blob: d41c42c098c7488fe3d874798eb776bc945014cd [file] [log] [blame]
#include "sysdeps.h"
#include <windows.h>
#include <winsock2.h>
#include <stdio.h>
#include <errno.h>
#define TRACE_TAG TRACE_SYSDEPS
#include "adb.h"
extern void fatal(const char *fmt, ...);
#define assert(cond) do { if (!(cond)) fatal( "assertion failed '%s' on %s:%ld\n", #cond, __FILE__, __LINE__ ); } while (0)
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** replaces libs/cutils/load_file.c *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
void *load_file(const char *fn, unsigned *_sz)
{
HANDLE file;
char *data;
DWORD file_size;
file = CreateFile( fn,
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
0,
NULL );
if (file == INVALID_HANDLE_VALUE)
return NULL;
file_size = GetFileSize( file, NULL );
data = NULL;
if (file_size > 0) {
data = (char*) malloc( file_size + 1 );
if (data == NULL) {
D("load_file: could not allocate %ld bytes\n", file_size );
file_size = 0;
} else {
DWORD out_bytes;
if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) ||
out_bytes != file_size )
{
D("load_file: could not read %ld bytes from '%s'\n", file_size, fn);
free(data);
data = NULL;
file_size = 0;
}
}
}
CloseHandle( file );
*_sz = (unsigned) file_size;
return data;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** common file descriptor handling *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
typedef const struct FHClassRec_* FHClass;
typedef struct FHRec_* FH;
typedef struct EventHookRec_* EventHook;
typedef struct FHClassRec_
{
void (*_fh_init) ( FH f );
int (*_fh_close)( FH f );
int (*_fh_lseek)( FH f, int pos, int origin );
int (*_fh_read) ( FH f, void* buf, int len );
int (*_fh_write)( FH f, const void* buf, int len );
void (*_fh_hook) ( FH f, int events, EventHook hook );
} FHClassRec;
/* used to emulate unix-domain socket pairs */
typedef struct SocketPairRec_* SocketPair;
typedef struct FHRec_
{
FHClass clazz;
int used;
int eof;
union {
HANDLE handle;
SOCKET socket;
SocketPair pair;
} u;
HANDLE event;
int mask;
char name[32];
} FHRec;
#define fh_handle u.handle
#define fh_socket u.socket
#define fh_pair u.pair
#define WIN32_FH_BASE 100
#define WIN32_MAX_FHS 128
static adb_mutex_t _win32_lock;
static FHRec _win32_fhs[ WIN32_MAX_FHS ];
static int _win32_fh_count;
static FH
_fh_from_int( int fd )
{
FH f;
fd -= WIN32_FH_BASE;
if (fd < 0 || fd >= _win32_fh_count) {
D( "_fh_from_int: invalid fd %d\n", fd + WIN32_FH_BASE );
errno = EBADF;
return NULL;
}
f = &_win32_fhs[fd];
if (f->used == 0) {
D( "_fh_from_int: invalid fd %d\n", fd + WIN32_FH_BASE );
errno = EBADF;
return NULL;
}
return f;
}
static int
_fh_to_int( FH f )
{
if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
return (int)(f - _win32_fhs) + WIN32_FH_BASE;
return -1;
}
static FH
_fh_alloc( FHClass clazz )
{
int nn;
FH f = NULL;
adb_mutex_lock( &_win32_lock );
if (_win32_fh_count < WIN32_MAX_FHS) {
f = &_win32_fhs[ _win32_fh_count++ ];
goto Exit;
}
for (nn = 0; nn < WIN32_MAX_FHS; nn++) {
if ( _win32_fhs[nn].clazz == NULL) {
f = &_win32_fhs[nn];
goto Exit;
}
}
D( "_fh_alloc: no more free file descriptors\n" );
Exit:
if (f) {
f->clazz = clazz;
f->used = 1;
f->eof = 0;
clazz->_fh_init(f);
}
adb_mutex_unlock( &_win32_lock );
return f;
}
static int
_fh_close( FH f )
{
if ( f->used ) {
f->clazz->_fh_close( f );
f->used = 0;
f->eof = 0;
f->clazz = NULL;
}
return 0;
}
/* forward definitions */
static const FHClassRec _fh_file_class;
static const FHClassRec _fh_socket_class;
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** file-based descriptor handling *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
static void
_fh_file_init( FH f )
{
f->fh_handle = INVALID_HANDLE_VALUE;
}
static int
_fh_file_close( FH f )
{
CloseHandle( f->fh_handle );
f->fh_handle = INVALID_HANDLE_VALUE;
return 0;
}
static int
_fh_file_read( FH f, void* buf, int len )
{
DWORD read_bytes;
if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
D( "adb_read: could not read %d bytes from %s\n", len, f->name );
errno = EIO;
return -1;
} else if (read_bytes < (DWORD)len) {
f->eof = 1;
}
return (int)read_bytes;
}
static int
_fh_file_write( FH f, const void* buf, int len )
{
DWORD wrote_bytes;
if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
D( "adb_file_write: could not write %d bytes from %s\n", len, f->name );
errno = EIO;
return -1;
} else if (wrote_bytes < (DWORD)len) {
f->eof = 1;
}
return (int)wrote_bytes;
}
static int
_fh_file_lseek( FH f, int pos, int origin )
{
DWORD method;
DWORD result;
switch (origin)
{
case SEEK_SET: method = FILE_BEGIN; break;
case SEEK_CUR: method = FILE_CURRENT; break;
case SEEK_END: method = FILE_END; break;
default:
errno = EINVAL;
return -1;
}
result = SetFilePointer( f->fh_handle, pos, NULL, method );
if (result == INVALID_SET_FILE_POINTER) {
errno = EIO;
return -1;
} else {
f->eof = 0;
}
return (int)result;
}
static void _fh_file_hook( FH f, int event, EventHook eventhook ); /* forward */
static const FHClassRec _fh_file_class =
{
_fh_file_init,
_fh_file_close,
_fh_file_lseek,
_fh_file_read,
_fh_file_write,
_fh_file_hook
};
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** file-based descriptor handling *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
int adb_open(const char* path, int options)
{
FH f;
DWORD desiredAccess = 0;
DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
switch (options) {
case O_RDONLY:
desiredAccess = GENERIC_READ;
break;
case O_WRONLY:
desiredAccess = GENERIC_WRITE;
break;
case O_RDWR:
desiredAccess = GENERIC_READ | GENERIC_WRITE;
break;
default:
D("adb_open: invalid options (0x%0x)\n", options);
errno = EINVAL;
return -1;
}
f = _fh_alloc( &_fh_file_class );
if ( !f ) {
errno = ENOMEM;
return -1;
}
f->fh_handle = CreateFile( path, desiredAccess, shareMode, NULL, OPEN_EXISTING,
0, NULL );
if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
_fh_close(f);
D( "adb_open: could not open '%s':", path );
switch (GetLastError()) {
case ERROR_FILE_NOT_FOUND:
D( "file not found\n" );
errno = ENOENT;
return -1;
case ERROR_PATH_NOT_FOUND:
D( "path not found\n" );
errno = ENOTDIR;
return -1;
default:
D( "unknown error\n" );
errno = ENOENT;
return -1;
}
}
snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
D( "adb_open: '%s' => fd %d\n", path, _fh_to_int(f) );
return _fh_to_int(f);
}
/* ignore mode on Win32 */
int adb_creat(const char* path, int mode)
{
FH f;
f = _fh_alloc( &_fh_file_class );
if ( !f ) {
errno = ENOMEM;
return -1;
}
f->fh_handle = CreateFile( path, GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
NULL );
if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
_fh_close(f);
D( "adb_creat: could not open '%s':", path );
switch (GetLastError()) {
case ERROR_FILE_NOT_FOUND:
D( "file not found\n" );
errno = ENOENT;
return -1;
case ERROR_PATH_NOT_FOUND:
D( "path not found\n" );
errno = ENOTDIR;
return -1;
default:
D( "unknown error\n" );
errno = ENOENT;
return -1;
}
}
snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
D( "adb_creat: '%s' => fd %d\n", path, _fh_to_int(f) );
return _fh_to_int(f);
}
int adb_read(int fd, void* buf, int len)
{
FH f = _fh_from_int(fd);
if (f == NULL) {
return -1;
}
return f->clazz->_fh_read( f, buf, len );
}
int adb_write(int fd, const void* buf, int len)
{
FH f = _fh_from_int(fd);
if (f == NULL) {
return -1;
}
return f->clazz->_fh_write(f, buf, len);
}
int adb_lseek(int fd, int pos, int where)
{
FH f = _fh_from_int(fd);
if (!f) {
return -1;
}
return f->clazz->_fh_lseek(f, pos, where);
}
int adb_shutdown(int fd)
{
FH f = _fh_from_int(fd);
if (!f) {
return -1;
}
D( "adb_shutdown: %s\n", f->name);
shutdown( f->fh_socket, SD_BOTH );
return 0;
}
int adb_close(int fd)
{
FH f = _fh_from_int(fd);
if (!f) {
return -1;
}
D( "adb_close: %s\n", f->name);
_fh_close(f);
return 0;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** socket-based file descriptors *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
static void
_socket_set_errno( void )
{
switch (WSAGetLastError()) {
case 0: errno = 0; break;
case WSAEWOULDBLOCK: errno = EAGAIN; break;
case WSAEINTR: errno = EINTR; break;
default:
D( "_socket_set_errno: unhandled value %d\n", WSAGetLastError() );
errno = EINVAL;
}
}
static void
_fh_socket_init( FH f )
{
f->fh_socket = INVALID_SOCKET;
f->event = WSACreateEvent();
f->mask = 0;
}
static int
_fh_socket_close( FH f )
{
/* gently tell any peer that we're closing the socket */
shutdown( f->fh_socket, SD_BOTH );
closesocket( f->fh_socket );
f->fh_socket = INVALID_SOCKET;
CloseHandle( f->event );
f->mask = 0;
return 0;
}
static int
_fh_socket_lseek( FH f, int pos, int origin )
{
errno = EPIPE;
return -1;
}
static int
_fh_socket_read( FH f, void* buf, int len )
{
int result = recv( f->fh_socket, buf, len, 0 );
if (result == SOCKET_ERROR) {
_socket_set_errno();
result = -1;
}
return result;
}
static int
_fh_socket_write( FH f, const void* buf, int len )
{
int result = send( f->fh_socket, buf, len, 0 );
if (result == SOCKET_ERROR) {
_socket_set_errno();
result = -1;
}
return result;
}
static void _fh_socket_hook( FH f, int event, EventHook hook ); /* forward */
static const FHClassRec _fh_socket_class =
{
_fh_socket_init,
_fh_socket_close,
_fh_socket_lseek,
_fh_socket_read,
_fh_socket_write,
_fh_socket_hook
};
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** replacement for libs/cutils/socket_xxxx.c *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
#include <winsock2.h>
static int _winsock_init;
static void
_cleanup_winsock( void )
{
WSACleanup();
}
static void
_init_winsock( void )
{
if (!_winsock_init) {
WSADATA wsaData;
int rc = WSAStartup( MAKEWORD(2,2), &wsaData);
if (rc != 0) {
fatal( "adb: could not initialize Winsock\n" );
}
atexit( _cleanup_winsock );
_winsock_init = 1;
}
}
int socket_loopback_client(int port, int type)
{
FH f = _fh_alloc( &_fh_socket_class );
struct sockaddr_in addr;
SOCKET s;
if (!f)
return -1;
if (!_winsock_init)
_init_winsock();
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
s = socket(AF_INET, type, 0);
if(s == INVALID_SOCKET) {
D("socket_loopback_client: could not create socket\n" );
_fh_close(f);
return -1;
}
f->fh_socket = s;
if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
D("socket_loopback_client: could not connect to %s:%d\n", type != SOCK_STREAM ? "udp" : "tcp", port );
_fh_close(f);
return -1;
}
snprintf( f->name, sizeof(f->name), "%d(lo-client:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
D( "socket_loopback_client: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
return _fh_to_int(f);
}
#define LISTEN_BACKLOG 4
int socket_loopback_server(int port, int type)
{
FH f = _fh_alloc( &_fh_socket_class );
struct sockaddr_in addr;
SOCKET s;
int n;
if (!f) {
return -1;
}
if (!_winsock_init)
_init_winsock();
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
s = socket(AF_INET, type, 0);
if(s == INVALID_SOCKET) return -1;
f->fh_socket = s;
n = 1;
setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n));
if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
_fh_close(f);
return -1;
}
if (type == SOCK_STREAM) {
int ret;
ret = listen(s, LISTEN_BACKLOG);
if (ret < 0) {
_fh_close(f);
return -1;
}
}
snprintf( f->name, sizeof(f->name), "%d(lo-server:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
D( "socket_loopback_server: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
return _fh_to_int(f);
}
int socket_network_client(const char *host, int port, int type)
{
FH f = _fh_alloc( &_fh_socket_class );
struct hostent *hp;
struct sockaddr_in addr;
SOCKET s;
if (!f)
return -1;
if (!_winsock_init)
_init_winsock();
hp = gethostbyname(host);
if(hp == 0) {
_fh_close(f);
return -1;
}
memset(&addr, 0, sizeof(addr));
addr.sin_family = hp->h_addrtype;
addr.sin_port = htons(port);
memcpy(&addr.sin_addr, hp->h_addr, hp->h_length);
s = socket(hp->h_addrtype, type, 0);
if(s == INVALID_SOCKET) {
_fh_close(f);
return -1;
}
f->fh_socket = s;
if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
_fh_close(f);
return -1;
}
snprintf( f->name, sizeof(f->name), "%d(net-client:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
D( "socket_network_client: host '%s' port %d type %s => fd %d\n", host, port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
return _fh_to_int(f);
}
int socket_inaddr_any_server(int port, int type)
{
FH f = _fh_alloc( &_fh_socket_class );
struct sockaddr_in addr;
SOCKET s;
int n;
if (!f)
return -1;
if (!_winsock_init)
_init_winsock();
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(INADDR_ANY);
s = socket(AF_INET, type, 0);
if(s == INVALID_SOCKET) {
_fh_close(f);
return -1;
}
f->fh_socket = s;
n = 1;
setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n));
if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
_fh_close(f);
return -1;
}
if (type == SOCK_STREAM) {
int ret;
ret = listen(s, LISTEN_BACKLOG);
if (ret < 0) {
_fh_close(f);
return -1;
}
}
snprintf( f->name, sizeof(f->name), "%d(any-server:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
D( "socket_inaddr_server: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
return _fh_to_int(f);
}
#undef accept
int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t *addrlen)
{
FH serverfh = _fh_from_int(serverfd);
FH fh;
if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
D( "adb_socket_accept: invalid fd %d\n", serverfd );
return -1;
}
fh = _fh_alloc( &_fh_socket_class );
if (!fh) {
D( "adb_socket_accept: not enough memory to allocate accepted socket descriptor\n" );
return -1;
}
fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
if (fh->fh_socket == INVALID_SOCKET) {
_fh_close( fh );
D( "adb_socket_accept: accept on fd %d return error %ld\n", serverfd, GetLastError() );
return -1;
}
snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", _fh_to_int(fh), serverfh->name );
D( "adb_socket_accept on fd %d returns fd %d\n", serverfd, _fh_to_int(fh) );
return _fh_to_int(fh);
}
void disable_tcp_nagle(int fd)
{
FH fh = _fh_from_int(fd);
int on;
if ( !fh || fh->clazz != &_fh_socket_class )
return;
setsockopt( fh->fh_socket, IPPROTO_TCP, TCP_NODELAY, (const char*)&on, sizeof(on) );
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** emulated socketpairs *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
/* we implement socketpairs directly in use space for the following reasons:
* - it avoids copying data from/to the Nt kernel
* - it allows us to implement fdevent hooks easily and cheaply, something
* that is not possible with standard Win32 pipes !!
*
* basically, we use two circular buffers, each one corresponding to a given
* direction.
*
* each buffer is implemented as two regions:
*
* region A which is (a_start,a_end)
* region B which is (0, b_end) with b_end <= a_start
*
* an empty buffer has: a_start = a_end = b_end = 0
*
* a_start is the pointer where we start reading data
* a_end is the pointer where we start writing data, unless it is BUFFER_SIZE,
* then you start writing at b_end
*
* the buffer is full when b_end == a_start && a_end == BUFFER_SIZE
*
* there is room when b_end < a_start || a_end < BUFER_SIZE
*
* when reading, a_start is incremented, it a_start meets a_end, then
* we do: a_start = 0, a_end = b_end, b_end = 0, and keep going on..
*/
#define BIP_BUFFER_SIZE 4096
#if 0
#include <stdio.h>
# define BIPD(x) D x
# define BIPDUMP bip_dump_hex
static void bip_dump_hex( const unsigned char* ptr, size_t len )
{
int nn, len2 = len;
if (len2 > 8) len2 = 8;
for (nn = 0; nn < len2; nn++)
printf("%02x", ptr[nn]);
printf(" ");
for (nn = 0; nn < len2; nn++) {
int c = ptr[nn];
if (c < 32 || c > 127)
c = '.';
printf("%c", c);
}
printf("\n");
fflush(stdout);
}
#else
# define BIPD(x) do {} while (0)
# define BIPDUMP(p,l) BIPD(p)
#endif
typedef struct BipBufferRec_
{
int a_start;
int a_end;
int b_end;
int fdin;
int fdout;
int closed;
int can_write; /* boolean */
HANDLE evt_write; /* event signaled when one can write to a buffer */
int can_read; /* boolean */
HANDLE evt_read; /* event signaled when one can read from a buffer */
CRITICAL_SECTION lock;
unsigned char buff[ BIP_BUFFER_SIZE ];
} BipBufferRec, *BipBuffer;
static void
bip_buffer_init( BipBuffer buffer )
{
D( "bit_buffer_init %p\n", buffer );
buffer->a_start = 0;
buffer->a_end = 0;
buffer->b_end = 0;
buffer->can_write = 1;
buffer->can_read = 0;
buffer->fdin = 0;
buffer->fdout = 0;
buffer->closed = 0;
buffer->evt_write = CreateEvent( NULL, TRUE, TRUE, NULL );
buffer->evt_read = CreateEvent( NULL, TRUE, FALSE, NULL );
InitializeCriticalSection( &buffer->lock );
}
static void
bip_buffer_close( BipBuffer bip )
{
bip->closed = 1;
if (!bip->can_read) {
SetEvent( bip->evt_read );
}
if (!bip->can_write) {
SetEvent( bip->evt_write );
}
}
static void
bip_buffer_done( BipBuffer bip )
{
BIPD(( "bip_buffer_done: %d->%d\n", bip->fdin, bip->fdout ));
CloseHandle( bip->evt_read );
CloseHandle( bip->evt_write );
DeleteCriticalSection( &bip->lock );
}
static int
bip_buffer_write( BipBuffer bip, const void* src, int len )
{
int avail, count = 0;
if (len <= 0)
return 0;
BIPD(( "bip_buffer_write: enter %d->%d len %d\n", bip->fdin, bip->fdout, len ));
BIPDUMP( src, len );
EnterCriticalSection( &bip->lock );
while (!bip->can_write) {
int ret;
LeaveCriticalSection( &bip->lock );
if (bip->closed) {
errno = EPIPE;
return -1;
}
/* spinlocking here is probably unfair, but let's live with it */
ret = WaitForSingleObject( bip->evt_write, INFINITE );
if (ret != WAIT_OBJECT_0) { /* buffer probably closed */
D( "bip_buffer_write: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError() );
return 0;
}
if (bip->closed) {
errno = EPIPE;
return -1;
}
EnterCriticalSection( &bip->lock );
}
BIPD(( "bip_buffer_write: exec %d->%d len %d\n", bip->fdin, bip->fdout, len ));
avail = BIP_BUFFER_SIZE - bip->a_end;
if (avail > 0)
{
/* we can append to region A */
if (avail > len)
avail = len;
memcpy( bip->buff + bip->a_end, src, avail );
src += avail;
count += avail;
len -= avail;
bip->a_end += avail;
if (bip->a_end == BIP_BUFFER_SIZE && bip->a_start == 0) {
bip->can_write = 0;
ResetEvent( bip->evt_write );
goto Exit;
}
}
if (len == 0)
goto Exit;
avail = bip->a_start - bip->b_end;
assert( avail > 0 ); /* since can_write is TRUE */
if (avail > len)
avail = len;
memcpy( bip->buff + bip->b_end, src, avail );
count += avail;
bip->b_end += avail;
if (bip->b_end == bip->a_start) {
bip->can_write = 0;
ResetEvent( bip->evt_write );
}
Exit:
assert( count > 0 );
if ( !bip->can_read ) {
bip->can_read = 1;
SetEvent( bip->evt_read );
}
BIPD(( "bip_buffer_write: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n",
bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read ));
LeaveCriticalSection( &bip->lock );
return count;
}
static int
bip_buffer_read( BipBuffer bip, void* dst, int len )
{
int avail, count = 0;
if (len <= 0)
return 0;
BIPD(( "bip_buffer_read: enter %d->%d len %d\n", bip->fdin, bip->fdout, len ));
EnterCriticalSection( &bip->lock );
while ( !bip->can_read )
{
#if 0
LeaveCriticalSection( &bip->lock );
errno = EAGAIN;
return -1;
#else
int ret;
LeaveCriticalSection( &bip->lock );
if (bip->closed) {
errno = EPIPE;
return -1;
}
ret = WaitForSingleObject( bip->evt_read, INFINITE );
if (ret != WAIT_OBJECT_0) { /* probably closed buffer */
D( "bip_buffer_read: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError());
return 0;
}
if (bip->closed) {
errno = EPIPE;
return -1;
}
EnterCriticalSection( &bip->lock );
#endif
}
BIPD(( "bip_buffer_read: exec %d->%d len %d\n", bip->fdin, bip->fdout, len ));
avail = bip->a_end - bip->a_start;
assert( avail > 0 ); /* since can_read is TRUE */
if (avail > len)
avail = len;
memcpy( dst, bip->buff + bip->a_start, avail );
dst += avail;
count += avail;
len -= avail;
bip->a_start += avail;
if (bip->a_start < bip->a_end)
goto Exit;
bip->a_start = 0;
bip->a_end = bip->b_end;
bip->b_end = 0;
avail = bip->a_end;
if (avail > 0) {
if (avail > len)
avail = len;
memcpy( dst, bip->buff, avail );
count += avail;
bip->a_start += avail;
if ( bip->a_start < bip->a_end )
goto Exit;
bip->a_start = bip->a_end = 0;
}
bip->can_read = 0;
ResetEvent( bip->evt_read );
Exit:
assert( count > 0 );
if (!bip->can_write ) {
bip->can_write = 1;
SetEvent( bip->evt_write );
}
BIPDUMP( (const unsigned char*)dst - count, count );
BIPD(( "bip_buffer_read: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n",
bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read ));
LeaveCriticalSection( &bip->lock );
return count;
}
typedef struct SocketPairRec_
{
BipBufferRec a2b_bip;
BipBufferRec b2a_bip;
FH a_fd;
int used;
} SocketPairRec;
void _fh_socketpair_init( FH f )
{
f->fh_pair = NULL;
}
static int
_fh_socketpair_close( FH f )
{
if ( f->fh_pair ) {
SocketPair pair = f->fh_pair;
if ( f == pair->a_fd ) {
pair->a_fd = NULL;
}
bip_buffer_close( &pair->b2a_bip );
bip_buffer_close( &pair->a2b_bip );
if ( --pair->used == 0 ) {
bip_buffer_done( &pair->b2a_bip );
bip_buffer_done( &pair->a2b_bip );
free( pair );
}
f->fh_pair = NULL;
}
return 0;
}
static int
_fh_socketpair_lseek( FH f, int pos, int origin )
{
errno = ESPIPE;
return -1;
}
static int
_fh_socketpair_read( FH f, void* buf, int len )
{
SocketPair pair = f->fh_pair;
BipBuffer bip;
if (!pair)
return -1;
if ( f == pair->a_fd )
bip = &pair->b2a_bip;
else
bip = &pair->a2b_bip;
return bip_buffer_read( bip, buf, len );
}
static int
_fh_socketpair_write( FH f, const void* buf, int len )
{
SocketPair pair = f->fh_pair;
BipBuffer bip;
if (!pair)
return -1;
if ( f == pair->a_fd )
bip = &pair->a2b_bip;
else
bip = &pair->b2a_bip;
return bip_buffer_write( bip, buf, len );
}
static void _fh_socketpair_hook( FH f, int event, EventHook hook ); /* forward */
static const FHClassRec _fh_socketpair_class =
{
_fh_socketpair_init,
_fh_socketpair_close,
_fh_socketpair_lseek,
_fh_socketpair_read,
_fh_socketpair_write,
_fh_socketpair_hook
};
int adb_socketpair( int sv[2] )
{
FH fa, fb;
SocketPair pair;
fa = _fh_alloc( &_fh_socketpair_class );
fb = _fh_alloc( &_fh_socketpair_class );
if (!fa || !fb)
goto Fail;
pair = malloc( sizeof(*pair) );
if (pair == NULL) {
D("adb_socketpair: not enough memory to allocate pipes\n" );
goto Fail;
}
bip_buffer_init( &pair->a2b_bip );
bip_buffer_init( &pair->b2a_bip );
fa->fh_pair = pair;
fb->fh_pair = pair;
pair->used = 2;
pair->a_fd = fa;
sv[0] = _fh_to_int(fa);
sv[1] = _fh_to_int(fb);
pair->a2b_bip.fdin = sv[0];
pair->a2b_bip.fdout = sv[1];
pair->b2a_bip.fdin = sv[1];
pair->b2a_bip.fdout = sv[0];
snprintf( fa->name, sizeof(fa->name), "%d(pair:%d)", sv[0], sv[1] );
snprintf( fb->name, sizeof(fb->name), "%d(pair:%d)", sv[1], sv[0] );
D( "adb_socketpair: returns (%d, %d)\n", sv[0], sv[1] );
return 0;
Fail:
_fh_close(fb);
_fh_close(fa);
return -1;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** fdevents emulation *****/
/***** *****/
/***** this is a very simple implementation, we rely on the fact *****/
/***** that ADB doesn't use FDE_ERROR. *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
#define FATAL(x...) fatal(__FUNCTION__, x)
#if DEBUG
static void dump_fde(fdevent *fde, const char *info)
{
fprintf(stderr,"FDE #%03d %c%c%c %s\n", fde->fd,
fde->state & FDE_READ ? 'R' : ' ',
fde->state & FDE_WRITE ? 'W' : ' ',
fde->state & FDE_ERROR ? 'E' : ' ',
info);
}
#else
#define dump_fde(fde, info) do { } while(0)
#endif
#define FDE_EVENTMASK 0x00ff
#define FDE_STATEMASK 0xff00
#define FDE_ACTIVE 0x0100
#define FDE_PENDING 0x0200
#define FDE_CREATED 0x0400
static void fdevent_plist_enqueue(fdevent *node);
static void fdevent_plist_remove(fdevent *node);
static fdevent *fdevent_plist_dequeue(void);
static fdevent list_pending = {
.next = &list_pending,
.prev = &list_pending,
};
static fdevent **fd_table = 0;
static int fd_table_max = 0;
typedef struct EventLooperRec_* EventLooper;
typedef struct EventHookRec_
{
EventHook next;
FH fh;
HANDLE h;
int wanted; /* wanted event flags */
int ready; /* ready event flags */
void* aux;
void (*prepare)( EventHook hook );
int (*start) ( EventHook hook );
void (*stop) ( EventHook hook );
int (*check) ( EventHook hook );
int (*peek) ( EventHook hook );
} EventHookRec;
static EventHook _free_hooks;
static EventHook
event_hook_alloc( FH fh )
{
EventHook hook = _free_hooks;
if (hook != NULL)
_free_hooks = hook->next;
else {
hook = malloc( sizeof(*hook) );
if (hook == NULL)
fatal( "could not allocate event hook\n" );
}
hook->next = NULL;
hook->fh = fh;
hook->wanted = 0;
hook->ready = 0;
hook->h = INVALID_HANDLE_VALUE;
hook->aux = NULL;
hook->prepare = NULL;
hook->start = NULL;
hook->stop = NULL;
hook->check = NULL;
hook->peek = NULL;
return hook;
}
static void
event_hook_free( EventHook hook )
{
hook->fh = NULL;
hook->wanted = 0;
hook->ready = 0;
hook->next = _free_hooks;
_free_hooks = hook;
}
static void
event_hook_signal( EventHook hook )
{
FH f = hook->fh;
int fd = _fh_to_int(f);
fdevent* fde = fd_table[ fd - WIN32_FH_BASE ];
if (fde != NULL && fde->fd == fd) {
if ((fde->state & FDE_PENDING) == 0) {
fde->state |= FDE_PENDING;
fdevent_plist_enqueue( fde );
}
fde->events |= hook->wanted;
}
}
#define MAX_LOOPER_HANDLES WIN32_MAX_FHS
typedef struct EventLooperRec_
{
EventHook hooks;
HANDLE htab[ MAX_LOOPER_HANDLES ];
int htab_count;
} EventLooperRec;
static EventHook*
event_looper_find_p( EventLooper looper, FH fh )
{
EventHook *pnode = &looper->hooks;
EventHook node = *pnode;
for (;;) {
if ( node == NULL || node->fh == fh )
break;
pnode = &node->next;
node = *pnode;
}
return pnode;
}
static void
event_looper_hook( EventLooper looper, int fd, int events )
{
FH f = _fh_from_int(fd);
EventHook *pnode;
EventHook node;
if (f == NULL) /* invalid arg */ {
D("event_looper_hook: invalid fd=%d\n", fd);
return;
}
pnode = event_looper_find_p( looper, f );
node = *pnode;
if ( node == NULL ) {
node = event_hook_alloc( f );
node->next = *pnode;
*pnode = node;
}
if ( (node->wanted & events) != events ) {
/* this should update start/stop/check/peek */
D("event_looper_hook: call hook for %d (new=%x, old=%x)\n",
fd, node->wanted, events);
f->clazz->_fh_hook( f, events & ~node->wanted, node );
node->wanted |= events;
} else {
D("event_looper_hook: ignoring events %x for %d wanted=%x)\n",
events, fd, node->wanted);
}
}
static void
event_looper_unhook( EventLooper looper, int fd, int events )
{
FH fh = _fh_from_int(fd);
EventHook *pnode = event_looper_find_p( looper, fh );
EventHook node = *pnode;
if (node != NULL) {
int events2 = events & node->wanted;
if ( events2 == 0 ) {
D( "event_looper_unhook: events %x not registered for fd %d\n", events, fd );
return;
}
node->wanted &= ~events2;
if (!node->wanted) {
*pnode = node->next;
event_hook_free( node );
}
}
}
/*
* A fixer for WaitForMultipleObjects on condition that there are more than 64
* handles to wait on.
*
* In cetain cases DDMS may establish more than 64 connections with ADB. For
* instance, this may happen if there are more than 64 processes running on a
* device, or there are multiple devices connected (including the emulator) with
* the combined number of running processes greater than 64. In this case using
* WaitForMultipleObjects to wait on connection events simply wouldn't cut,
* because of the API limitations (64 handles max). So, we need to provide a way
* to scale WaitForMultipleObjects to accept an arbitrary number of handles. The
* easiest (and "Microsoft recommended") way to do that would be dividing the
* handle array into chunks with the chunk size less than 64, and fire up as many
* waiting threads as there are chunks. Then each thread would wait on a chunk of
* handles, and will report back to the caller which handle has been set.
* Here is the implementation of that algorithm.
*/
/* Number of handles to wait on in each wating thread. */
#define WAIT_ALL_CHUNK_SIZE 63
/* Descriptor for a wating thread */
typedef struct WaitForAllParam {
/* A handle to an event to signal when waiting is over. This handle is shared
* accross all the waiting threads, so each waiting thread knows when any
* other thread has exited, so it can exit too. */
HANDLE main_event;
/* Upon exit from a waiting thread contains the index of the handle that has
* been signaled. The index is an absolute index of the signaled handle in
* the original array. This pointer is shared accross all the waiting threads
* and it's not guaranteed (due to a race condition) that when all the
* waiting threads exit, the value contained here would indicate the first
* handle that was signaled. This is fine, because the caller cares only
* about any handle being signaled. It doesn't care about the order, nor
* about the whole list of handles that were signaled. */
LONG volatile *signaled_index;
/* Array of handles to wait on in a waiting thread. */
HANDLE* handles;
/* Number of handles in 'handles' array to wait on. */
int handles_count;
/* Index inside the main array of the first handle in the 'handles' array. */
int first_handle_index;
/* Waiting thread handle. */
HANDLE thread;
} WaitForAllParam;
/* Waiting thread routine. */
static unsigned __stdcall
_in_waiter_thread(void* arg)
{
HANDLE wait_on[WAIT_ALL_CHUNK_SIZE + 1];
int res;
WaitForAllParam* const param = (WaitForAllParam*)arg;
/* We have to wait on the main_event in order to be notified when any of the
* sibling threads is exiting. */
wait_on[0] = param->main_event;
/* The rest of the handles go behind the main event handle. */
memcpy(wait_on + 1, param->handles, param->handles_count * sizeof(HANDLE));
res = WaitForMultipleObjects(param->handles_count + 1, wait_on, FALSE, INFINITE);
if (res > 0 && res < (param->handles_count + 1)) {
/* One of the original handles got signaled. Save its absolute index into
* the output variable. */
InterlockedCompareExchange(param->signaled_index,
res - 1L + param->first_handle_index, -1L);
}
/* Notify the caller (and the siblings) that the wait is over. */
SetEvent(param->main_event);
_endthreadex(0);
return 0;
}
/* WaitForMultipeObjects fixer routine.
* Param:
* handles Array of handles to wait on.
* handles_count Number of handles in the array.
* Return:
* (>= 0 && < handles_count) - Index of the signaled handle in the array, or
* WAIT_FAILED on an error.
*/
static int
_wait_for_all(HANDLE* handles, int handles_count)
{
WaitForAllParam* threads;
HANDLE main_event;
int chunks, chunk, remains;
/* This variable is going to be accessed by several threads at the same time,
* this is bound to fail randomly when the core is run on multi-core machines.
* To solve this, we need to do the following (1 _and_ 2):
* 1. Use the "volatile" qualifier to ensure the compiler doesn't optimize
* out the reads/writes in this function unexpectedly.
* 2. Ensure correct memory ordering. The "simple" way to do that is to wrap
* all accesses inside a critical section. But we can also use
* InterlockedCompareExchange() which always provide a full memory barrier
* on Win32.
*/
volatile LONG sig_index = -1;
/* Calculate number of chunks, and allocate thread param array. */
chunks = handles_count / WAIT_ALL_CHUNK_SIZE;
remains = handles_count % WAIT_ALL_CHUNK_SIZE;
threads = (WaitForAllParam*)malloc((chunks + (remains ? 1 : 0)) *
sizeof(WaitForAllParam));
if (threads == NULL) {
D("Unable to allocate thread array for %d handles.", handles_count);
return (int)WAIT_FAILED;
}
/* Create main event to wait on for all waiting threads. This is a "manualy
* reset" event that will remain set once it was set. */
main_event = CreateEvent(NULL, TRUE, FALSE, NULL);
if (main_event == NULL) {
D("Unable to create main event. Error: %d", GetLastError());
free(threads);
return (int)WAIT_FAILED;
}
/*
* Initialize waiting thread parameters.
*/
for (chunk = 0; chunk < chunks; chunk++) {
threads[chunk].main_event = main_event;
threads[chunk].signaled_index = &sig_index;
threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk;
threads[chunk].handles = handles + threads[chunk].first_handle_index;
threads[chunk].handles_count = WAIT_ALL_CHUNK_SIZE;
}
if (remains) {
threads[chunk].main_event = main_event;
threads[chunk].signaled_index = &sig_index;
threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk;
threads[chunk].handles = handles + threads[chunk].first_handle_index;
threads[chunk].handles_count = remains;
chunks++;
}
/* Start the waiting threads. */
for (chunk = 0; chunk < chunks; chunk++) {
/* Note that using adb_thread_create is not appropriate here, since we
* need a handle to wait on for thread termination. */
threads[chunk].thread = (HANDLE)_beginthreadex(NULL, 0, _in_waiter_thread,
&threads[chunk], 0, NULL);
if (threads[chunk].thread == NULL) {
/* Unable to create a waiter thread. Collapse. */
D("Unable to create a waiting thread %d of %d. errno=%d",
chunk, chunks, errno);
chunks = chunk;
SetEvent(main_event);
break;
}
}
/* Wait on any of the threads to get signaled. */
WaitForSingleObject(main_event, INFINITE);
/* Wait on all the waiting threads to exit. */
for (chunk = 0; chunk < chunks; chunk++) {
WaitForSingleObject(threads[chunk].thread, INFINITE);
CloseHandle(threads[chunk].thread);
}
CloseHandle(main_event);
free(threads);
const int ret = (int)InterlockedCompareExchange(&sig_index, -1, -1);
return (ret >= 0) ? ret : (int)WAIT_FAILED;
}
static EventLooperRec win32_looper;
static void fdevent_init(void)
{
win32_looper.htab_count = 0;
win32_looper.hooks = NULL;
}
static void fdevent_connect(fdevent *fde)
{
EventLooper looper = &win32_looper;
int events = fde->state & FDE_EVENTMASK;
if (events != 0)
event_looper_hook( looper, fde->fd, events );
}
static void fdevent_disconnect(fdevent *fde)
{
EventLooper looper = &win32_looper;
int events = fde->state & FDE_EVENTMASK;
if (events != 0)
event_looper_unhook( looper, fde->fd, events );
}
static void fdevent_update(fdevent *fde, unsigned events)
{
EventLooper looper = &win32_looper;
unsigned events0 = fde->state & FDE_EVENTMASK;
if (events != events0) {
int removes = events0 & ~events;
int adds = events & ~events0;
if (removes) {
D("fdevent_update: remove %x from %d\n", removes, fde->fd);
event_looper_unhook( looper, fde->fd, removes );
}
if (adds) {
D("fdevent_update: add %x to %d\n", adds, fde->fd);
event_looper_hook ( looper, fde->fd, adds );
}
}
}
static void fdevent_process()
{
EventLooper looper = &win32_looper;
EventHook hook;
int gotone = 0;
/* if we have at least one ready hook, execute it/them */
for (hook = looper->hooks; hook; hook = hook->next) {
hook->ready = 0;
if (hook->prepare) {
hook->prepare(hook);
if (hook->ready != 0) {
event_hook_signal( hook );
gotone = 1;
}
}
}
/* nothing's ready yet, so wait for something to happen */
if (!gotone)
{
looper->htab_count = 0;
for (hook = looper->hooks; hook; hook = hook->next)
{
if (hook->start && !hook->start(hook)) {
D( "fdevent_process: error when starting a hook\n" );
return;
}
if (hook->h != INVALID_HANDLE_VALUE) {
int nn;
for (nn = 0; nn < looper->htab_count; nn++)
{
if ( looper->htab[nn] == hook->h )
goto DontAdd;
}
looper->htab[ looper->htab_count++ ] = hook->h;
DontAdd:
;
}
}
if (looper->htab_count == 0) {
D( "fdevent_process: nothing to wait for !!\n" );
return;
}
do
{
int wait_ret;
D( "adb_win32: waiting for %d events\n", looper->htab_count );
if (looper->htab_count > MAXIMUM_WAIT_OBJECTS) {
D("handle count %d exceeds MAXIMUM_WAIT_OBJECTS.\n", looper->htab_count);
wait_ret = _wait_for_all(looper->htab, looper->htab_count);
} else {
wait_ret = WaitForMultipleObjects( looper->htab_count, looper->htab, FALSE, INFINITE );
}
if (wait_ret == (int)WAIT_FAILED) {
D( "adb_win32: wait failed, error %ld\n", GetLastError() );
} else {
D( "adb_win32: got one (index %d)\n", wait_ret );
/* according to Cygwin, some objects like consoles wake up on "inappropriate" events
* like mouse movements. we need to filter these with the "check" function
*/
if ((unsigned)wait_ret < (unsigned)looper->htab_count)
{
for (hook = looper->hooks; hook; hook = hook->next)
{
if ( looper->htab[wait_ret] == hook->h &&
(!hook->check || hook->check(hook)) )
{
D( "adb_win32: signaling %s for %x\n", hook->fh->name, hook->ready );
event_hook_signal( hook );
gotone = 1;
break;
}
}
}
}
}
while (!gotone);
for (hook = looper->hooks; hook; hook = hook->next) {
if (hook->stop)
hook->stop( hook );
}
}
for (hook = looper->hooks; hook; hook = hook->next) {
if (hook->peek && hook->peek(hook))
event_hook_signal( hook );
}
}
static void fdevent_register(fdevent *fde)
{
int fd = fde->fd - WIN32_FH_BASE;
if(fd < 0) {
FATAL("bogus negative fd (%d)\n", fde->fd);
}
if(fd >= fd_table_max) {
int oldmax = fd_table_max;
if(fde->fd > 32000) {
FATAL("bogus huuuuge fd (%d)\n", fde->fd);
}
if(fd_table_max == 0) {
fdevent_init();
fd_table_max = 256;
}
while(fd_table_max <= fd) {
fd_table_max *= 2;
}
fd_table = realloc(fd_table, sizeof(fdevent*) * fd_table_max);
if(fd_table == 0) {
FATAL("could not expand fd_table to %d entries\n", fd_table_max);
}
memset(fd_table + oldmax, 0, sizeof(int) * (fd_table_max - oldmax));
}
fd_table[fd] = fde;
}
static void fdevent_unregister(fdevent *fde)
{
int fd = fde->fd - WIN32_FH_BASE;
if((fd < 0) || (fd >= fd_table_max)) {
FATAL("fd out of range (%d)\n", fde->fd);
}
if(fd_table[fd] != fde) {
FATAL("fd_table out of sync");
}
fd_table[fd] = 0;
if(!(fde->state & FDE_DONT_CLOSE)) {
dump_fde(fde, "close");
adb_close(fde->fd);
}
}
static void fdevent_plist_enqueue(fdevent *node)
{
fdevent *list = &list_pending;
node->next = list;
node->prev = list->prev;
node->prev->next = node;
list->prev = node;
}
static void fdevent_plist_remove(fdevent *node)
{
node->prev->next = node->next;
node->next->prev = node->prev;
node->next = 0;
node->prev = 0;
}
static fdevent *fdevent_plist_dequeue(void)
{
fdevent *list = &list_pending;
fdevent *node = list->next;
if(node == list) return 0;
list->next = node->next;
list->next->prev = list;
node->next = 0;
node->prev = 0;
return node;
}
fdevent *fdevent_create(int fd, fd_func func, void *arg)
{
fdevent *fde = (fdevent*) malloc(sizeof(fdevent));
if(fde == 0) return 0;
fdevent_install(fde, fd, func, arg);
fde->state |= FDE_CREATED;
return fde;
}
void fdevent_destroy(fdevent *fde)
{
if(fde == 0) return;
if(!(fde->state & FDE_CREATED)) {
FATAL("fde %p not created by fdevent_create()\n", fde);
}
fdevent_remove(fde);
}
void fdevent_install(fdevent *fde, int fd, fd_func func, void *arg)
{
memset(fde, 0, sizeof(fdevent));
fde->state = FDE_ACTIVE;
fde->fd = fd;
fde->func = func;
fde->arg = arg;
fdevent_register(fde);
dump_fde(fde, "connect");
fdevent_connect(fde);
fde->state |= FDE_ACTIVE;
}
void fdevent_remove(fdevent *fde)
{
if(fde->state & FDE_PENDING) {
fdevent_plist_remove(fde);
}
if(fde->state & FDE_ACTIVE) {
fdevent_disconnect(fde);
dump_fde(fde, "disconnect");
fdevent_unregister(fde);
}
fde->state = 0;
fde->events = 0;
}
void fdevent_set(fdevent *fde, unsigned events)
{
events &= FDE_EVENTMASK;
if((fde->state & FDE_EVENTMASK) == (int)events) return;
if(fde->state & FDE_ACTIVE) {
fdevent_update(fde, events);
dump_fde(fde, "update");
}
fde->state = (fde->state & FDE_STATEMASK) | events;
if(fde->state & FDE_PENDING) {
/* if we're pending, make sure
** we don't signal an event that
** is no longer wanted.
*/
fde->events &= (~events);
if(fde->events == 0) {
fdevent_plist_remove(fde);
fde->state &= (~FDE_PENDING);
}
}
}
void fdevent_add(fdevent *fde, unsigned events)
{
fdevent_set(
fde, (fde->state & FDE_EVENTMASK) | (events & FDE_EVENTMASK));
}
void fdevent_del(fdevent *fde, unsigned events)
{
fdevent_set(
fde, (fde->state & FDE_EVENTMASK) & (~(events & FDE_EVENTMASK)));
}
void fdevent_loop()
{
fdevent *fde;
for(;;) {
#if DEBUG
fprintf(stderr,"--- ---- waiting for events\n");
#endif
fdevent_process();
while((fde = fdevent_plist_dequeue())) {
unsigned events = fde->events;
fde->events = 0;
fde->state &= (~FDE_PENDING);
dump_fde(fde, "callback");
fde->func(fde->fd, events, fde->arg);
}
}
}
/** FILE EVENT HOOKS
**/
static void _event_file_prepare( EventHook hook )
{
if (hook->wanted & (FDE_READ|FDE_WRITE)) {
/* we can always read/write */
hook->ready |= hook->wanted & (FDE_READ|FDE_WRITE);
}
}
static int _event_file_peek( EventHook hook )
{
return (hook->wanted & (FDE_READ|FDE_WRITE));
}
static void _fh_file_hook( FH f, int events, EventHook hook )
{
hook->h = f->fh_handle;
hook->prepare = _event_file_prepare;
hook->peek = _event_file_peek;
}
/** SOCKET EVENT HOOKS
**/
static void _event_socket_verify( EventHook hook, WSANETWORKEVENTS* evts )
{
if ( evts->lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE) ) {
if (hook->wanted & FDE_READ)
hook->ready |= FDE_READ;
if ((evts->iErrorCode[FD_READ] != 0) && hook->wanted & FDE_ERROR)
hook->ready |= FDE_ERROR;
}
if ( evts->lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE) ) {
if (hook->wanted & FDE_WRITE)
hook->ready |= FDE_WRITE;
if ((evts->iErrorCode[FD_WRITE] != 0) && hook->wanted & FDE_ERROR)
hook->ready |= FDE_ERROR;
}
if ( evts->lNetworkEvents & FD_OOB ) {
if (hook->wanted & FDE_ERROR)
hook->ready |= FDE_ERROR;
}
}
static void _event_socket_prepare( EventHook hook )
{
WSANETWORKEVENTS evts;
/* look if some of the events we want already happened ? */
if (!WSAEnumNetworkEvents( hook->fh->fh_socket, NULL, &evts ))
_event_socket_verify( hook, &evts );
}
static int _socket_wanted_to_flags( int wanted )
{
int flags = 0;
if (wanted & FDE_READ)
flags |= FD_READ | FD_ACCEPT | FD_CLOSE;
if (wanted & FDE_WRITE)
flags |= FD_WRITE | FD_CONNECT | FD_CLOSE;
if (wanted & FDE_ERROR)
flags |= FD_OOB;
return flags;
}
static int _event_socket_start( EventHook hook )
{
/* create an event which we're going to wait for */
FH fh = hook->fh;
long flags = _socket_wanted_to_flags( hook->wanted );
hook->h = fh->event;
if (hook->h == INVALID_HANDLE_VALUE) {
D( "_event_socket_start: no event for %s\n", fh->name );
return 0;
}
if ( flags != fh->mask ) {
D( "_event_socket_start: hooking %s for %x (flags %ld)\n", hook->fh->name, hook->wanted, flags );
if ( WSAEventSelect( fh->fh_socket, hook->h, flags ) ) {
D( "_event_socket_start: WSAEventSelect() for %s failed, error %d\n", hook->fh->name, WSAGetLastError() );
CloseHandle( hook->h );
hook->h = INVALID_HANDLE_VALUE;
exit(1);
return 0;
}
fh->mask = flags;
}
return 1;
}
static void _event_socket_stop( EventHook hook )
{
hook->h = INVALID_HANDLE_VALUE;
}
static int _event_socket_check( EventHook hook )
{
int result = 0;
FH fh = hook->fh;
WSANETWORKEVENTS evts;
if (!WSAEnumNetworkEvents( fh->fh_socket, hook->h, &evts ) ) {
_event_socket_verify( hook, &evts );
result = (hook->ready != 0);
if (result) {
ResetEvent( hook->h );
}
}
D( "_event_socket_check %s returns %d\n", fh->name, result );
return result;
}
static int _event_socket_peek( EventHook hook )
{
WSANETWORKEVENTS evts;
FH fh = hook->fh;
/* look if some of the events we want already happened ? */
if (!WSAEnumNetworkEvents( fh->fh_socket, NULL, &evts )) {
_event_socket_verify( hook, &evts );
if (hook->ready)
ResetEvent( hook->h );
}
return hook->ready != 0;
}
static void _fh_socket_hook( FH f, int events, EventHook hook )
{
hook->prepare = _event_socket_prepare;
hook->start = _event_socket_start;
hook->stop = _event_socket_stop;
hook->check = _event_socket_check;
hook->peek = _event_socket_peek;
_event_socket_start( hook );
}
/** SOCKETPAIR EVENT HOOKS
**/
static void _event_socketpair_prepare( EventHook hook )
{
FH fh = hook->fh;
SocketPair pair = fh->fh_pair;
BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip;
BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip;
if (hook->wanted & FDE_READ && rbip->can_read)
hook->ready |= FDE_READ;
if (hook->wanted & FDE_WRITE && wbip->can_write)
hook->ready |= FDE_WRITE;
}
static int _event_socketpair_start( EventHook hook )
{
FH fh = hook->fh;
SocketPair pair = fh->fh_pair;
BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip;
BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip;
if (hook->wanted == FDE_READ)
hook->h = rbip->evt_read;
else if (hook->wanted == FDE_WRITE)
hook->h = wbip->evt_write;
else {
D("_event_socketpair_start: can't handle FDE_READ+FDE_WRITE\n" );
return 0;
}
D( "_event_socketpair_start: hook %s for %x wanted=%x\n",
hook->fh->name, _fh_to_int(fh), hook->wanted);
return 1;
}
static int _event_socketpair_peek( EventHook hook )
{
_event_socketpair_prepare( hook );
return hook->ready != 0;
}
static void _fh_socketpair_hook( FH fh, int events, EventHook hook )
{
hook->prepare = _event_socketpair_prepare;
hook->start = _event_socketpair_start;
hook->peek = _event_socketpair_peek;
}
void
adb_sysdeps_init( void )
{
#define ADB_MUTEX(x) InitializeCriticalSection( & x );
#include "mutex_list.h"
InitializeCriticalSection( &_win32_lock );
}
/* Windows doesn't have strtok_r. Use the one from bionic. */
/*
* Copyright (c) 1988 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
char *
adb_strtok_r(char *s, const char *delim, char **last)
{
char *spanp;
int c, sc;
char *tok;
if (s == NULL && (s = *last) == NULL)
return (NULL);
/*
* Skip (span) leading delimiters (s += strspn(s, delim), sort of).
*/
cont:
c = *s++;
for (spanp = (char *)delim; (sc = *spanp++) != 0;) {
if (c == sc)
goto cont;
}
if (c == 0) { /* no non-delimiter characters */
*last = NULL;
return (NULL);
}
tok = s - 1;
/*
* Scan token (scan for delimiters: s += strcspn(s, delim), sort of).
* Note that delim must have one NUL; we stop if we see that, too.
*/
for (;;) {
c = *s++;
spanp = (char *)delim;
do {
if ((sc = *spanp++) == c) {
if (c == 0)
s = NULL;
else
s[-1] = 0;
*last = s;
return (tok);
}
} while (sc != 0);
}
/* NOTREACHED */
}