| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "lowmemorykiller" |
| |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <pwd.h> |
| #include <sched.h> |
| #include <signal.h> |
| #include <stdbool.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/cdefs.h> |
| #include <sys/epoll.h> |
| #include <sys/eventfd.h> |
| #include <sys/mman.h> |
| #include <sys/socket.h> |
| #include <sys/sysinfo.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <cutils/properties.h> |
| #include <cutils/sockets.h> |
| #include <lmkd.h> |
| #include <log/log.h> |
| |
| /* |
| * Define LMKD_TRACE_KILLS to record lmkd kills in kernel traces |
| * to profile and correlate with OOM kills |
| */ |
| #ifdef LMKD_TRACE_KILLS |
| |
| #define ATRACE_TAG ATRACE_TAG_ALWAYS |
| #include <cutils/trace.h> |
| |
| #define TRACE_KILL_START(pid) ATRACE_INT(__FUNCTION__, pid); |
| #define TRACE_KILL_END() ATRACE_INT(__FUNCTION__, 0); |
| |
| #else /* LMKD_TRACE_KILLS */ |
| |
| #define TRACE_KILL_START(pid) ((void)(pid)) |
| #define TRACE_KILL_END() ((void)0) |
| |
| #endif /* LMKD_TRACE_KILLS */ |
| |
| #ifndef __unused |
| #define __unused __attribute__((__unused__)) |
| #endif |
| |
| #define MEMCG_SYSFS_PATH "/dev/memcg/" |
| #define MEMCG_MEMORY_USAGE "/dev/memcg/memory.usage_in_bytes" |
| #define MEMCG_MEMORYSW_USAGE "/dev/memcg/memory.memsw.usage_in_bytes" |
| #define ZONEINFO_PATH "/proc/zoneinfo" |
| #define MEMINFO_PATH "/proc/meminfo" |
| #define LINE_MAX 128 |
| |
| /* gid containing AID_SYSTEM required */ |
| #define INKERNEL_MINFREE_PATH "/sys/module/lowmemorykiller/parameters/minfree" |
| #define INKERNEL_ADJ_PATH "/sys/module/lowmemorykiller/parameters/adj" |
| |
| #define ARRAY_SIZE(x) (sizeof(x) / sizeof(*(x))) |
| #define EIGHT_MEGA (1 << 23) |
| |
| /* Defined as ProcessList.SYSTEM_ADJ in ProcessList.java */ |
| #define SYSTEM_ADJ (-900) |
| |
| /* default to old in-kernel interface if no memory pressure events */ |
| static bool use_inkernel_interface = true; |
| static bool has_inkernel_module; |
| |
| /* memory pressure levels */ |
| enum vmpressure_level { |
| VMPRESS_LEVEL_LOW = 0, |
| VMPRESS_LEVEL_MEDIUM, |
| VMPRESS_LEVEL_CRITICAL, |
| VMPRESS_LEVEL_COUNT |
| }; |
| |
| static const char *level_name[] = { |
| "low", |
| "medium", |
| "critical" |
| }; |
| |
| struct { |
| int64_t min_nr_free_pages; /* recorded but not used yet */ |
| int64_t max_nr_free_pages; |
| } low_pressure_mem = { -1, -1 }; |
| |
| static int level_oomadj[VMPRESS_LEVEL_COUNT]; |
| static int mpevfd[VMPRESS_LEVEL_COUNT] = { -1, -1, -1 }; |
| static bool debug_process_killing; |
| static bool enable_pressure_upgrade; |
| static int64_t upgrade_pressure; |
| static int64_t downgrade_pressure; |
| static bool low_ram_device; |
| static bool kill_heaviest_task; |
| static unsigned long kill_timeout_ms; |
| static bool use_minfree_levels; |
| static bool per_app_memcg; |
| |
| /* data required to handle events */ |
| struct event_handler_info { |
| int data; |
| void (*handler)(int data, uint32_t events); |
| }; |
| |
| /* data required to handle socket events */ |
| struct sock_event_handler_info { |
| int sock; |
| struct event_handler_info handler_info; |
| }; |
| |
| /* max supported number of data connections */ |
| #define MAX_DATA_CONN 2 |
| |
| /* socket event handler data */ |
| static struct sock_event_handler_info ctrl_sock; |
| static struct sock_event_handler_info data_sock[MAX_DATA_CONN]; |
| |
| /* vmpressure event handler data */ |
| static struct event_handler_info vmpressure_hinfo[VMPRESS_LEVEL_COUNT]; |
| |
| /* 3 memory pressure levels, 1 ctrl listen socket, 2 ctrl data socket */ |
| #define MAX_EPOLL_EVENTS (1 + MAX_DATA_CONN + VMPRESS_LEVEL_COUNT) |
| static int epollfd; |
| static int maxevents; |
| |
| /* OOM score values used by both kernel and framework */ |
| #define OOM_SCORE_ADJ_MIN (-1000) |
| #define OOM_SCORE_ADJ_MAX 1000 |
| |
| static int lowmem_adj[MAX_TARGETS]; |
| static int lowmem_minfree[MAX_TARGETS]; |
| static int lowmem_targets_size; |
| |
| /* Fields to parse in /proc/zoneinfo */ |
| enum zoneinfo_field { |
| ZI_NR_FREE_PAGES = 0, |
| ZI_NR_FILE_PAGES, |
| ZI_NR_SHMEM, |
| ZI_NR_UNEVICTABLE, |
| ZI_WORKINGSET_REFAULT, |
| ZI_HIGH, |
| ZI_FIELD_COUNT |
| }; |
| |
| static const char* const zoneinfo_field_names[ZI_FIELD_COUNT] = { |
| "nr_free_pages", |
| "nr_file_pages", |
| "nr_shmem", |
| "nr_unevictable", |
| "workingset_refault", |
| "high", |
| }; |
| |
| union zoneinfo { |
| struct { |
| int64_t nr_free_pages; |
| int64_t nr_file_pages; |
| int64_t nr_shmem; |
| int64_t nr_unevictable; |
| int64_t workingset_refault; |
| int64_t high; |
| /* fields below are calculated rather than read from the file */ |
| int64_t totalreserve_pages; |
| } field; |
| int64_t arr[ZI_FIELD_COUNT]; |
| }; |
| |
| /* Fields to parse in /proc/meminfo */ |
| enum meminfo_field { |
| MI_NR_FREE_PAGES = 0, |
| MI_CACHED, |
| MI_SWAP_CACHED, |
| MI_BUFFERS, |
| MI_SHMEM, |
| MI_UNEVICTABLE, |
| MI_FREE_SWAP, |
| MI_DIRTY, |
| MI_FIELD_COUNT |
| }; |
| |
| static const char* const meminfo_field_names[MI_FIELD_COUNT] = { |
| "MemFree:", |
| "Cached:", |
| "SwapCached:", |
| "Buffers:", |
| "Shmem:", |
| "Unevictable:", |
| "SwapFree:", |
| "Dirty:", |
| }; |
| |
| union meminfo { |
| struct { |
| int64_t nr_free_pages; |
| int64_t cached; |
| int64_t swap_cached; |
| int64_t buffers; |
| int64_t shmem; |
| int64_t unevictable; |
| int64_t free_swap; |
| int64_t dirty; |
| /* fields below are calculated rather than read from the file */ |
| int64_t nr_file_pages; |
| } field; |
| int64_t arr[MI_FIELD_COUNT]; |
| }; |
| |
| enum field_match_result { |
| NO_MATCH, |
| PARSE_FAIL, |
| PARSE_SUCCESS |
| }; |
| |
| struct adjslot_list { |
| struct adjslot_list *next; |
| struct adjslot_list *prev; |
| }; |
| |
| struct proc { |
| struct adjslot_list asl; |
| int pid; |
| uid_t uid; |
| int oomadj; |
| struct proc *pidhash_next; |
| }; |
| |
| struct reread_data { |
| const char* const filename; |
| int fd; |
| }; |
| |
| #define PIDHASH_SZ 1024 |
| static struct proc *pidhash[PIDHASH_SZ]; |
| #define pid_hashfn(x) ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1)) |
| |
| #define ADJTOSLOT(adj) ((adj) + -OOM_SCORE_ADJ_MIN) |
| static struct adjslot_list procadjslot_list[ADJTOSLOT(OOM_SCORE_ADJ_MAX) + 1]; |
| |
| /* PAGE_SIZE / 1024 */ |
| static long page_k; |
| |
| static bool parse_int64(const char* str, int64_t* ret) { |
| char* endptr; |
| long long val = strtoll(str, &endptr, 10); |
| if (str == endptr || val > INT64_MAX) { |
| return false; |
| } |
| *ret = (int64_t)val; |
| return true; |
| } |
| |
| static enum field_match_result match_field(const char* cp, const char* ap, |
| const char* const field_names[], |
| int field_count, int64_t* field, |
| int *field_idx) { |
| int64_t val; |
| int i; |
| |
| for (i = 0; i < field_count; i++) { |
| if (!strcmp(cp, field_names[i])) { |
| *field_idx = i; |
| return parse_int64(ap, field) ? PARSE_SUCCESS : PARSE_FAIL; |
| } |
| } |
| return NO_MATCH; |
| } |
| |
| /* |
| * Read file content from the beginning up to max_len bytes or EOF |
| * whichever happens first. |
| */ |
| static ssize_t read_all(int fd, char *buf, size_t max_len) |
| { |
| ssize_t ret = 0; |
| off_t offset = 0; |
| |
| while (max_len > 0) { |
| ssize_t r = TEMP_FAILURE_RETRY(pread(fd, buf, max_len, offset)); |
| if (r == 0) { |
| break; |
| } |
| if (r == -1) { |
| return -1; |
| } |
| ret += r; |
| buf += r; |
| offset += r; |
| max_len -= r; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Read a new or already opened file from the beginning. |
| * If the file has not been opened yet data->fd should be set to -1. |
| * To be used with files which are read often and possibly during high |
| * memory pressure to minimize file opening which by itself requires kernel |
| * memory allocation and might result in a stall on memory stressed system. |
| */ |
| static int reread_file(struct reread_data *data, char *buf, size_t buf_size) { |
| ssize_t size; |
| |
| if (data->fd == -1) { |
| data->fd = open(data->filename, O_RDONLY | O_CLOEXEC); |
| if (data->fd == -1) { |
| ALOGE("%s open: %s", data->filename, strerror(errno)); |
| return -1; |
| } |
| } |
| |
| size = read_all(data->fd, buf, buf_size - 1); |
| if (size < 0) { |
| ALOGE("%s read: %s", data->filename, strerror(errno)); |
| close(data->fd); |
| data->fd = -1; |
| return -1; |
| } |
| ALOG_ASSERT((size_t)size < buf_size - 1, "%s too large", data->filename); |
| buf[size] = 0; |
| |
| return 0; |
| } |
| |
| static struct proc *pid_lookup(int pid) { |
| struct proc *procp; |
| |
| for (procp = pidhash[pid_hashfn(pid)]; procp && procp->pid != pid; |
| procp = procp->pidhash_next) |
| ; |
| |
| return procp; |
| } |
| |
| static void adjslot_insert(struct adjslot_list *head, struct adjslot_list *new) |
| { |
| struct adjslot_list *next = head->next; |
| new->prev = head; |
| new->next = next; |
| next->prev = new; |
| head->next = new; |
| } |
| |
| static void adjslot_remove(struct adjslot_list *old) |
| { |
| struct adjslot_list *prev = old->prev; |
| struct adjslot_list *next = old->next; |
| next->prev = prev; |
| prev->next = next; |
| } |
| |
| static struct adjslot_list *adjslot_tail(struct adjslot_list *head) { |
| struct adjslot_list *asl = head->prev; |
| |
| return asl == head ? NULL : asl; |
| } |
| |
| static void proc_slot(struct proc *procp) { |
| int adjslot = ADJTOSLOT(procp->oomadj); |
| |
| adjslot_insert(&procadjslot_list[adjslot], &procp->asl); |
| } |
| |
| static void proc_unslot(struct proc *procp) { |
| adjslot_remove(&procp->asl); |
| } |
| |
| static void proc_insert(struct proc *procp) { |
| int hval = pid_hashfn(procp->pid); |
| |
| procp->pidhash_next = pidhash[hval]; |
| pidhash[hval] = procp; |
| proc_slot(procp); |
| } |
| |
| static int pid_remove(int pid) { |
| int hval = pid_hashfn(pid); |
| struct proc *procp; |
| struct proc *prevp; |
| |
| for (procp = pidhash[hval], prevp = NULL; procp && procp->pid != pid; |
| procp = procp->pidhash_next) |
| prevp = procp; |
| |
| if (!procp) |
| return -1; |
| |
| if (!prevp) |
| pidhash[hval] = procp->pidhash_next; |
| else |
| prevp->pidhash_next = procp->pidhash_next; |
| |
| proc_unslot(procp); |
| free(procp); |
| return 0; |
| } |
| |
| /* |
| * Write a string to a file. |
| * Returns false if the file does not exist. |
| */ |
| static bool writefilestring(const char *path, const char *s, |
| bool err_if_missing) { |
| int fd = open(path, O_WRONLY | O_CLOEXEC); |
| ssize_t len = strlen(s); |
| ssize_t ret; |
| |
| if (fd < 0) { |
| if (err_if_missing) { |
| ALOGE("Error opening %s; errno=%d", path, errno); |
| } |
| return false; |
| } |
| |
| ret = TEMP_FAILURE_RETRY(write(fd, s, len)); |
| if (ret < 0) { |
| ALOGE("Error writing %s; errno=%d", path, errno); |
| } else if (ret < len) { |
| ALOGE("Short write on %s; length=%zd", path, ret); |
| } |
| |
| close(fd); |
| return true; |
| } |
| |
| static void cmd_procprio(LMKD_CTRL_PACKET packet) { |
| struct proc *procp; |
| char path[80]; |
| char val[20]; |
| int soft_limit_mult; |
| struct lmk_procprio params; |
| bool is_system_server; |
| struct passwd *pwdrec; |
| |
| lmkd_pack_get_procprio(packet, ¶ms); |
| |
| if (params.oomadj < OOM_SCORE_ADJ_MIN || |
| params.oomadj > OOM_SCORE_ADJ_MAX) { |
| ALOGE("Invalid PROCPRIO oomadj argument %d", params.oomadj); |
| return; |
| } |
| |
| /* gid containing AID_READPROC required */ |
| /* CAP_SYS_RESOURCE required */ |
| /* CAP_DAC_OVERRIDE required */ |
| snprintf(path, sizeof(path), "/proc/%d/oom_score_adj", params.pid); |
| snprintf(val, sizeof(val), "%d", params.oomadj); |
| if (!writefilestring(path, val, false)) { |
| ALOGW("Failed to open %s; errno=%d: process %d might have been killed", |
| path, errno, params.pid); |
| /* If this file does not exist the process is dead. */ |
| return; |
| } |
| |
| if (use_inkernel_interface) { |
| return; |
| } |
| |
| if (per_app_memcg) { |
| if (params.oomadj >= 900) { |
| soft_limit_mult = 0; |
| } else if (params.oomadj >= 800) { |
| soft_limit_mult = 0; |
| } else if (params.oomadj >= 700) { |
| soft_limit_mult = 0; |
| } else if (params.oomadj >= 600) { |
| // Launcher should be perceptible, don't kill it. |
| params.oomadj = 200; |
| soft_limit_mult = 1; |
| } else if (params.oomadj >= 500) { |
| soft_limit_mult = 0; |
| } else if (params.oomadj >= 400) { |
| soft_limit_mult = 0; |
| } else if (params.oomadj >= 300) { |
| soft_limit_mult = 1; |
| } else if (params.oomadj >= 200) { |
| soft_limit_mult = 2; |
| } else if (params.oomadj >= 100) { |
| soft_limit_mult = 10; |
| } else if (params.oomadj >= 0) { |
| soft_limit_mult = 20; |
| } else { |
| // Persistent processes will have a large |
| // soft limit 512MB. |
| soft_limit_mult = 64; |
| } |
| |
| snprintf(path, sizeof(path), MEMCG_SYSFS_PATH |
| "apps/uid_%d/pid_%d/memory.soft_limit_in_bytes", |
| params.uid, params.pid); |
| snprintf(val, sizeof(val), "%d", soft_limit_mult * EIGHT_MEGA); |
| |
| /* |
| * system_server process has no memcg under /dev/memcg/apps but should be |
| * registered with lmkd. This is the best way so far to identify it. |
| */ |
| is_system_server = (params.oomadj == SYSTEM_ADJ && |
| (pwdrec = getpwnam("system")) != NULL && |
| params.uid == pwdrec->pw_uid); |
| writefilestring(path, val, !is_system_server); |
| } |
| |
| procp = pid_lookup(params.pid); |
| if (!procp) { |
| procp = malloc(sizeof(struct proc)); |
| if (!procp) { |
| // Oh, the irony. May need to rebuild our state. |
| return; |
| } |
| |
| procp->pid = params.pid; |
| procp->uid = params.uid; |
| procp->oomadj = params.oomadj; |
| proc_insert(procp); |
| } else { |
| proc_unslot(procp); |
| procp->oomadj = params.oomadj; |
| proc_slot(procp); |
| } |
| } |
| |
| static void cmd_procremove(LMKD_CTRL_PACKET packet) { |
| struct lmk_procremove params; |
| |
| if (use_inkernel_interface) { |
| return; |
| } |
| |
| lmkd_pack_get_procremove(packet, ¶ms); |
| pid_remove(params.pid); |
| } |
| |
| static void cmd_target(int ntargets, LMKD_CTRL_PACKET packet) { |
| int i; |
| struct lmk_target target; |
| |
| if (ntargets > (int)ARRAY_SIZE(lowmem_adj)) |
| return; |
| |
| for (i = 0; i < ntargets; i++) { |
| lmkd_pack_get_target(packet, i, &target); |
| lowmem_minfree[i] = target.minfree; |
| lowmem_adj[i] = target.oom_adj_score; |
| } |
| |
| lowmem_targets_size = ntargets; |
| |
| if (has_inkernel_module) { |
| char minfreestr[128]; |
| char killpriostr[128]; |
| |
| minfreestr[0] = '\0'; |
| killpriostr[0] = '\0'; |
| |
| for (i = 0; i < lowmem_targets_size; i++) { |
| char val[40]; |
| |
| if (i) { |
| strlcat(minfreestr, ",", sizeof(minfreestr)); |
| strlcat(killpriostr, ",", sizeof(killpriostr)); |
| } |
| |
| snprintf(val, sizeof(val), "%d", use_inkernel_interface ? lowmem_minfree[i] : 0); |
| strlcat(minfreestr, val, sizeof(minfreestr)); |
| snprintf(val, sizeof(val), "%d", use_inkernel_interface ? lowmem_adj[i] : 0); |
| strlcat(killpriostr, val, sizeof(killpriostr)); |
| } |
| |
| writefilestring(INKERNEL_MINFREE_PATH, minfreestr, true); |
| writefilestring(INKERNEL_ADJ_PATH, killpriostr, true); |
| } |
| } |
| |
| static void ctrl_data_close(int dsock_idx) { |
| struct epoll_event epev; |
| |
| ALOGI("closing lmkd data connection"); |
| if (epoll_ctl(epollfd, EPOLL_CTL_DEL, data_sock[dsock_idx].sock, &epev) == -1) { |
| // Log a warning and keep going |
| ALOGW("epoll_ctl for data connection socket failed; errno=%d", errno); |
| } |
| maxevents--; |
| |
| close(data_sock[dsock_idx].sock); |
| data_sock[dsock_idx].sock = -1; |
| } |
| |
| static int ctrl_data_read(int dsock_idx, char *buf, size_t bufsz) { |
| int ret = 0; |
| |
| ret = TEMP_FAILURE_RETRY(read(data_sock[dsock_idx].sock, buf, bufsz)); |
| |
| if (ret == -1) { |
| ALOGE("control data socket read failed; errno=%d", errno); |
| } else if (ret == 0) { |
| ALOGE("Got EOF on control data socket"); |
| ret = -1; |
| } |
| |
| return ret; |
| } |
| |
| static void ctrl_command_handler(int dsock_idx) { |
| LMKD_CTRL_PACKET packet; |
| int len; |
| enum lmk_cmd cmd; |
| int nargs; |
| int targets; |
| |
| len = ctrl_data_read(dsock_idx, (char *)packet, CTRL_PACKET_MAX_SIZE); |
| if (len <= 0) |
| return; |
| |
| if (len < (int)sizeof(int)) { |
| ALOGE("Wrong control socket read length len=%d", len); |
| return; |
| } |
| |
| cmd = lmkd_pack_get_cmd(packet); |
| nargs = len / sizeof(int) - 1; |
| if (nargs < 0) |
| goto wronglen; |
| |
| switch(cmd) { |
| case LMK_TARGET: |
| targets = nargs / 2; |
| if (nargs & 0x1 || targets > (int)ARRAY_SIZE(lowmem_adj)) |
| goto wronglen; |
| cmd_target(targets, packet); |
| break; |
| case LMK_PROCPRIO: |
| if (nargs != 3) |
| goto wronglen; |
| cmd_procprio(packet); |
| break; |
| case LMK_PROCREMOVE: |
| if (nargs != 1) |
| goto wronglen; |
| cmd_procremove(packet); |
| break; |
| default: |
| ALOGE("Received unknown command code %d", cmd); |
| return; |
| } |
| |
| return; |
| |
| wronglen: |
| ALOGE("Wrong control socket read length cmd=%d len=%d", cmd, len); |
| } |
| |
| static void ctrl_data_handler(int data, uint32_t events) { |
| if (events & EPOLLIN) { |
| ctrl_command_handler(data); |
| } |
| } |
| |
| static int get_free_dsock() { |
| for (int i = 0; i < MAX_DATA_CONN; i++) { |
| if (data_sock[i].sock < 0) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| static void ctrl_connect_handler(int data __unused, uint32_t events __unused) { |
| struct epoll_event epev; |
| int free_dscock_idx = get_free_dsock(); |
| |
| if (free_dscock_idx < 0) { |
| /* |
| * Number of data connections exceeded max supported. This should not |
| * happen but if it does we drop all existing connections and accept |
| * the new one. This prevents inactive connections from monopolizing |
| * data socket and if we drop ActivityManager connection it will |
| * immediately reconnect. |
| */ |
| for (int i = 0; i < MAX_DATA_CONN; i++) { |
| ctrl_data_close(i); |
| } |
| free_dscock_idx = 0; |
| } |
| |
| data_sock[free_dscock_idx].sock = accept(ctrl_sock.sock, NULL, NULL); |
| if (data_sock[free_dscock_idx].sock < 0) { |
| ALOGE("lmkd control socket accept failed; errno=%d", errno); |
| return; |
| } |
| |
| ALOGI("lmkd data connection established"); |
| /* use data to store data connection idx */ |
| data_sock[free_dscock_idx].handler_info.data = free_dscock_idx; |
| data_sock[free_dscock_idx].handler_info.handler = ctrl_data_handler; |
| epev.events = EPOLLIN; |
| epev.data.ptr = (void *)&(data_sock[free_dscock_idx].handler_info); |
| if (epoll_ctl(epollfd, EPOLL_CTL_ADD, data_sock[free_dscock_idx].sock, &epev) == -1) { |
| ALOGE("epoll_ctl for data connection socket failed; errno=%d", errno); |
| ctrl_data_close(free_dscock_idx); |
| return; |
| } |
| maxevents++; |
| } |
| |
| /* /prop/zoneinfo parsing routines */ |
| static int64_t zoneinfo_parse_protection(char *cp) { |
| int64_t max = 0; |
| long long zoneval; |
| char *save_ptr; |
| |
| for (cp = strtok_r(cp, "(), ", &save_ptr); cp; |
| cp = strtok_r(NULL, "), ", &save_ptr)) { |
| zoneval = strtoll(cp, &cp, 0); |
| if (zoneval > max) { |
| max = (zoneval > INT64_MAX) ? INT64_MAX : zoneval; |
| } |
| } |
| |
| return max; |
| } |
| |
| static bool zoneinfo_parse_line(char *line, union zoneinfo *zi) { |
| char *cp = line; |
| char *ap; |
| char *save_ptr; |
| int64_t val; |
| int field_idx; |
| |
| cp = strtok_r(line, " ", &save_ptr); |
| if (!cp) { |
| return true; |
| } |
| |
| if (!strcmp(cp, "protection:")) { |
| ap = strtok_r(NULL, ")", &save_ptr); |
| } else { |
| ap = strtok_r(NULL, " ", &save_ptr); |
| } |
| |
| if (!ap) { |
| return true; |
| } |
| |
| switch (match_field(cp, ap, zoneinfo_field_names, |
| ZI_FIELD_COUNT, &val, &field_idx)) { |
| case (PARSE_SUCCESS): |
| zi->arr[field_idx] += val; |
| break; |
| case (NO_MATCH): |
| if (!strcmp(cp, "protection:")) { |
| zi->field.totalreserve_pages += |
| zoneinfo_parse_protection(ap); |
| } |
| break; |
| case (PARSE_FAIL): |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| static int zoneinfo_parse(union zoneinfo *zi) { |
| static struct reread_data file_data = { |
| .filename = ZONEINFO_PATH, |
| .fd = -1, |
| }; |
| char buf[PAGE_SIZE]; |
| char *save_ptr; |
| char *line; |
| |
| memset(zi, 0, sizeof(union zoneinfo)); |
| |
| if (reread_file(&file_data, buf, sizeof(buf)) < 0) { |
| return -1; |
| } |
| |
| for (line = strtok_r(buf, "\n", &save_ptr); line; |
| line = strtok_r(NULL, "\n", &save_ptr)) { |
| if (!zoneinfo_parse_line(line, zi)) { |
| ALOGE("%s parse error", file_data.filename); |
| return -1; |
| } |
| } |
| zi->field.totalreserve_pages += zi->field.high; |
| |
| return 0; |
| } |
| |
| /* /prop/meminfo parsing routines */ |
| static bool meminfo_parse_line(char *line, union meminfo *mi) { |
| char *cp = line; |
| char *ap; |
| char *save_ptr; |
| int64_t val; |
| int field_idx; |
| enum field_match_result match_res; |
| |
| cp = strtok_r(line, " ", &save_ptr); |
| if (!cp) { |
| return false; |
| } |
| |
| ap = strtok_r(NULL, " ", &save_ptr); |
| if (!ap) { |
| return false; |
| } |
| |
| match_res = match_field(cp, ap, meminfo_field_names, MI_FIELD_COUNT, |
| &val, &field_idx); |
| if (match_res == PARSE_SUCCESS) { |
| mi->arr[field_idx] = val / page_k; |
| } |
| return (match_res != PARSE_FAIL); |
| } |
| |
| static int meminfo_parse(union meminfo *mi) { |
| static struct reread_data file_data = { |
| .filename = MEMINFO_PATH, |
| .fd = -1, |
| }; |
| char buf[PAGE_SIZE]; |
| char *save_ptr; |
| char *line; |
| |
| memset(mi, 0, sizeof(union meminfo)); |
| |
| if (reread_file(&file_data, buf, sizeof(buf)) < 0) { |
| return -1; |
| } |
| |
| for (line = strtok_r(buf, "\n", &save_ptr); line; |
| line = strtok_r(NULL, "\n", &save_ptr)) { |
| if (!meminfo_parse_line(line, mi)) { |
| ALOGE("%s parse error", file_data.filename); |
| return -1; |
| } |
| } |
| mi->field.nr_file_pages = mi->field.cached + mi->field.swap_cached + |
| mi->field.buffers; |
| |
| return 0; |
| } |
| |
| static int proc_get_size(int pid) { |
| char path[PATH_MAX]; |
| char line[LINE_MAX]; |
| int fd; |
| int rss = 0; |
| int total; |
| ssize_t ret; |
| |
| /* gid containing AID_READPROC required */ |
| snprintf(path, PATH_MAX, "/proc/%d/statm", pid); |
| fd = open(path, O_RDONLY | O_CLOEXEC); |
| if (fd == -1) |
| return -1; |
| |
| ret = read_all(fd, line, sizeof(line) - 1); |
| if (ret < 0) { |
| close(fd); |
| return -1; |
| } |
| |
| sscanf(line, "%d %d ", &total, &rss); |
| close(fd); |
| return rss; |
| } |
| |
| static char *proc_get_name(int pid) { |
| char path[PATH_MAX]; |
| static char line[LINE_MAX]; |
| int fd; |
| char *cp; |
| ssize_t ret; |
| |
| /* gid containing AID_READPROC required */ |
| snprintf(path, PATH_MAX, "/proc/%d/cmdline", pid); |
| fd = open(path, O_RDONLY | O_CLOEXEC); |
| if (fd == -1) |
| return NULL; |
| ret = read_all(fd, line, sizeof(line) - 1); |
| close(fd); |
| if (ret < 0) { |
| return NULL; |
| } |
| |
| cp = strchr(line, ' '); |
| if (cp) |
| *cp = '\0'; |
| |
| return line; |
| } |
| |
| static struct proc *proc_adj_lru(int oomadj) { |
| return (struct proc *)adjslot_tail(&procadjslot_list[ADJTOSLOT(oomadj)]); |
| } |
| |
| static struct proc *proc_get_heaviest(int oomadj) { |
| struct adjslot_list *head = &procadjslot_list[ADJTOSLOT(oomadj)]; |
| struct adjslot_list *curr = head->next; |
| struct proc *maxprocp = NULL; |
| int maxsize = 0; |
| while (curr != head) { |
| int pid = ((struct proc *)curr)->pid; |
| int tasksize = proc_get_size(pid); |
| if (tasksize <= 0) { |
| struct adjslot_list *next = curr->next; |
| pid_remove(pid); |
| curr = next; |
| } else { |
| if (tasksize > maxsize) { |
| maxsize = tasksize; |
| maxprocp = (struct proc *)curr; |
| } |
| curr = curr->next; |
| } |
| } |
| return maxprocp; |
| } |
| |
| /* Kill one process specified by procp. Returns the size of the process killed */ |
| static int kill_one_process(struct proc* procp, int min_score_adj, |
| enum vmpressure_level level) { |
| int pid = procp->pid; |
| uid_t uid = procp->uid; |
| char *taskname; |
| int tasksize; |
| int r; |
| |
| taskname = proc_get_name(pid); |
| if (!taskname) { |
| pid_remove(pid); |
| return -1; |
| } |
| |
| tasksize = proc_get_size(pid); |
| if (tasksize <= 0) { |
| pid_remove(pid); |
| return -1; |
| } |
| |
| TRACE_KILL_START(pid); |
| |
| /* CAP_KILL required */ |
| r = kill(pid, SIGKILL); |
| ALOGI( |
| "Killing '%s' (%d), uid %d, adj %d\n" |
| " to free %ldkB because system is under %s memory pressure (min_oom_adj=%d)\n", |
| taskname, pid, uid, procp->oomadj, tasksize * page_k, |
| level_name[level], min_score_adj); |
| pid_remove(pid); |
| |
| TRACE_KILL_END(); |
| |
| if (r) { |
| ALOGE("kill(%d): errno=%d", pid, errno); |
| return -1; |
| } |
| |
| return tasksize; |
| } |
| |
| /* |
| * Find processes to kill to free required number of pages. |
| * If pages_to_free is set to 0 only one process will be killed. |
| * Returns the size of the killed processes. |
| */ |
| static int find_and_kill_processes(enum vmpressure_level level, |
| int min_score_adj, int pages_to_free) { |
| int i; |
| int killed_size; |
| int pages_freed = 0; |
| |
| for (i = OOM_SCORE_ADJ_MAX; i >= min_score_adj; i--) { |
| struct proc *procp; |
| |
| while (true) { |
| procp = kill_heaviest_task ? |
| proc_get_heaviest(i) : proc_adj_lru(i); |
| |
| if (!procp) |
| break; |
| |
| killed_size = kill_one_process(procp, min_score_adj, level); |
| if (killed_size >= 0) { |
| pages_freed += killed_size; |
| if (pages_freed >= pages_to_free) { |
| return pages_freed; |
| } |
| } |
| } |
| } |
| |
| return pages_freed; |
| } |
| |
| static int64_t get_memory_usage(struct reread_data *file_data) { |
| int ret; |
| int64_t mem_usage; |
| char buf[32]; |
| |
| if (reread_file(file_data, buf, sizeof(buf)) < 0) { |
| return -1; |
| } |
| |
| if (!parse_int64(buf, &mem_usage)) { |
| ALOGE("%s parse error", file_data->filename); |
| return -1; |
| } |
| if (mem_usage == 0) { |
| ALOGE("No memory!"); |
| return -1; |
| } |
| return mem_usage; |
| } |
| |
| void record_low_pressure_levels(union meminfo *mi) { |
| if (low_pressure_mem.min_nr_free_pages == -1 || |
| low_pressure_mem.min_nr_free_pages > mi->field.nr_free_pages) { |
| if (debug_process_killing) { |
| ALOGI("Low pressure min memory update from %" PRId64 " to %" PRId64, |
| low_pressure_mem.min_nr_free_pages, mi->field.nr_free_pages); |
| } |
| low_pressure_mem.min_nr_free_pages = mi->field.nr_free_pages; |
| } |
| /* |
| * Free memory at low vmpressure events occasionally gets spikes, |
| * possibly a stale low vmpressure event with memory already |
| * freed up (no memory pressure should have been reported). |
| * Ignore large jumps in max_nr_free_pages that would mess up our stats. |
| */ |
| if (low_pressure_mem.max_nr_free_pages == -1 || |
| (low_pressure_mem.max_nr_free_pages < mi->field.nr_free_pages && |
| mi->field.nr_free_pages - low_pressure_mem.max_nr_free_pages < |
| low_pressure_mem.max_nr_free_pages * 0.1)) { |
| if (debug_process_killing) { |
| ALOGI("Low pressure max memory update from %" PRId64 " to %" PRId64, |
| low_pressure_mem.max_nr_free_pages, mi->field.nr_free_pages); |
| } |
| low_pressure_mem.max_nr_free_pages = mi->field.nr_free_pages; |
| } |
| } |
| |
| enum vmpressure_level upgrade_level(enum vmpressure_level level) { |
| return (enum vmpressure_level)((level < VMPRESS_LEVEL_CRITICAL) ? |
| level + 1 : level); |
| } |
| |
| enum vmpressure_level downgrade_level(enum vmpressure_level level) { |
| return (enum vmpressure_level)((level > VMPRESS_LEVEL_LOW) ? |
| level - 1 : level); |
| } |
| |
| static inline unsigned long get_time_diff_ms(struct timeval *from, |
| struct timeval *to) { |
| return (to->tv_sec - from->tv_sec) * 1000 + |
| (to->tv_usec - from->tv_usec) / 1000; |
| } |
| |
| static void mp_event_common(int data, uint32_t events __unused) { |
| int ret; |
| unsigned long long evcount; |
| int64_t mem_usage, memsw_usage; |
| int64_t mem_pressure; |
| enum vmpressure_level lvl; |
| union meminfo mi; |
| union zoneinfo zi; |
| static struct timeval last_report_tm; |
| static unsigned long skip_count = 0; |
| enum vmpressure_level level = (enum vmpressure_level)data; |
| long other_free = 0, other_file = 0; |
| int min_score_adj; |
| int pages_to_free = 0; |
| int minfree = 0; |
| static struct reread_data mem_usage_file_data = { |
| .filename = MEMCG_MEMORY_USAGE, |
| .fd = -1, |
| }; |
| static struct reread_data memsw_usage_file_data = { |
| .filename = MEMCG_MEMORYSW_USAGE, |
| .fd = -1, |
| }; |
| |
| /* |
| * Check all event counters from low to critical |
| * and upgrade to the highest priority one. By reading |
| * eventfd we also reset the event counters. |
| */ |
| for (lvl = VMPRESS_LEVEL_LOW; lvl < VMPRESS_LEVEL_COUNT; lvl++) { |
| if (mpevfd[lvl] != -1 && |
| TEMP_FAILURE_RETRY(read(mpevfd[lvl], |
| &evcount, sizeof(evcount))) > 0 && |
| evcount > 0 && lvl > level) { |
| level = lvl; |
| } |
| } |
| |
| if (kill_timeout_ms) { |
| struct timeval curr_tm; |
| gettimeofday(&curr_tm, NULL); |
| if (get_time_diff_ms(&last_report_tm, &curr_tm) < kill_timeout_ms) { |
| skip_count++; |
| return; |
| } |
| } |
| |
| if (skip_count > 0) { |
| if (debug_process_killing) { |
| ALOGI("%lu memory pressure events were skipped after a kill!", |
| skip_count); |
| } |
| skip_count = 0; |
| } |
| |
| if (meminfo_parse(&mi) < 0 || zoneinfo_parse(&zi) < 0) { |
| ALOGE("Failed to get free memory!"); |
| return; |
| } |
| |
| if (use_minfree_levels) { |
| int i; |
| |
| other_free = mi.field.nr_free_pages - zi.field.totalreserve_pages; |
| if (mi.field.nr_file_pages > (mi.field.shmem + mi.field.unevictable + mi.field.swap_cached)) { |
| other_file = (mi.field.nr_file_pages - mi.field.shmem - |
| mi.field.unevictable - mi.field.swap_cached); |
| } else { |
| other_file = 0; |
| } |
| |
| min_score_adj = OOM_SCORE_ADJ_MAX + 1; |
| for (i = 0; i < lowmem_targets_size; i++) { |
| minfree = lowmem_minfree[i]; |
| if (other_free < minfree && other_file < minfree) { |
| min_score_adj = lowmem_adj[i]; |
| break; |
| } |
| } |
| |
| if (min_score_adj == OOM_SCORE_ADJ_MAX + 1) { |
| if (debug_process_killing) { |
| ALOGI("Ignore %s memory pressure event " |
| "(free memory=%ldkB, cache=%ldkB, limit=%ldkB)", |
| level_name[level], other_free * page_k, other_file * page_k, |
| (long)lowmem_minfree[lowmem_targets_size - 1] * page_k); |
| } |
| return; |
| } |
| |
| /* Free up enough pages to push over the highest minfree level */ |
| pages_to_free = lowmem_minfree[lowmem_targets_size - 1] - |
| ((other_free < other_file) ? other_free : other_file); |
| goto do_kill; |
| } |
| |
| if (level == VMPRESS_LEVEL_LOW) { |
| record_low_pressure_levels(&mi); |
| } |
| |
| if (level_oomadj[level] > OOM_SCORE_ADJ_MAX) { |
| /* Do not monitor this pressure level */ |
| return; |
| } |
| |
| if ((mem_usage = get_memory_usage(&mem_usage_file_data)) < 0) { |
| goto do_kill; |
| } |
| if ((memsw_usage = get_memory_usage(&memsw_usage_file_data)) < 0) { |
| goto do_kill; |
| } |
| |
| // Calculate percent for swappinness. |
| mem_pressure = (mem_usage * 100) / memsw_usage; |
| |
| if (enable_pressure_upgrade && level != VMPRESS_LEVEL_CRITICAL) { |
| // We are swapping too much. |
| if (mem_pressure < upgrade_pressure) { |
| level = upgrade_level(level); |
| if (debug_process_killing) { |
| ALOGI("Event upgraded to %s", level_name[level]); |
| } |
| } |
| } |
| |
| // If the pressure is larger than downgrade_pressure lmk will not |
| // kill any process, since enough memory is available. |
| if (mem_pressure > downgrade_pressure) { |
| if (debug_process_killing) { |
| ALOGI("Ignore %s memory pressure", level_name[level]); |
| } |
| return; |
| } else if (level == VMPRESS_LEVEL_CRITICAL && |
| mem_pressure > upgrade_pressure) { |
| if (debug_process_killing) { |
| ALOGI("Downgrade critical memory pressure"); |
| } |
| // Downgrade event, since enough memory available. |
| level = downgrade_level(level); |
| } |
| |
| do_kill: |
| if (low_ram_device) { |
| /* For Go devices kill only one task */ |
| if (find_and_kill_processes(level, level_oomadj[level], 0) == 0) { |
| if (debug_process_killing) { |
| ALOGI("Nothing to kill"); |
| } |
| } |
| } else { |
| int pages_freed; |
| |
| if (!use_minfree_levels) { |
| /* If pressure level is less than critical and enough free swap then ignore */ |
| if (level < VMPRESS_LEVEL_CRITICAL && |
| mi.field.free_swap > low_pressure_mem.max_nr_free_pages) { |
| if (debug_process_killing) { |
| ALOGI("Ignoring pressure since %" PRId64 |
| " swap pages are available ", |
| mi.field.free_swap); |
| } |
| return; |
| } |
| /* Free up enough memory to downgrate the memory pressure to low level */ |
| if (mi.field.nr_free_pages < low_pressure_mem.max_nr_free_pages) { |
| pages_to_free = low_pressure_mem.max_nr_free_pages - |
| mi.field.nr_free_pages; |
| } else { |
| if (debug_process_killing) { |
| ALOGI("Ignoring pressure since more memory is " |
| "available (%" PRId64 ") than watermark (%" PRId64 ")", |
| mi.field.nr_free_pages, low_pressure_mem.max_nr_free_pages); |
| } |
| return; |
| } |
| min_score_adj = level_oomadj[level]; |
| } else { |
| if (debug_process_killing) { |
| ALOGI("Killing because cache %ldkB is below " |
| "limit %ldkB for oom_adj %d\n" |
| " Free memory is %ldkB %s reserved", |
| other_file * page_k, minfree * page_k, min_score_adj, |
| other_free * page_k, other_free >= 0 ? "above" : "below"); |
| } |
| } |
| |
| if (debug_process_killing) { |
| ALOGI("Trying to free %d pages", pages_to_free); |
| } |
| pages_freed = find_and_kill_processes(level, min_score_adj, pages_to_free); |
| if (pages_freed < pages_to_free) { |
| if (debug_process_killing) { |
| ALOGI("Unable to free enough memory (pages freed=%d)", pages_freed); |
| } |
| } else { |
| gettimeofday(&last_report_tm, NULL); |
| } |
| } |
| } |
| |
| static bool init_mp_common(enum vmpressure_level level) { |
| int mpfd; |
| int evfd; |
| int evctlfd; |
| char buf[256]; |
| struct epoll_event epev; |
| int ret; |
| int level_idx = (int)level; |
| const char *levelstr = level_name[level_idx]; |
| |
| /* gid containing AID_SYSTEM required */ |
| mpfd = open(MEMCG_SYSFS_PATH "memory.pressure_level", O_RDONLY | O_CLOEXEC); |
| if (mpfd < 0) { |
| ALOGI("No kernel memory.pressure_level support (errno=%d)", errno); |
| goto err_open_mpfd; |
| } |
| |
| evctlfd = open(MEMCG_SYSFS_PATH "cgroup.event_control", O_WRONLY | O_CLOEXEC); |
| if (evctlfd < 0) { |
| ALOGI("No kernel memory cgroup event control (errno=%d)", errno); |
| goto err_open_evctlfd; |
| } |
| |
| evfd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); |
| if (evfd < 0) { |
| ALOGE("eventfd failed for level %s; errno=%d", levelstr, errno); |
| goto err_eventfd; |
| } |
| |
| ret = snprintf(buf, sizeof(buf), "%d %d %s", evfd, mpfd, levelstr); |
| if (ret >= (ssize_t)sizeof(buf)) { |
| ALOGE("cgroup.event_control line overflow for level %s", levelstr); |
| goto err; |
| } |
| |
| ret = TEMP_FAILURE_RETRY(write(evctlfd, buf, strlen(buf) + 1)); |
| if (ret == -1) { |
| ALOGE("cgroup.event_control write failed for level %s; errno=%d", |
| levelstr, errno); |
| goto err; |
| } |
| |
| epev.events = EPOLLIN; |
| /* use data to store event level */ |
| vmpressure_hinfo[level_idx].data = level_idx; |
| vmpressure_hinfo[level_idx].handler = mp_event_common; |
| epev.data.ptr = (void *)&vmpressure_hinfo[level_idx]; |
| ret = epoll_ctl(epollfd, EPOLL_CTL_ADD, evfd, &epev); |
| if (ret == -1) { |
| ALOGE("epoll_ctl for level %s failed; errno=%d", levelstr, errno); |
| goto err; |
| } |
| maxevents++; |
| mpevfd[level] = evfd; |
| close(evctlfd); |
| return true; |
| |
| err: |
| close(evfd); |
| err_eventfd: |
| close(evctlfd); |
| err_open_evctlfd: |
| close(mpfd); |
| err_open_mpfd: |
| return false; |
| } |
| |
| static int init(void) { |
| struct epoll_event epev; |
| int i; |
| int ret; |
| |
| page_k = sysconf(_SC_PAGESIZE); |
| if (page_k == -1) |
| page_k = PAGE_SIZE; |
| page_k /= 1024; |
| |
| epollfd = epoll_create(MAX_EPOLL_EVENTS); |
| if (epollfd == -1) { |
| ALOGE("epoll_create failed (errno=%d)", errno); |
| return -1; |
| } |
| |
| // mark data connections as not connected |
| for (int i = 0; i < MAX_DATA_CONN; i++) { |
| data_sock[i].sock = -1; |
| } |
| |
| ctrl_sock.sock = android_get_control_socket("lmkd"); |
| if (ctrl_sock.sock < 0) { |
| ALOGE("get lmkd control socket failed"); |
| return -1; |
| } |
| |
| ret = listen(ctrl_sock.sock, MAX_DATA_CONN); |
| if (ret < 0) { |
| ALOGE("lmkd control socket listen failed (errno=%d)", errno); |
| return -1; |
| } |
| |
| epev.events = EPOLLIN; |
| ctrl_sock.handler_info.handler = ctrl_connect_handler; |
| epev.data.ptr = (void *)&(ctrl_sock.handler_info); |
| if (epoll_ctl(epollfd, EPOLL_CTL_ADD, ctrl_sock.sock, &epev) == -1) { |
| ALOGE("epoll_ctl for lmkd control socket failed (errno=%d)", errno); |
| return -1; |
| } |
| maxevents++; |
| |
| has_inkernel_module = !access(INKERNEL_MINFREE_PATH, W_OK); |
| use_inkernel_interface = has_inkernel_module; |
| |
| if (use_inkernel_interface) { |
| ALOGI("Using in-kernel low memory killer interface"); |
| } else { |
| if (!init_mp_common(VMPRESS_LEVEL_LOW) || |
| !init_mp_common(VMPRESS_LEVEL_MEDIUM) || |
| !init_mp_common(VMPRESS_LEVEL_CRITICAL)) { |
| ALOGE("Kernel does not support memory pressure events or in-kernel low memory killer"); |
| return -1; |
| } |
| } |
| |
| for (i = 0; i <= ADJTOSLOT(OOM_SCORE_ADJ_MAX); i++) { |
| procadjslot_list[i].next = &procadjslot_list[i]; |
| procadjslot_list[i].prev = &procadjslot_list[i]; |
| } |
| |
| return 0; |
| } |
| |
| static void mainloop(void) { |
| struct event_handler_info* handler_info; |
| struct epoll_event *evt; |
| |
| while (1) { |
| struct epoll_event events[maxevents]; |
| int nevents; |
| int i; |
| |
| nevents = epoll_wait(epollfd, events, maxevents, -1); |
| |
| if (nevents == -1) { |
| if (errno == EINTR) |
| continue; |
| ALOGE("epoll_wait failed (errno=%d)", errno); |
| continue; |
| } |
| |
| /* |
| * First pass to see if any data socket connections were dropped. |
| * Dropped connection should be handled before any other events |
| * to deallocate data connection and correctly handle cases when |
| * connection gets dropped and reestablished in the same epoll cycle. |
| * In such cases it's essential to handle connection closures first. |
| */ |
| for (i = 0, evt = &events[0]; i < nevents; ++i, evt++) { |
| if ((evt->events & EPOLLHUP) && evt->data.ptr) { |
| ALOGI("lmkd data connection dropped"); |
| handler_info = (struct event_handler_info*)evt->data.ptr; |
| ctrl_data_close(handler_info->data); |
| } |
| } |
| |
| /* Second pass to handle all other events */ |
| for (i = 0, evt = &events[0]; i < nevents; ++i, evt++) { |
| if (evt->events & EPOLLERR) |
| ALOGD("EPOLLERR on event #%d", i); |
| if (evt->events & EPOLLHUP) { |
| /* This case was handled in the first pass */ |
| continue; |
| } |
| if (evt->data.ptr) { |
| handler_info = (struct event_handler_info*)evt->data.ptr; |
| handler_info->handler(handler_info->data, evt->events); |
| } |
| } |
| } |
| } |
| |
| int main(int argc __unused, char **argv __unused) { |
| struct sched_param param = { |
| .sched_priority = 1, |
| }; |
| |
| /* By default disable low level vmpressure events */ |
| level_oomadj[VMPRESS_LEVEL_LOW] = |
| property_get_int32("ro.lmk.low", OOM_SCORE_ADJ_MAX + 1); |
| level_oomadj[VMPRESS_LEVEL_MEDIUM] = |
| property_get_int32("ro.lmk.medium", 800); |
| level_oomadj[VMPRESS_LEVEL_CRITICAL] = |
| property_get_int32("ro.lmk.critical", 0); |
| debug_process_killing = property_get_bool("ro.lmk.debug", false); |
| |
| /* By default disable upgrade/downgrade logic */ |
| enable_pressure_upgrade = |
| property_get_bool("ro.lmk.critical_upgrade", false); |
| upgrade_pressure = |
| (int64_t)property_get_int32("ro.lmk.upgrade_pressure", 100); |
| downgrade_pressure = |
| (int64_t)property_get_int32("ro.lmk.downgrade_pressure", 100); |
| kill_heaviest_task = |
| property_get_bool("ro.lmk.kill_heaviest_task", false); |
| low_ram_device = property_get_bool("ro.config.low_ram", false); |
| kill_timeout_ms = |
| (unsigned long)property_get_int32("ro.lmk.kill_timeout_ms", 0); |
| use_minfree_levels = |
| property_get_bool("ro.lmk.use_minfree_levels", false); |
| per_app_memcg = |
| property_get_bool("ro.config.per_app_memcg", low_ram_device); |
| |
| if (!init()) { |
| if (!use_inkernel_interface) { |
| /* |
| * MCL_ONFAULT pins pages as they fault instead of loading |
| * everything immediately all at once. (Which would be bad, |
| * because as of this writing, we have a lot of mapped pages we |
| * never use.) Old kernels will see MCL_ONFAULT and fail with |
| * EINVAL; we ignore this failure. |
| * |
| * N.B. read the man page for mlockall. MCL_CURRENT | MCL_ONFAULT |
| * pins ⊆ MCL_CURRENT, converging to just MCL_CURRENT as we fault |
| * in pages. |
| */ |
| /* CAP_IPC_LOCK required */ |
| if (mlockall(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT) && (errno != EINVAL)) { |
| ALOGW("mlockall failed %s", strerror(errno)); |
| } |
| |
| /* CAP_NICE required */ |
| if (sched_setscheduler(0, SCHED_FIFO, ¶m)) { |
| ALOGW("set SCHED_FIFO failed %s", strerror(errno)); |
| } |
| } |
| |
| mainloop(); |
| } |
| |
| ALOGI("exiting"); |
| return 0; |
| } |