frame_num) << DumpFrames(backtrace); |
| |
| ASSERT_EQ(backtrace->GetFrame(frame_num)->func_name, "test_level_one") |
| << DumpFrames(backtrace); |
| ASSERT_EQ(backtrace->GetFrame(frame_num-1)->func_name, "test_level_two") |
| << DumpFrames(backtrace); |
| ASSERT_EQ(backtrace->GetFrame(frame_num-2)->func_name, "test_level_three") |
| << DumpFrames(backtrace); |
| ASSERT_EQ(backtrace->GetFrame(frame_num-3)->func_name, "test_level_four") |
| << DumpFrames(backtrace); |
| } |
| |
| static void VerifyLevelBacktrace(void*) { |
| std::unique_ptr<Backtrace> backtrace( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| |
| VerifyLevelDump(backtrace.get()); |
| } |
| |
| static bool ReadyMaxBacktrace(Backtrace* backtrace) { |
| return (backtrace->NumFrames() == MAX_BACKTRACE_FRAMES); |
| } |
| |
| static void VerifyMaxDump(Backtrace* backtrace) { |
| ASSERT_EQ(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)) |
| << DumpFrames(backtrace); |
| // Verify that the last frame is our recursive call. |
| ASSERT_EQ(backtrace->GetFrame(MAX_BACKTRACE_FRAMES-1)->func_name, "test_recursive_call") |
| << DumpFrames(backtrace); |
| } |
| |
| static void VerifyMaxBacktrace(void*) { |
| std::unique_ptr<Backtrace> backtrace( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| |
| VerifyMaxDump(backtrace.get()); |
| } |
| |
| static void ThreadSetState(void* data) { |
| thread_t* thread = reinterpret_cast<thread_t*>(data); |
| android_atomic_acquire_store(1, &thread->state); |
| volatile int i = 0; |
| while (thread->state) { |
| i++; |
| } |
| } |
| |
| static bool WaitForNonZero(int32_t* value, uint64_t seconds) { |
| uint64_t start = NanoTime(); |
| do { |
| if (android_atomic_acquire_load(value)) { |
| return true; |
| } |
| } while ((NanoTime() - start) < seconds * NS_PER_SEC); |
| return false; |
| } |
| |
| TEST(libbacktrace, local_no_unwind_frames) { |
| // Verify that a local unwind does not include any frames within |
| // libunwind or libbacktrace. |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), getpid())); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| |
| ASSERT_TRUE(backtrace->NumFrames() != 0); |
| for (const auto& frame : *backtrace ) { |
| if (BacktraceMap::IsValid(frame.map)) { |
| const std::string name = basename(frame.map.name.c_str()); |
| ASSERT_TRUE(name != "libunwind.so" && name != "libbacktrace.so") |
| << DumpFrames(backtrace.get()); |
| } |
| break; |
| } |
| } |
| |
| TEST(libbacktrace, local_trace) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelBacktrace, nullptr), 0); |
| } |
| |
| static void VerifyIgnoreFrames(Backtrace* bt_all, Backtrace* bt_ign1, Backtrace* bt_ign2, |
| const char* cur_proc) { |
| EXPECT_EQ(bt_all->NumFrames(), bt_ign1->NumFrames() + 1) |
| << "All backtrace:\n" << DumpFrames(bt_all) << "Ignore 1 backtrace:\n" << DumpFrames(bt_ign1); |
| EXPECT_EQ(bt_all->NumFrames(), bt_ign2->NumFrames() + 2) |
| << "All backtrace:\n" << DumpFrames(bt_all) << "Ignore 2 backtrace:\n" << DumpFrames(bt_ign2); |
| |
| // Check all of the frames are the same > the current frame. |
| bool check = (cur_proc == nullptr); |
| for (size_t i = 0; i < bt_ign2->NumFrames(); i++) { |
| if (check) { |
| EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_ign1->GetFrame(i+1)->pc); |
| EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_ign1->GetFrame(i+1)->sp); |
| EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_ign1->GetFrame(i+1)->stack_size); |
| |
| EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_all->GetFrame(i+2)->pc); |
| EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_all->GetFrame(i+2)->sp); |
| EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_all->GetFrame(i+2)->stack_size); |
| } |
| if (!check && bt_ign2->GetFrame(i)->func_name == cur_proc) { |
| check = true; |
| } |
| } |
| } |
| |
| static void VerifyLevelIgnoreFrames(void*) { |
| std::unique_ptr<Backtrace> all( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(all.get() != nullptr); |
| ASSERT_TRUE(all->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, all->GetError()); |
| |
| std::unique_ptr<Backtrace> ign1( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(ign1.get() != nullptr); |
| ASSERT_TRUE(ign1->Unwind(1)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign1->GetError()); |
| |
| std::unique_ptr<Backtrace> ign2( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(ign2.get() != nullptr); |
| ASSERT_TRUE(ign2->Unwind(2)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign2->GetError()); |
| |
| VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), "VerifyLevelIgnoreFrames"); |
| } |
| |
| TEST(libbacktrace, local_trace_ignore_frames) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelIgnoreFrames, nullptr), 0); |
| } |
| |
| TEST(libbacktrace, local_max_trace) { |
| ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxBacktrace, nullptr), 0); |
| } |
| |
| static void VerifyProcTest(pid_t pid, pid_t tid, bool share_map, bool (*ReadyFunc)(Backtrace*), |
| void (*VerifyFunc)(Backtrace*)) { |
| pid_t ptrace_tid; |
| if (tid < 0) { |
| ptrace_tid = pid; |
| } else { |
| ptrace_tid = tid; |
| } |
| uint64_t start = NanoTime(); |
| bool verified = false; |
| std::string last_dump; |
| do { |
| usleep(US_PER_MSEC); |
| if (ptrace(PTRACE_ATTACH, ptrace_tid, 0, 0) == 0) { |
| // Wait for the process to get to a stopping point. |
| WaitForStop(ptrace_tid); |
| |
| std::unique_ptr<BacktraceMap> map; |
| if (share_map) { |
| map.reset(BacktraceMap::Create(pid)); |
| } |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, tid, map.get())); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| if (ReadyFunc(backtrace.get())) { |
| VerifyFunc(backtrace.get()); |
| verified = true; |
| } else { |
| last_dump = DumpFrames(backtrace.get()); |
| } |
| |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, ptrace_tid, 0, 0) == 0); |
| } |
| // If 5 seconds have passed, then we are done. |
| } while (!verified && (NanoTime() - start) <= 5 * NS_PER_SEC); |
| ASSERT_TRUE(verified) << "Last backtrace:\n" << last_dump; |
| } |
| |
| TEST(libbacktrace, ptrace_trace) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0); |
| _exit(1); |
| } |
| VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyLevelBacktrace, VerifyLevelDump); |
| |
| kill(pid, SIGKILL); |
| int status; |
| ASSERT_EQ(waitpid(pid, &status, 0), pid); |
| } |
| |
| TEST(libbacktrace, ptrace_trace_shared_map) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0); |
| _exit(1); |
| } |
| |
| VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, true, ReadyLevelBacktrace, VerifyLevelDump); |
| |
| kill(pid, SIGKILL); |
| int status; |
| ASSERT_EQ(waitpid(pid, &status, 0), pid); |
| } |
| |
| TEST(libbacktrace, ptrace_max_trace) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, nullptr, nullptr), 0); |
| _exit(1); |
| } |
| VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyMaxBacktrace, VerifyMaxDump); |
| |
| kill(pid, SIGKILL); |
| int status; |
| ASSERT_EQ(waitpid(pid, &status, 0), pid); |
| } |
| |
| static void VerifyProcessIgnoreFrames(Backtrace* bt_all) { |
| std::unique_ptr<Backtrace> ign1(Backtrace::Create(bt_all->Pid(), BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(ign1.get() != nullptr); |
| ASSERT_TRUE(ign1->Unwind(1)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign1->GetError()); |
| |
| std::unique_ptr<Backtrace> ign2(Backtrace::Create(bt_all->Pid(), BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(ign2.get() != nullptr); |
| ASSERT_TRUE(ign2->Unwind(2)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign2->GetError()); |
| |
| VerifyIgnoreFrames(bt_all, ign1.get(), ign2.get(), nullptr); |
| } |
| |
| TEST(libbacktrace, ptrace_ignore_frames) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0); |
| _exit(1); |
| } |
| VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyLevelBacktrace, VerifyProcessIgnoreFrames); |
| |
| kill(pid, SIGKILL); |
| int status; |
| ASSERT_EQ(waitpid(pid, &status, 0), pid); |
| } |
| |
| // Create a process with multiple threads and dump all of the threads. |
| static void* PtraceThreadLevelRun(void*) { |
| EXPECT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0); |
| return nullptr; |
| } |
| |
| static void GetThreads(pid_t pid, std::vector<pid_t>* threads) { |
| // Get the list of tasks. |
| char task_path[128]; |
| snprintf(task_path, sizeof(task_path), "/proc/%d/task", pid); |
| |
| std::unique_ptr<DIR, decltype(&closedir)> tasks_dir(opendir(task_path), closedir); |
| ASSERT_TRUE(tasks_dir != nullptr); |
| struct dirent* entry; |
| while ((entry = readdir(tasks_dir.get())) != nullptr) { |
| char* end; |
| pid_t tid = strtoul(entry->d_name, &end, 10); |
| if (*end == '\0') { |
| threads->push_back(tid); |
| } |
| } |
| } |
| |
| TEST(libbacktrace, ptrace_threads) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| for (size_t i = 0; i < NUM_PTRACE_THREADS; i++) { |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| |
| pthread_t thread; |
| ASSERT_TRUE(pthread_create(&thread, &attr, PtraceThreadLevelRun, nullptr) == 0); |
| } |
| ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0); |
| _exit(1); |
| } |
| |
| // Check to see that all of the threads are running before unwinding. |
| std::vector<pid_t> threads; |
| uint64_t start = NanoTime(); |
| do { |
| usleep(US_PER_MSEC); |
| threads.clear(); |
| GetThreads(pid, &threads); |
| } while ((threads.size() != NUM_PTRACE_THREADS + 1) && |
| ((NanoTime() - start) <= 5 * NS_PER_SEC)); |
| ASSERT_EQ(threads.size(), static_cast<size_t>(NUM_PTRACE_THREADS + 1)); |
| |
| ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); |
| WaitForStop(pid); |
| for (std::vector<int>::const_iterator it = threads.begin(); it != threads.end(); ++it) { |
| // Skip the current forked process, we only care about the threads. |
| if (pid == *it) { |
| continue; |
| } |
| VerifyProcTest(pid, *it, false, ReadyLevelBacktrace, VerifyLevelDump); |
| } |
| |
| FinishRemoteProcess(pid); |
| } |
| |
| void VerifyLevelThread(void*) { |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), gettid())); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| |
| VerifyLevelDump(backtrace.get()); |
| } |
| |
| TEST(libbacktrace, thread_current_level) { |
| ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelThread, nullptr), 0); |
| } |
| |
| static void VerifyMaxThread(void*) { |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), gettid())); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| |
| VerifyMaxDump(backtrace.get()); |
| } |
| |
| TEST(libbacktrace, thread_current_max) { |
| ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxThread, nullptr), 0); |
| } |
| |
| static void* ThreadLevelRun(void* data) { |
| thread_t* thread = reinterpret_cast<thread_t*>(data); |
| |
| thread->tid = gettid(); |
| EXPECT_NE(test_level_one(1, 2, 3, 4, ThreadSetState, data), 0); |
| return nullptr; |
| } |
| |
| TEST(libbacktrace, thread_level_trace) { |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| |
| thread_t thread_data = { 0, 0, 0, nullptr }; |
| pthread_t thread; |
| ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0); |
| |
| // Wait up to 2 seconds for the tid to be set. |
| ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); |
| |
| // Make sure that the thread signal used is not visible when compiled for |
| // the target. |
| #if !defined(__GLIBC__) |
| ASSERT_LT(THREAD_SIGNAL, SIGRTMIN); |
| #endif |
| |
| // Save the current signal action and make sure it is restored afterwards. |
| struct sigaction cur_action; |
| ASSERT_TRUE(sigaction(THREAD_SIGNAL, nullptr, &cur_action) == 0); |
| |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| |
| VerifyLevelDump(backtrace.get()); |
| |
| // Tell the thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &thread_data.state); |
| |
| // Verify that the old action was restored. |
| struct sigaction new_action; |
| ASSERT_TRUE(sigaction(THREAD_SIGNAL, nullptr, &new_action) == 0); |
| EXPECT_EQ(cur_action.sa_sigaction, new_action.sa_sigaction); |
| // The SA_RESTORER flag gets set behind our back, so a direct comparison |
| // doesn't work unless we mask the value off. Mips doesn't have this |
| // flag, so skip this on that platform. |
| #if defined(SA_RESTORER) |
| cur_action.sa_flags &= ~SA_RESTORER; |
| new_action.sa_flags &= ~SA_RESTORER; |
| #elif defined(__GLIBC__) |
| // Our host compiler doesn't appear to define this flag for some reason. |
| cur_action.sa_flags &= ~0x04000000; |
| new_action.sa_flags &= ~0x04000000; |
| #endif |
| EXPECT_EQ(cur_action.sa_flags, new_action.sa_flags); |
| } |
| |
| TEST(libbacktrace, thread_ignore_frames) { |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| |
| thread_t thread_data = { 0, 0, 0, nullptr }; |
| pthread_t thread; |
| ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0); |
| |
| // Wait up to 2 seconds for the tid to be set. |
| ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); |
| |
| std::unique_ptr<Backtrace> all(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(all.get() != nullptr); |
| ASSERT_TRUE(all->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, all->GetError()); |
| |
| std::unique_ptr<Backtrace> ign1(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(ign1.get() != nullptr); |
| ASSERT_TRUE(ign1->Unwind(1)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign1->GetError()); |
| |
| std::unique_ptr<Backtrace> ign2(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(ign2.get() != nullptr); |
| ASSERT_TRUE(ign2->Unwind(2)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, ign2->GetError()); |
| |
| VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), nullptr); |
| |
| // Tell the thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &thread_data.state); |
| } |
| |
| static void* ThreadMaxRun(void* data) { |
| thread_t* thread = reinterpret_cast<thread_t*>(data); |
| |
| thread->tid = gettid(); |
| EXPECT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, ThreadSetState, data), 0); |
| return nullptr; |
| } |
| |
| TEST(libbacktrace, thread_max_trace) { |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| |
| thread_t thread_data = { 0, 0, 0, nullptr }; |
| pthread_t thread; |
| ASSERT_TRUE(pthread_create(&thread, &attr, ThreadMaxRun, &thread_data) == 0); |
| |
| // Wait for the tid to be set. |
| ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); |
| |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| |
| VerifyMaxDump(backtrace.get()); |
| |
| // Tell the thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &thread_data.state); |
| } |
| |
| static void* ThreadDump(void* data) { |
| dump_thread_t* dump = reinterpret_cast<dump_thread_t*>(data); |
| while (true) { |
| if (android_atomic_acquire_load(dump->now)) { |
| break; |
| } |
| } |
| |
| // The status of the actual unwind will be checked elsewhere. |
| dump->backtrace = Backtrace::Create(getpid(), dump->thread.tid); |
| dump->backtrace->Unwind(0); |
| |
| android_atomic_acquire_store(1, &dump->done); |
| |
| return nullptr; |
| } |
| |
| TEST(libbacktrace, thread_multiple_dump) { |
| // Dump NUM_THREADS simultaneously. |
| std::vector<thread_t> runners(NUM_THREADS); |
| std::vector<dump_thread_t> dumpers(NUM_THREADS); |
| |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| for (size_t i = 0; i < NUM_THREADS; i++) { |
| // Launch the runners, they will spin in hard loops doing nothing. |
| runners[i].tid = 0; |
| runners[i].state = 0; |
| ASSERT_TRUE(pthread_create(&runners[i].threadId, &attr, ThreadMaxRun, &runners[i]) == 0); |
| } |
| |
| // Wait for tids to be set. |
| for (std::vector<thread_t>::iterator it = runners.begin(); it != runners.end(); ++it) { |
| ASSERT_TRUE(WaitForNonZero(&it->state, 30)); |
| } |
| |
| // Start all of the dumpers at once, they will spin until they are signalled |
| // to begin their dump run. |
| int32_t dump_now = 0; |
| for (size_t i = 0; i < NUM_THREADS; i++) { |
| dumpers[i].thread.tid = runners[i].tid; |
| dumpers[i].thread.state = 0; |
| dumpers[i].done = 0; |
| dumpers[i].now = &dump_now; |
| |
| ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0); |
| } |
| |
| // Start all of the dumpers going at once. |
| android_atomic_acquire_store(1, &dump_now); |
| |
| for (size_t i = 0; i < NUM_THREADS; i++) { |
| ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 30)); |
| |
| // Tell the runner thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &runners[i].state); |
| |
| ASSERT_TRUE(dumpers[i].backtrace != nullptr); |
| VerifyMaxDump(dumpers[i].backtrace); |
| |
| delete dumpers[i].backtrace; |
| dumpers[i].backtrace = nullptr; |
| } |
| } |
| |
| TEST(libbacktrace, thread_multiple_dump_same_thread) { |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| thread_t runner; |
| runner.tid = 0; |
| runner.state = 0; |
| ASSERT_TRUE(pthread_create(&runner.threadId, &attr, ThreadMaxRun, &runner) == 0); |
| |
| // Wait for tids to be set. |
| ASSERT_TRUE(WaitForNonZero(&runner.state, 30)); |
| |
| // Start all of the dumpers at once, they will spin until they are signalled |
| // to begin their dump run. |
| int32_t dump_now = 0; |
| // Dump the same thread NUM_THREADS simultaneously. |
| std::vector<dump_thread_t> dumpers(NUM_THREADS); |
| for (size_t i = 0; i < NUM_THREADS; i++) { |
| dumpers[i].thread.tid = runner.tid; |
| dumpers[i].thread.state = 0; |
| dumpers[i].done = 0; |
| dumpers[i].now = &dump_now; |
| |
| ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0); |
| } |
| |
| // Start all of the dumpers going at once. |
| android_atomic_acquire_store(1, &dump_now); |
| |
| for (size_t i = 0; i < NUM_THREADS; i++) { |
| ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 30)); |
| |
| ASSERT_TRUE(dumpers[i].backtrace != nullptr); |
| VerifyMaxDump(dumpers[i].backtrace); |
| |
| delete dumpers[i].backtrace; |
| dumpers[i].backtrace = nullptr; |
| } |
| |
| // Tell the runner thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &runner.state); |
| } |
| |
| // This test is for UnwindMaps that should share the same map cursor when |
| // multiple maps are created for the current process at the same time. |
| TEST(libbacktrace, simultaneous_maps) { |
| BacktraceMap* map1 = BacktraceMap::Create(getpid()); |
| BacktraceMap* map2 = BacktraceMap::Create(getpid()); |
| BacktraceMap* map3 = BacktraceMap::Create(getpid()); |
| |
| Backtrace* back1 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map1); |
| ASSERT_TRUE(back1 != nullptr); |
| EXPECT_TRUE(back1->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, back1->GetError()); |
| delete back1; |
| delete map1; |
| |
| Backtrace* back2 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map2); |
| ASSERT_TRUE(back2 != nullptr); |
| EXPECT_TRUE(back2->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, back2->GetError()); |
| delete back2; |
| delete map2; |
| |
| Backtrace* back3 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map3); |
| ASSERT_TRUE(back3 != nullptr); |
| EXPECT_TRUE(back3->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, back3->GetError()); |
| delete back3; |
| delete map3; |
| } |
| |
| TEST(libbacktrace, fillin_erases) { |
| BacktraceMap* back_map = BacktraceMap::Create(getpid()); |
| |
| backtrace_map_t map; |
| |
| map.start = 1; |
| map.end = 3; |
| map.flags = 1; |
| map.name = "Initialized"; |
| back_map->FillIn(0, &map); |
| delete back_map; |
| |
| ASSERT_FALSE(BacktraceMap::IsValid(map)); |
| ASSERT_EQ(static_cast<uintptr_t>(0), map.start); |
| ASSERT_EQ(static_cast<uintptr_t>(0), map.end); |
| ASSERT_EQ(0, map.flags); |
| ASSERT_EQ("", map.name); |
| } |
| |
| TEST(libbacktrace, format_test) { |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| |
| backtrace_frame_data_t frame; |
| frame.num = 1; |
| frame.pc = 2; |
| frame.sp = 0; |
| frame.stack_size = 0; |
| frame.func_offset = 0; |
| |
| // Check no map set. |
| frame.num = 1; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000000000002 <unknown>", |
| #else |
| EXPECT_EQ("#01 pc 00000002 <unknown>", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| // Check map name empty, but exists. |
| frame.pc = 0xb0020; |
| frame.map.start = 0xb0000; |
| frame.map.end = 0xbffff; |
| frame.map.load_base = 0; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000000000020 <anonymous:00000000000b0000>", |
| #else |
| EXPECT_EQ("#01 pc 00000020 <anonymous:000b0000>", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| // Check map name begins with a [. |
| frame.pc = 0xc0020; |
| frame.map.start = 0xc0000; |
| frame.map.end = 0xcffff; |
| frame.map.load_base = 0; |
| frame.map.name = "[anon:thread signal stack]"; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000000000020 [anon:thread signal stack:00000000000c0000]", |
| #else |
| EXPECT_EQ("#01 pc 00000020 [anon:thread signal stack:000c0000]", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| // Check relative pc is set and map name is set. |
| frame.pc = 0x12345679; |
| frame.map.name = "MapFake"; |
| frame.map.start = 1; |
| frame.map.end = 1; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000012345678 MapFake", |
| #else |
| EXPECT_EQ("#01 pc 12345678 MapFake", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| // Check func_name is set, but no func offset. |
| frame.func_name = "ProcFake"; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000012345678 MapFake (ProcFake)", |
| #else |
| EXPECT_EQ("#01 pc 12345678 MapFake (ProcFake)", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| // Check func_name is set, and func offset is non-zero. |
| frame.func_offset = 645; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 0000000012345678 MapFake (ProcFake+645)", |
| #else |
| EXPECT_EQ("#01 pc 12345678 MapFake (ProcFake+645)", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| // Check func_name is set, func offset is non-zero, and load_base is non-zero. |
| frame.func_offset = 645; |
| frame.map.load_base = 100; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 00000000123456dc MapFake (ProcFake+645)", |
| #else |
| EXPECT_EQ("#01 pc 123456dc MapFake (ProcFake+645)", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| |
| // Check a non-zero map offset. |
| frame.map.offset = 0x1000; |
| #if defined(__LP64__) |
| EXPECT_EQ("#01 pc 00000000123456dc MapFake (offset 0x1000) (ProcFake+645)", |
| #else |
| EXPECT_EQ("#01 pc 123456dc MapFake (offset 0x1000) (ProcFake+645)", |
| #endif |
| backtrace->FormatFrameData(&frame)); |
| } |
| |
| struct map_test_t { |
| uintptr_t start; |
| uintptr_t end; |
| }; |
| |
| static bool map_sort(map_test_t i, map_test_t j) { return i.start < j.start; } |
| |
| static void VerifyMap(pid_t pid) { |
| char buffer[4096]; |
| snprintf(buffer, sizeof(buffer), "/proc/%d/maps", pid); |
| |
| FILE* map_file = fopen(buffer, "r"); |
| ASSERT_TRUE(map_file != nullptr); |
| std::vector<map_test_t> test_maps; |
| while (fgets(buffer, sizeof(buffer), map_file)) { |
| map_test_t map; |
| ASSERT_EQ(2, sscanf(buffer, "%" SCNxPTR "-%" SCNxPTR " ", &map.start, &map.end)); |
| test_maps.push_back(map); |
| } |
| fclose(map_file); |
| std::sort(test_maps.begin(), test_maps.end(), map_sort); |
| |
| std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(pid)); |
| |
| // Basic test that verifies that the map is in the expected order. |
| ScopedBacktraceMapIteratorLock lock(map.get()); |
| std::vector<map_test_t>::const_iterator test_it = test_maps.begin(); |
| for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) { |
| ASSERT_TRUE(test_it != test_maps.end()); |
| ASSERT_EQ(test_it->start, it->start); |
| ASSERT_EQ(test_it->end, it->end); |
| ++test_it; |
| } |
| ASSERT_TRUE(test_it == test_maps.end()); |
| } |
| |
| TEST(libbacktrace, verify_map_remote) { |
| pid_t pid; |
| CreateRemoteProcess(&pid); |
| |
| // The maps should match exactly since the forked process has been paused. |
| VerifyMap(pid); |
| |
| FinishRemoteProcess(pid); |
| } |
| |
| static void InitMemory(uint8_t* memory, size_t bytes) { |
| for (size_t i = 0; i < bytes; i++) { |
| memory[i] = i; |
| if (memory[i] == '\0') { |
| // Don't use '\0' in our data so we can verify that an overread doesn't |
| // occur by using a '\0' as the character after the read data. |
| memory[i] = 23; |
| } |
| } |
| } |
| |
| static void* ThreadReadTest(void* data) { |
| thread_t* thread_data = reinterpret_cast<thread_t*>(data); |
| |
| thread_data->tid = gettid(); |
| |
| // Create two map pages. |
| // Mark the second page as not-readable. |
| size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE)); |
| uint8_t* memory; |
| if (posix_memalign(reinterpret_cast<void**>(&memory), pagesize, 2 * pagesize) != 0) { |
| return reinterpret_cast<void*>(-1); |
| } |
| |
| if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) { |
| return reinterpret_cast<void*>(-1); |
| } |
| |
| // Set up a simple pattern in memory. |
| InitMemory(memory, pagesize); |
| |
| thread_data->data = memory; |
| |
| // Tell the caller it's okay to start reading memory. |
| android_atomic_acquire_store(1, &thread_data->state); |
| |
| // Loop waiting for the caller to finish reading the memory. |
| while (thread_data->state) { |
| } |
| |
| // Re-enable read-write on the page so that we don't crash if we try |
| // and access data on this page when freeing the memory. |
| if (mprotect(&memory[pagesize], pagesize, PROT_READ | PROT_WRITE) != 0) { |
| return reinterpret_cast<void*>(-1); |
| } |
| free(memory); |
| |
| android_atomic_acquire_store(1, &thread_data->state); |
| |
| return nullptr; |
| } |
| |
| static void RunReadTest(Backtrace* backtrace, uintptr_t read_addr) { |
| size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE)); |
| |
| // Create a page of data to use to do quick compares. |
| uint8_t* expected = new uint8_t[pagesize]; |
| InitMemory(expected, pagesize); |
| |
| uint8_t* data = new uint8_t[2*pagesize]; |
| // Verify that we can only read one page worth of data. |
| size_t bytes_read = backtrace->Read(read_addr, data, 2 * pagesize); |
| ASSERT_EQ(pagesize, bytes_read); |
| ASSERT_TRUE(memcmp(data, expected, pagesize) == 0); |
| |
| // Verify unaligned reads. |
| for (size_t i = 1; i < sizeof(word_t); i++) { |
| bytes_read = backtrace->Read(read_addr + i, data, 2 * sizeof(word_t)); |
| ASSERT_EQ(2 * sizeof(word_t), bytes_read); |
| ASSERT_TRUE(memcmp(data, &expected[i], 2 * sizeof(word_t)) == 0) |
| << "Offset at " << i << " failed"; |
| } |
| |
| // Verify small unaligned reads. |
| for (size_t i = 1; i < sizeof(word_t); i++) { |
| for (size_t j = 1; j < sizeof(word_t); j++) { |
| // Set one byte past what we expect to read, to guarantee we don't overread. |
| data[j] = '\0'; |
| bytes_read = backtrace->Read(read_addr + i, data, j); |
| ASSERT_EQ(j, bytes_read); |
| ASSERT_TRUE(memcmp(data, &expected[i], j) == 0) |
| << "Offset at " << i << " length " << j << " miscompared"; |
| ASSERT_EQ('\0', data[j]) |
| << "Offset at " << i << " length " << j << " wrote too much data"; |
| } |
| } |
| delete[] data; |
| delete[] expected; |
| } |
| |
| TEST(libbacktrace, thread_read) { |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| pthread_t thread; |
| thread_t thread_data = { 0, 0, 0, nullptr }; |
| ASSERT_TRUE(pthread_create(&thread, &attr, ThreadReadTest, &thread_data) == 0); |
| |
| ASSERT_TRUE(WaitForNonZero(&thread_data.state, 10)); |
| |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| |
| RunReadTest(backtrace.get(), reinterpret_cast<uintptr_t>(thread_data.data)); |
| |
| android_atomic_acquire_store(0, &thread_data.state); |
| |
| ASSERT_TRUE(WaitForNonZero(&thread_data.state, 10)); |
| } |
| |
| volatile uintptr_t g_ready = 0; |
| volatile uintptr_t g_addr = 0; |
| |
| static void ForkedReadTest() { |
| // Create two map pages. |
| size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE)); |
| uint8_t* memory; |
| if (posix_memalign(reinterpret_cast<void**>(&memory), pagesize, 2 * pagesize) != 0) { |
| perror("Failed to allocate memory\n"); |
| exit(1); |
| } |
| |
| // Mark the second page as not-readable. |
| if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) { |
| perror("Failed to mprotect memory\n"); |
| exit(1); |
| } |
| |
| // Set up a simple pattern in memory. |
| InitMemory(memory, pagesize); |
| |
| g_addr = reinterpret_cast<uintptr_t>(memory); |
| g_ready = 1; |
| |
| while (1) { |
| usleep(US_PER_MSEC); |
| } |
| } |
| |
| TEST(libbacktrace, process_read) { |
| g_ready = 0; |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| ForkedReadTest(); |
| exit(0); |
| } |
| ASSERT_NE(-1, pid); |
| |
| bool test_executed = false; |
| uint64_t start = NanoTime(); |
| while (1) { |
| if (ptrace(PTRACE_ATTACH, pid, 0, 0) == 0) { |
| WaitForStop(pid); |
| |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| |
| uintptr_t read_addr; |
| size_t bytes_read = backtrace->Read(reinterpret_cast<uintptr_t>(&g_ready), |
| reinterpret_cast<uint8_t*>(&read_addr), |
| sizeof(uintptr_t)); |
| ASSERT_EQ(sizeof(uintptr_t), bytes_read); |
| if (read_addr) { |
| // The forked process is ready to be read. |
| bytes_read = backtrace->Read(reinterpret_cast<uintptr_t>(&g_addr), |
| reinterpret_cast<uint8_t*>(&read_addr), |
| sizeof(uintptr_t)); |
| ASSERT_EQ(sizeof(uintptr_t), bytes_read); |
| |
| RunReadTest(backtrace.get(), read_addr); |
| |
| test_executed = true; |
| break; |
| } |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); |
| } |
| if ((NanoTime() - start) > 5 * NS_PER_SEC) { |
| break; |
| } |
| usleep(US_PER_MSEC); |
| } |
| kill(pid, SIGKILL); |
| ASSERT_EQ(waitpid(pid, nullptr, 0), pid); |
| |
| ASSERT_TRUE(test_executed); |
| } |
| |
| static void VerifyFunctionsFound(const std::vector<std::string>& found_functions) { |
| // We expect to find these functions in libbacktrace_test. If we don't |
| // find them, that's a bug in the memory read handling code in libunwind. |
| std::list<std::string> expected_functions; |
| expected_functions.push_back("test_recursive_call"); |
| expected_functions.push_back("test_level_one"); |
| expected_functions.push_back("test_level_two"); |
| expected_functions.push_back("test_level_three"); |
| expected_functions.push_back("test_level_four"); |
| for (const auto& found_function : found_functions) { |
| for (const auto& expected_function : expected_functions) { |
| if (found_function == expected_function) { |
| expected_functions.remove(found_function); |
| break; |
| } |
| } |
| } |
| ASSERT_TRUE(expected_functions.empty()) << "Not all functions found in shared library."; |
| } |
| |
| static const char* CopySharedLibrary() { |
| #if defined(__LP64__) |
| const char* lib_name = "lib64"; |
| #else |
| const char* lib_name = "lib"; |
| #endif |
| |
| #if defined(__BIONIC__) |
| const char* tmp_so_name = "/data/local/tmp/libbacktrace_test.so"; |
| std::string cp_cmd = android::base::StringPrintf("cp /system/%s/libbacktrace_test.so %s", |
| lib_name, tmp_so_name); |
| #else |
| const char* tmp_so_name = "/tmp/libbacktrace_test.so"; |
| if (getenv("ANDROID_HOST_OUT") == NULL) { |
| fprintf(stderr, "ANDROID_HOST_OUT not set, make sure you run lunch."); |
| return nullptr; |
| } |
| std::string cp_cmd = android::base::StringPrintf("cp %s/%s/libbacktrace_test.so %s", |
| getenv("ANDROID_HOST_OUT"), lib_name, |
| tmp_so_name); |
| #endif |
| |
| // Copy the shared so to a tempory directory. |
| system(cp_cmd.c_str()); |
| |
| return tmp_so_name; |
| } |
| |
| TEST(libbacktrace, check_unreadable_elf_local) { |
| const char* tmp_so_name = CopySharedLibrary(); |
| ASSERT_TRUE(tmp_so_name != nullptr); |
| |
| struct stat buf; |
| ASSERT_TRUE(stat(tmp_so_name, &buf) != -1); |
| uintptr_t map_size = buf.st_size; |
| |
| int fd = open(tmp_so_name, O_RDONLY); |
| ASSERT_TRUE(fd != -1); |
| |
| void* map = mmap(NULL, map_size, PROT_READ | PROT_EXEC, MAP_PRIVATE, fd, 0); |
| ASSERT_TRUE(map != MAP_FAILED); |
| close(fd); |
| ASSERT_TRUE(unlink(tmp_so_name) != -1); |
| |
| std::vector<std::string> found_functions; |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, |
| BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| |
| // Needed before GetFunctionName will work. |
| backtrace->Unwind(0); |
| |
| // Loop through the entire map, and get every function we can find. |
| map_size += reinterpret_cast<uintptr_t>(map); |
| std::string last_func; |
| for (uintptr_t read_addr = reinterpret_cast<uintptr_t>(map); |
| read_addr < map_size; read_addr += 4) { |
| uintptr_t offset; |
| std::string func_name = backtrace->GetFunctionName(read_addr, &offset); |
| if (!func_name.empty() && last_func != func_name) { |
| found_functions.push_back(func_name); |
| } |
| last_func = func_name; |
| } |
| |
| ASSERT_TRUE(munmap(map, map_size - reinterpret_cast<uintptr_t>(map)) == 0); |
| |
| VerifyFunctionsFound(found_functions); |
| } |
| |
| TEST(libbacktrace, check_unreadable_elf_remote) { |
| const char* tmp_so_name = CopySharedLibrary(); |
| ASSERT_TRUE(tmp_so_name != nullptr); |
| |
| g_ready = 0; |
| |
| struct stat buf; |
| ASSERT_TRUE(stat(tmp_so_name, &buf) != -1); |
| uintptr_t map_size = buf.st_size; |
| |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| int fd = open(tmp_so_name, O_RDONLY); |
| if (fd == -1) { |
| fprintf(stderr, "Failed to open file %s: %s\n", tmp_so_name, strerror(errno)); |
| unlink(tmp_so_name); |
| exit(0); |
| } |
| |
| void* map = mmap(NULL, map_size, PROT_READ | PROT_EXEC, MAP_PRIVATE, fd, 0); |
| if (map == MAP_FAILED) { |
| fprintf(stderr, "Failed to map in memory: %s\n", strerror(errno)); |
| unlink(tmp_so_name); |
| exit(0); |
| } |
| close(fd); |
| if (unlink(tmp_so_name) == -1) { |
| fprintf(stderr, "Failed to unlink: %s\n", strerror(errno)); |
| exit(0); |
| } |
| |
| g_addr = reinterpret_cast<uintptr_t>(map); |
| g_ready = 1; |
| while (true) { |
| usleep(US_PER_MSEC); |
| } |
| exit(0); |
| } |
| ASSERT_TRUE(pid > 0); |
| |
| std::vector<std::string> found_functions; |
| uint64_t start = NanoTime(); |
| while (true) { |
| ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); |
| |
| // Wait for the process to get to a stopping point. |
| WaitForStop(pid); |
| |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| |
| uintptr_t read_addr; |
| ASSERT_EQ(sizeof(uintptr_t), backtrace->Read(reinterpret_cast<uintptr_t>(&g_ready), reinterpret_cast<uint8_t*>(&read_addr), sizeof(uintptr_t))); |
| if (read_addr) { |
| ASSERT_EQ(sizeof(uintptr_t), backtrace->Read(reinterpret_cast<uintptr_t>(&g_addr), reinterpret_cast<uint8_t*>(&read_addr), sizeof(uintptr_t))); |
| |
| // Needed before GetFunctionName will work. |
| backtrace->Unwind(0); |
| |
| // Loop through the entire map, and get every function we can find. |
| map_size += read_addr; |
| std::string last_func; |
| for (; read_addr < map_size; read_addr += 4) { |
| uintptr_t offset; |
| std::string func_name = backtrace->GetFunctionName(read_addr, &offset); |
| if (!func_name.empty() && last_func != func_name) { |
| found_functions.push_back(func_name); |
| } |
| last_func = func_name; |
| } |
| break; |
| } |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); |
| |
| if ((NanoTime() - start) > 5 * NS_PER_SEC) { |
| break; |
| } |
| usleep(US_PER_MSEC); |
| } |
| |
| kill(pid, SIGKILL); |
| ASSERT_EQ(waitpid(pid, nullptr, 0), pid); |
| |
| VerifyFunctionsFound(found_functions); |
| } |
| |
| static bool FindFuncFrameInBacktrace(Backtrace* backtrace, uintptr_t test_func, size_t* frame_num) { |
| backtrace_map_t map; |
| backtrace->FillInMap(test_func, &map); |
| if (!BacktraceMap::IsValid(map)) { |
| return false; |
| } |
| |
| // Loop through the frames, and find the one that is in the map. |
| *frame_num = 0; |
| for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) { |
| if (BacktraceMap::IsValid(it->map) && map.start == it->map.start && |
| it->pc >= test_func) { |
| *frame_num = it->num; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static void VerifyUnreadableElfFrame(Backtrace* backtrace, uintptr_t test_func, size_t frame_num) { |
| ASSERT_LT(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)) |
| << DumpFrames(backtrace); |
| |
| ASSERT_TRUE(frame_num != 0) << DumpFrames(backtrace); |
| // Make sure that there is at least one more frame above the test func call. |
| ASSERT_LT(frame_num, backtrace->NumFrames()) << DumpFrames(backtrace); |
| |
| uintptr_t diff = backtrace->GetFrame(frame_num)->pc - test_func; |
| ASSERT_LT(diff, 200U) << DumpFrames(backtrace); |
| } |
| |
| static void VerifyUnreadableElfBacktrace(uintptr_t test_func) { |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, |
| BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| |
| size_t frame_num; |
| ASSERT_TRUE(FindFuncFrameInBacktrace(backtrace.get(), test_func, &frame_num)); |
| |
| VerifyUnreadableElfFrame(backtrace.get(), test_func, frame_num); |
| } |
| |
| typedef int (*test_func_t)(int, int, int, int, void (*)(uintptr_t), uintptr_t); |
| |
| TEST(libbacktrace, unwind_through_unreadable_elf_local) { |
| const char* tmp_so_name = CopySharedLibrary(); |
| ASSERT_TRUE(tmp_so_name != nullptr); |
| void* lib_handle = dlopen(tmp_so_name, RTLD_NOW); |
| ASSERT_TRUE(lib_handle != nullptr); |
| ASSERT_TRUE(unlink(tmp_so_name) != -1); |
| |
| test_func_t test_func; |
| test_func = reinterpret_cast<test_func_t>(dlsym(lib_handle, "test_level_one")); |
| ASSERT_TRUE(test_func != nullptr); |
| |
| ASSERT_NE(test_func(1, 2, 3, 4, VerifyUnreadableElfBacktrace, |
| reinterpret_cast<uintptr_t>(test_func)), 0); |
| |
| ASSERT_TRUE(dlclose(lib_handle) == 0); |
| } |
| |
| TEST(libbacktrace, unwind_through_unreadable_elf_remote) { |
| const char* tmp_so_name = CopySharedLibrary(); |
| ASSERT_TRUE(tmp_so_name != nullptr); |
| void* lib_handle = dlopen(tmp_so_name, RTLD_NOW); |
| ASSERT_TRUE(lib_handle != nullptr); |
| ASSERT_TRUE(unlink(tmp_so_name) != -1); |
| |
| test_func_t test_func; |
| test_func = reinterpret_cast<test_func_t>(dlsym(lib_handle, "test_level_one")); |
| ASSERT_TRUE(test_func != nullptr); |
| |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| test_func(1, 2, 3, 4, 0, 0); |
| exit(0); |
| } |
| ASSERT_TRUE(pid > 0); |
| ASSERT_TRUE(dlclose(lib_handle) == 0); |
| |
| uint64_t start = NanoTime(); |
| bool done = false; |
| while (!done) { |
| ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); |
| |
| // Wait for the process to get to a stopping point. |
| WaitForStop(pid); |
| |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| |
| size_t frame_num; |
| if (FindFuncFrameInBacktrace(backtrace.get(), |
| reinterpret_cast<uintptr_t>(test_func), &frame_num)) { |
| |
| VerifyUnreadableElfFrame(backtrace.get(), reinterpret_cast<uintptr_t>(test_func), frame_num); |
| done = true; |
| } |
| |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); |
| |
| if ((NanoTime() - start) > 5 * NS_PER_SEC) { |
| break; |
| } |
| usleep(US_PER_MSEC); |
| } |
| |
| kill(pid, SIGKILL); |
| ASSERT_EQ(waitpid(pid, nullptr, 0), pid); |
| |
| ASSERT_TRUE(done) << "Test function never found in unwind."; |
| } |
| |
| TEST(libbacktrace, unwind_thread_doesnt_exist) { |
| std::unique_ptr<Backtrace> backtrace( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, 99999999)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| ASSERT_FALSE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_ERROR_THREAD_DOESNT_EXIST, backtrace->GetError()); |
| } |
| |
| TEST(libbacktrace, local_get_function_name_before_unwind) { |
| std::unique_ptr<Backtrace> backtrace( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace.get() != nullptr); |
| |
| // Verify that trying to get a function name before doing an unwind works. |
| uintptr_t cur_func_offset = reinterpret_cast<uintptr_t>(&test_level_one) + 1; |
| size_t offset; |
| ASSERT_NE(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset)); |
| } |
| |
| TEST(libbacktrace, remote_get_function_name_before_unwind) { |
| pid_t pid; |
| CreateRemoteProcess(&pid); |
| |
| // Now create an unwind object. |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); |
| |
| // Verify that trying to get a function name before doing an unwind works. |
| uintptr_t cur_func_offset = reinterpret_cast<uintptr_t>(&test_level_one) + 1; |
| size_t offset; |
| ASSERT_NE(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset)); |
| |
| FinishRemoteProcess(pid); |
| } |
| |
| static void SetUcontextSp(uintptr_t sp, ucontext_t* ucontext) { |
| #if defined(__arm__) |
| ucontext->uc_mcontext.arm_sp = sp; |
| #elif defined(__aarch64__) |
| ucontext->uc_mcontext.sp = sp; |
| #elif defined(__i386__) |
| ucontext->uc_mcontext.gregs[REG_ESP] = sp; |
| #elif defined(__x86_64__) |
| ucontext->uc_mcontext.gregs[REG_RSP] = sp; |
| #else |
| UNUSED(sp); |
| UNUSED(ucontext); |
| ASSERT_TRUE(false) << "Unsupported architecture"; |
| #endif |
| } |
| |
| static void SetUcontextPc(uintptr_t pc, ucontext_t* ucontext) { |
| #if defined(__arm__) |
| ucontext->uc_mcontext.arm_pc = pc; |
| #elif defined(__aarch64__) |
| ucontext->uc_mcontext.pc = pc; |
| #elif defined(__i386__) |
| ucontext->uc_mcontext.gregs[REG_EIP] = pc; |
| #elif defined(__x86_64__) |
| ucontext->uc_mcontext.gregs[REG_RIP] = pc; |
| #else |
| UNUSED(pc); |
| UNUSED(ucontext); |
| ASSERT_TRUE(false) << "Unsupported architecture"; |
| #endif |
| } |
| |
| static void SetUcontextLr(uintptr_t lr, ucontext_t* ucontext) { |
| #if defined(__arm__) |
| ucontext->uc_mcontext.arm_lr = lr; |
| #elif defined(__aarch64__) |
| ucontext->uc_mcontext.regs[30] = lr; |
| #elif defined(__i386__) |
| // The lr is on the stack. |
| ASSERT_TRUE(lr != 0); |
| ASSERT_TRUE(ucontext != nullptr); |
| #elif defined(__x86_64__) |
| // The lr is on the stack. |
| ASSERT_TRUE(lr != 0); |
| ASSERT_TRUE(ucontext != nullptr); |
| #else |
| UNUSED(lr); |
| UNUSED(ucontext); |
| ASSERT_TRUE(false) << "Unsupported architecture"; |
| #endif |
| } |
| |
| static constexpr size_t DEVICE_MAP_SIZE = 1024; |
| |
| static void SetupDeviceMap(void** device_map) { |
| // Make sure that anything in a device map will result in fails |
| // to read. |
| android::base::unique_fd device_fd(open("/dev/zero", O_RDONLY | O_CLOEXEC)); |
| |
| *device_map = mmap(nullptr, 1024, PROT_READ, MAP_PRIVATE, device_fd, 0); |
| ASSERT_TRUE(*device_map != MAP_FAILED); |
| |
| // Make sure the map is readable. |
| ASSERT_EQ(0, reinterpret_cast<int*>(*device_map)[0]); |
| } |
| |
| static void UnwindFromDevice(Backtrace* backtrace, void* device_map) { |
| uintptr_t device_map_uint = reinterpret_cast<uintptr_t>(device_map); |
| |
| backtrace_map_t map; |
| backtrace->FillInMap(device_map_uint, &map); |
| // Verify the flag is set. |
| ASSERT_EQ(PROT_DEVICE_MAP, map.flags & PROT_DEVICE_MAP); |
| |
| // Quick sanity checks. |
| size_t offset; |
| ASSERT_EQ(std::string(""), backtrace->GetFunctionName(device_map_uint, &offset)); |
| ASSERT_EQ(std::string(""), backtrace->GetFunctionName(device_map_uint, &offset, &map)); |
| ASSERT_EQ(std::string(""), backtrace->GetFunctionName(0, &offset)); |
| |
| uintptr_t cur_func_offset = reinterpret_cast<uintptr_t>(&test_level_one) + 1; |
| // Now verify the device map flag actually causes the function name to be empty. |
| backtrace->FillInMap(cur_func_offset, &map); |
| ASSERT_TRUE((map.flags & PROT_DEVICE_MAP) == 0); |
| ASSERT_NE(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset, &map)); |
| map.flags |= PROT_DEVICE_MAP; |
| ASSERT_EQ(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset, &map)); |
| |
| ucontext_t ucontext; |
| |
| // Create a context that has the pc in the device map, but the sp |
| // in a non-device map. |
| memset(&ucontext, 0, sizeof(ucontext)); |
| SetUcontextSp(reinterpret_cast<uintptr_t>(&ucontext), &ucontext); |
| SetUcontextPc(device_map_uint, &ucontext); |
| SetUcontextLr(cur_func_offset, &ucontext); |
| |
| ASSERT_TRUE(backtrace->Unwind(0, &ucontext)); |
| |
| // The buffer should only be a single element. |
| ASSERT_EQ(1U, backtrace->NumFrames()); |
| const backtrace_frame_data_t* frame = backtrace->GetFrame(0); |
| ASSERT_EQ(device_map_uint, frame->pc); |
| ASSERT_EQ(reinterpret_cast<uintptr_t>(&ucontext), frame->sp); |
| |
| // Check what happens when skipping the first frame. |
| ASSERT_TRUE(backtrace->Unwind(1, &ucontext)); |
| ASSERT_EQ(0U, backtrace->NumFrames()); |
| |
| // Create a context that has the sp in the device map, but the pc |
| // in a non-device map. |
| memset(&ucontext, 0, sizeof(ucontext)); |
| SetUcontextSp(device_map_uint, &ucontext); |
| SetUcontextPc(cur_func_offset, &ucontext); |
| SetUcontextLr(cur_func_offset, &ucontext); |
| |
| ASSERT_TRUE(backtrace->Unwind(0, &ucontext)); |
| |
| // The buffer should only be a single element. |
| ASSERT_EQ(1U, backtrace->NumFrames()); |
| frame = backtrace->GetFrame(0); |
| ASSERT_EQ(cur_func_offset, frame->pc); |
| ASSERT_EQ(device_map_uint, frame->sp); |
| |
| // Check what happens when skipping the first frame. |
| ASSERT_TRUE(backtrace->Unwind(1, &ucontext)); |
| ASSERT_EQ(0U, backtrace->NumFrames()); |
| } |
| |
| TEST(libbacktrace, unwind_disallow_device_map_local) { |
| void* device_map; |
| SetupDeviceMap(&device_map); |
| |
| // Now create an unwind object. |
| std::unique_ptr<Backtrace> backtrace( |
| Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); |
| ASSERT_TRUE(backtrace); |
| |
| UnwindFromDevice(backtrace.get(), device_map); |
| |
| munmap(device_map, DEVICE_MAP_SIZE); |
| } |
| |
| TEST(libbacktrace, unwind_disallow_device_map_remote) { |
| void* device_map; |
| SetupDeviceMap(&device_map); |
| |
| // Fork a process to do a remote backtrace. |
| pid_t pid; |
| CreateRemoteProcess(&pid); |
| |
| // Now create an unwind object. |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); |
| |
| // TODO: Currently unwind from context doesn't work on remote |
| // unwind. Keep this test because the new unwinder should support |
| // this eventually, or we can delete this test. |
| // properly with unwind from context. |
| // UnwindFromDevice(backtrace.get(), device_map); |
| |
| FinishRemoteProcess(pid); |
| |
| munmap(device_map, DEVICE_MAP_SIZE); |
| } |
| |
| class ScopedSignalHandler { |
| public: |
| ScopedSignalHandler(int signal_number, void (*handler)(int)) : signal_number_(signal_number) { |
| memset(&action_, 0, sizeof(action_)); |
| action_.sa_handler = handler; |
| sigaction(signal_number_, &action_, &old_action_); |
| } |
| |
| ScopedSignalHandler(int signal_number, void (*action)(int, siginfo_t*, void*)) |
| : signal_number_(signal_number) { |
| memset(&action_, 0, sizeof(action_)); |
| action_.sa_flags = SA_SIGINFO; |
| action_.sa_sigaction = action; |
| sigaction(signal_number_, &action_, &old_action_); |
| } |
| |
| ~ScopedSignalHandler() { sigaction(signal_number_, &old_action_, nullptr); } |
| |
| private: |
| struct sigaction action_; |
| struct sigaction old_action_; |
| const int signal_number_; |
| }; |
| |
| static void SetValueAndLoop(void* data) { |
| volatile int* value = reinterpret_cast<volatile int*>(data); |
| |
| *value = 1; |
| for (volatile int i = 0;; i++) |
| ; |
| } |
| |
| static void UnwindThroughSignal(bool use_action) { |
| volatile int value = 0; |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| if (use_action) { |
| ScopedSignalHandler ssh(SIGUSR1, test_signal_action); |
| |
| test_level_one(1, 2, 3, 4, SetValueAndLoop, const_cast<int*>(&value)); |
| } else { |
| ScopedSignalHandler ssh(SIGUSR1, test_signal_handler); |
| |
| test_level_one(1, 2, 3, 4, SetValueAndLoop, const_cast<int*>(&value)); |
| } |
| } |
| ASSERT_NE(-1, pid); |
| |
| int read_value = 0; |
| uint64_t start = NanoTime(); |
| while (read_value == 0) { |
| usleep(1000); |
| |
| // Loop until the remote function gets into the final function. |
| ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); |
| |
| WaitForStop(pid); |
| |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); |
| |
| size_t bytes_read = backtrace->Read(reinterpret_cast<uintptr_t>(const_cast<int*>(&value)), |
| reinterpret_cast<uint8_t*>(&read_value), sizeof(read_value)); |
| ASSERT_EQ(sizeof(read_value), bytes_read); |
| |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); |
| |
| ASSERT_TRUE(NanoTime() - start < 5 * NS_PER_SEC) |
| << "Remote process did not execute far enough in 5 seconds."; |
| } |
| |
| // Now need to send a signal to the remote process. |
| kill(pid, SIGUSR1); |
| |
| // Wait for the process to get to the signal handler loop. |
| Backtrace::const_iterator frame_iter; |
| start = NanoTime(); |
| std::unique_ptr<Backtrace> backtrace; |
| while (true) { |
| usleep(1000); |
| |
| ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); |
| |
| WaitForStop(pid); |
| |
| backtrace.reset(Backtrace::Create(pid, pid)); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| bool found = false; |
| for (frame_iter = backtrace->begin(); frame_iter != backtrace->end(); ++frame_iter) { |
| if (frame_iter->func_name == "test_loop_forever") { |
| ++frame_iter; |
| found = true; |
| break; |
| } |
| } |
| if (found) { |
| break; |
| } |
| |
| ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); |
| |
| ASSERT_TRUE(NanoTime() - start < 5 * NS_PER_SEC) |
| << "Remote process did not get in signal handler in 5 seconds." << std::endl |
| << DumpFrames(backtrace.get()); |
| } |
| |
| std::vector<std::string> names; |
| // Loop through the frames, and save the function names. |
| size_t frame = 0; |
| for (; frame_iter != backtrace->end(); ++frame_iter) { |
| if (frame_iter->func_name == "test_level_four") { |
| frame = names.size() + 1; |
| } |
| names.push_back(frame_iter->func_name); |
| } |
| ASSERT_NE(0U, frame) << "Unable to find test_level_four in backtrace" << std::endl |
| << DumpFrames(backtrace.get()); |
| |
| // The expected order of the frames: |
| // test_loop_forever |
| // test_signal_handler|test_signal_action |
| // <OPTIONAL_FRAME> May or may not exist. |
| // SetValueAndLoop (but the function name might be empty) |
| // test_level_four |
| // test_level_three |
| // test_level_two |
| // test_level_one |
| ASSERT_LE(frame + 2, names.size()) << DumpFrames(backtrace.get()); |
| ASSERT_LE(2U, frame) << DumpFrames(backtrace.get()); |
| if (use_action) { |
| ASSERT_EQ("test_signal_action", names[0]) << DumpFrames(backtrace.get()); |
| } else { |
| ASSERT_EQ("test_signal_handler", names[0]) << DumpFrames(backtrace.get()); |
| } |
| ASSERT_EQ("test_level_three", names[frame]) << DumpFrames(backtrace.get()); |
| ASSERT_EQ("test_level_two", names[frame + 1]) << DumpFrames(backtrace.get()); |
| ASSERT_EQ("test_level_one", names[frame + 2]) << DumpFrames(backtrace.get()); |
| |
| FinishRemoteProcess(pid); |
| } |
| |
| TEST(libbacktrace, unwind_remote_through_signal_using_handler) { UnwindThroughSignal(false); } |
| |
| TEST(libbacktrace, unwind_remote_through_signal_using_action) { UnwindThroughSignal(true); } |
| |
| #if defined(ENABLE_PSS_TESTS) |
| #include "GetPss.h" |
| |
| #define MAX_LEAK_BYTES (32*1024UL) |
| |
| static void CheckForLeak(pid_t pid, pid_t tid) { |
| // Do a few runs to get the PSS stable. |
| for (size_t i = 0; i < 100; i++) { |
| Backtrace* backtrace = Backtrace::Create(pid, tid); |
| ASSERT_TRUE(backtrace != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| delete backtrace; |
| } |
| size_t stable_pss = GetPssBytes(); |
| ASSERT_TRUE(stable_pss != 0); |
| |
| // Loop enough that even a small leak should be detectable. |
| for (size_t i = 0; i < 4096; i++) { |
| Backtrace* backtrace = Backtrace::Create(pid, tid); |
| ASSERT_TRUE(backtrace != nullptr); |
| ASSERT_TRUE(backtrace->Unwind(0)); |
| ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, backtrace->GetError()); |
| delete backtrace; |
| } |
| size_t new_pss = GetPssBytes(); |
| ASSERT_TRUE(new_pss != 0); |
| if (new_pss > stable_pss) { |
| ASSERT_LE(new_pss - stable_pss, MAX_LEAK_BYTES); |
| } |
| } |
| |
| TEST(libbacktrace, check_for_leak_local) { |
| CheckForLeak(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD); |
| } |
| |
| TEST(libbacktrace, check_for_leak_local_thread) { |
| thread_t thread_data = { 0, 0, 0, nullptr }; |
| pthread_t thread; |
| ASSERT_TRUE(pthread_create(&thread, nullptr, ThreadLevelRun, &thread_data) == 0); |
| |
| // Wait up to 2 seconds for the tid to be set. |
| ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); |
| |
| CheckForLeak(BACKTRACE_CURRENT_PROCESS, thread_data.tid); |
| |
| // Tell the thread to exit its infinite loop. |
| android_atomic_acquire_store(0, &thread_data.state); |
| |
| ASSERT_TRUE(pthread_join(thread, nullptr) == 0); |
| } |
| |
| TEST(libbacktrace, check_for_leak_remote) { |
| pid_t pid; |
| CreateRemoteProcess(&pid); |
| |
| CheckForLeak(pid, BACKTRACE_CURRENT_THREAD); |
| |
| FinishRemoteProcess(pid); |
| } |
| #endif |