blob: 2ff716c25228f513fe09fdbc5346caeeed3ff8d2 [file] [log] [blame]
/*
* (C) Copyright 2012-2013, Xilinx, Michal Simek
*
* (C) Copyright 2012
* Joe Hershberger <joe.hershberger@ni.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <console.h>
#include <asm/io.h>
#include <fs.h>
#include <zynqpl.h>
#include <linux/sizes.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#define DEVCFG_CTRL_PCFG_PROG_B 0x40000000
#define DEVCFG_ISR_FATAL_ERROR_MASK 0x00740040
#define DEVCFG_ISR_ERROR_FLAGS_MASK 0x00340840
#define DEVCFG_ISR_RX_FIFO_OV 0x00040000
#define DEVCFG_ISR_DMA_DONE 0x00002000
#define DEVCFG_ISR_PCFG_DONE 0x00000004
#define DEVCFG_STATUS_DMA_CMD_Q_F 0x80000000
#define DEVCFG_STATUS_DMA_CMD_Q_E 0x40000000
#define DEVCFG_STATUS_DMA_DONE_CNT_MASK 0x30000000
#define DEVCFG_STATUS_PCFG_INIT 0x00000010
#define DEVCFG_MCTRL_PCAP_LPBK 0x00000010
#define DEVCFG_MCTRL_RFIFO_FLUSH 0x00000002
#define DEVCFG_MCTRL_WFIFO_FLUSH 0x00000001
#ifndef CONFIG_SYS_FPGA_WAIT
#define CONFIG_SYS_FPGA_WAIT CONFIG_SYS_HZ/100 /* 10 ms */
#endif
#ifndef CONFIG_SYS_FPGA_PROG_TIME
#define CONFIG_SYS_FPGA_PROG_TIME (CONFIG_SYS_HZ * 4) /* 4 s */
#endif
#define DUMMY_WORD 0xffffffff
/* Xilinx binary format header */
static const u32 bin_format[] = {
DUMMY_WORD, /* Dummy words */
DUMMY_WORD,
DUMMY_WORD,
DUMMY_WORD,
DUMMY_WORD,
DUMMY_WORD,
DUMMY_WORD,
DUMMY_WORD,
0x000000bb, /* Sync word */
0x11220044, /* Sync word */
DUMMY_WORD,
DUMMY_WORD,
0xaa995566, /* Sync word */
};
#define SWAP_NO 1
#define SWAP_DONE 2
/*
* Load the whole word from unaligned buffer
* Keep in your mind that it is byte loading on little-endian system
*/
static u32 load_word(const void *buf, u32 swap)
{
u32 word = 0;
u8 *bitc = (u8 *)buf;
int p;
if (swap == SWAP_NO) {
for (p = 0; p < 4; p++) {
word <<= 8;
word |= bitc[p];
}
} else {
for (p = 3; p >= 0; p--) {
word <<= 8;
word |= bitc[p];
}
}
return word;
}
static u32 check_header(const void *buf)
{
u32 i, pattern;
int swap = SWAP_NO;
u32 *test = (u32 *)buf;
debug("%s: Let's check bitstream header\n", __func__);
/* Checking that passing bin is not a bitstream */
for (i = 0; i < ARRAY_SIZE(bin_format); i++) {
pattern = load_word(&test[i], swap);
/*
* Bitstreams in binary format are swapped
* compare to regular bistream.
* Do not swap dummy word but if swap is done assume
* that parsing buffer is binary format
*/
if ((__swab32(pattern) != DUMMY_WORD) &&
(__swab32(pattern) == bin_format[i])) {
pattern = __swab32(pattern);
swap = SWAP_DONE;
debug("%s: data swapped - let's swap\n", __func__);
}
debug("%s: %d/%x: pattern %x/%x bin_format\n", __func__, i,
(u32)&test[i], pattern, bin_format[i]);
if (pattern != bin_format[i]) {
debug("%s: Bitstream is not recognized\n", __func__);
return 0;
}
}
debug("%s: Found bitstream header at %x %s swapinng\n", __func__,
(u32)buf, swap == SWAP_NO ? "without" : "with");
return swap;
}
static void *check_data(u8 *buf, size_t bsize, u32 *swap)
{
u32 word, p = 0; /* possition */
/* Because buf doesn't need to be aligned let's read it by chars */
for (p = 0; p < bsize; p++) {
word = load_word(&buf[p], SWAP_NO);
debug("%s: word %x %x/%x\n", __func__, word, p, (u32)&buf[p]);
/* Find the first bitstream dummy word */
if (word == DUMMY_WORD) {
debug("%s: Found dummy word at position %x/%x\n",
__func__, p, (u32)&buf[p]);
*swap = check_header(&buf[p]);
if (*swap) {
/* FIXME add full bitstream checking here */
return &buf[p];
}
}
/* Loop can be huge - support CTRL + C */
if (ctrlc())
return NULL;
}
return NULL;
}
static int zynq_dma_transfer(u32 srcbuf, u32 srclen, u32 dstbuf, u32 dstlen)
{
unsigned long ts;
u32 isr_status;
/* Set up the transfer */
writel((u32)srcbuf, &devcfg_base->dma_src_addr);
writel(dstbuf, &devcfg_base->dma_dst_addr);
writel(srclen, &devcfg_base->dma_src_len);
writel(dstlen, &devcfg_base->dma_dst_len);
isr_status = readl(&devcfg_base->int_sts);
/* Polling the PCAP_INIT status for Set */
ts = get_timer(0);
while (!(isr_status & DEVCFG_ISR_DMA_DONE)) {
if (isr_status & DEVCFG_ISR_ERROR_FLAGS_MASK) {
debug("%s: Error: isr = 0x%08X\n", __func__,
isr_status);
debug("%s: Write count = 0x%08X\n", __func__,
readl(&devcfg_base->write_count));
debug("%s: Read count = 0x%08X\n", __func__,
readl(&devcfg_base->read_count));
return FPGA_FAIL;
}
if (get_timer(ts) > CONFIG_SYS_FPGA_PROG_TIME) {
printf("%s: Timeout wait for DMA to complete\n",
__func__);
return FPGA_FAIL;
}
isr_status = readl(&devcfg_base->int_sts);
}
debug("%s: DMA transfer is done\n", __func__);
/* Clear out the DMA status */
writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
return FPGA_SUCCESS;
}
static int zynq_dma_xfer_init(bitstream_type bstype)
{
u32 status, control, isr_status;
unsigned long ts;
/* Clear loopback bit */
clrbits_le32(&devcfg_base->mctrl, DEVCFG_MCTRL_PCAP_LPBK);
if (bstype != BIT_PARTIAL) {
zynq_slcr_devcfg_disable();
/* Setting PCFG_PROG_B signal to high */
control = readl(&devcfg_base->ctrl);
writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
/* Setting PCFG_PROG_B signal to low */
writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
/* Polling the PCAP_INIT status for Reset */
ts = get_timer(0);
while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) {
if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
printf("%s: Timeout wait for INIT to clear\n",
__func__);
return FPGA_FAIL;
}
}
/* Setting PCFG_PROG_B signal to high */
writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
/* Polling the PCAP_INIT status for Set */
ts = get_timer(0);
while (!(readl(&devcfg_base->status) &
DEVCFG_STATUS_PCFG_INIT)) {
if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
printf("%s: Timeout wait for INIT to set\n",
__func__);
return FPGA_FAIL;
}
}
}
isr_status = readl(&devcfg_base->int_sts);
/* Clear it all, so if Boot ROM comes back, it can proceed */
writel(0xFFFFFFFF, &devcfg_base->int_sts);
if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) {
debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status);
/* If RX FIFO overflow, need to flush RX FIFO first */
if (isr_status & DEVCFG_ISR_RX_FIFO_OV) {
writel(DEVCFG_MCTRL_RFIFO_FLUSH, &devcfg_base->mctrl);
writel(0xFFFFFFFF, &devcfg_base->int_sts);
}
return FPGA_FAIL;
}
status = readl(&devcfg_base->status);
debug("%s: Status = 0x%08X\n", __func__, status);
if (status & DEVCFG_STATUS_DMA_CMD_Q_F) {
debug("%s: Error: device busy\n", __func__);
return FPGA_FAIL;
}
debug("%s: Device ready\n", __func__);
if (!(status & DEVCFG_STATUS_DMA_CMD_Q_E)) {
if (!(readl(&devcfg_base->int_sts) & DEVCFG_ISR_DMA_DONE)) {
/* Error state, transfer cannot occur */
debug("%s: ISR indicates error\n", __func__);
return FPGA_FAIL;
} else {
/* Clear out the status */
writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
}
}
if (status & DEVCFG_STATUS_DMA_DONE_CNT_MASK) {
/* Clear the count of completed DMA transfers */
writel(DEVCFG_STATUS_DMA_DONE_CNT_MASK, &devcfg_base->status);
}
return FPGA_SUCCESS;
}
static u32 *zynq_align_dma_buffer(u32 *buf, u32 len, u32 swap)
{
u32 *new_buf;
u32 i;
if ((u32)buf != ALIGN((u32)buf, ARCH_DMA_MINALIGN)) {
new_buf = (u32 *)ALIGN((u32)buf, ARCH_DMA_MINALIGN);
/*
* This might be dangerous but permits to flash if
* ARCH_DMA_MINALIGN is greater than header size
*/
if (new_buf > buf) {
debug("%s: Aligned buffer is after buffer start\n",
__func__);
new_buf -= ARCH_DMA_MINALIGN;
}
printf("%s: Align buffer at %x to %x(swap %d)\n", __func__,
(u32)buf, (u32)new_buf, swap);
for (i = 0; i < (len/4); i++)
new_buf[i] = load_word(&buf[i], swap);
buf = new_buf;
} else if (swap != SWAP_DONE) {
/* For bitstream which are aligned */
u32 *new_buf = (u32 *)buf;
printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__,
swap);
for (i = 0; i < (len/4); i++)
new_buf[i] = load_word(&buf[i], swap);
}
return buf;
}
static int zynq_validate_bitstream(xilinx_desc *desc, const void *buf,
size_t bsize, u32 blocksize, u32 *swap,
bitstream_type *bstype)
{
u32 *buf_start;
u32 diff;
buf_start = check_data((u8 *)buf, blocksize, swap);
if (!buf_start)
return FPGA_FAIL;
/* Check if data is postpone from start */
diff = (u32)buf_start - (u32)buf;
if (diff) {
printf("%s: Bitstream is not validated yet (diff %x)\n",
__func__, diff);
return FPGA_FAIL;
}
if ((u32)buf < SZ_1M) {
printf("%s: Bitstream has to be placed up to 1MB (%x)\n",
__func__, (u32)buf);
return FPGA_FAIL;
}
if (zynq_dma_xfer_init(*bstype))
return FPGA_FAIL;
return 0;
}
static int zynq_load(xilinx_desc *desc, const void *buf, size_t bsize,
bitstream_type bstype)
{
unsigned long ts; /* Timestamp */
u32 isr_status, swap;
/*
* send bsize inplace of blocksize as it was not a bitstream
* in chunks
*/
if (zynq_validate_bitstream(desc, buf, bsize, bsize, &swap,
&bstype))
return FPGA_FAIL;
buf = zynq_align_dma_buffer((u32 *)buf, bsize, swap);
debug("%s: Source = 0x%08X\n", __func__, (u32)buf);
debug("%s: Size = %zu\n", __func__, bsize);
/* flush(clean & invalidate) d-cache range buf */
flush_dcache_range((u32)buf, (u32)buf +
roundup(bsize, ARCH_DMA_MINALIGN));
if (zynq_dma_transfer((u32)buf | 1, bsize >> 2, 0xffffffff, 0))
return FPGA_FAIL;
isr_status = readl(&devcfg_base->int_sts);
/* Check FPGA configuration completion */
ts = get_timer(0);
while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) {
if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
printf("%s: Timeout wait for FPGA to config\n",
__func__);
return FPGA_FAIL;
}
isr_status = readl(&devcfg_base->int_sts);
}
debug("%s: FPGA config done\n", __func__);
if (bstype != BIT_PARTIAL)
zynq_slcr_devcfg_enable();
return FPGA_SUCCESS;
}
#if defined(CONFIG_CMD_FPGA_LOADFS)
static int zynq_loadfs(xilinx_desc *desc, const void *buf, size_t bsize,
fpga_fs_info *fsinfo)
{
unsigned long ts; /* Timestamp */
u32 isr_status, swap;
u32 partialbit = 0;
loff_t blocksize, actread;
loff_t pos = 0;
int fstype;
char *interface, *dev_part, *filename;
blocksize = fsinfo->blocksize;
interface = fsinfo->interface;
dev_part = fsinfo->dev_part;
filename = fsinfo->filename;
fstype = fsinfo->fstype;
if (fs_set_blk_dev(interface, dev_part, fstype))
return FPGA_FAIL;
if (fs_read(filename, (u32) buf, pos, blocksize, &actread) < 0)
return FPGA_FAIL;
if (zynq_validate_bitstream(desc, buf, bsize, blocksize, &swap,
&partialbit))
return FPGA_FAIL;
dcache_disable();
do {
buf = zynq_align_dma_buffer((u32 *)buf, blocksize, swap);
if (zynq_dma_transfer((u32)buf | 1, blocksize >> 2,
0xffffffff, 0))
return FPGA_FAIL;
bsize -= blocksize;
pos += blocksize;
if (fs_set_blk_dev(interface, dev_part, fstype))
return FPGA_FAIL;
if (bsize > blocksize) {
if (fs_read(filename, (u32) buf, pos, blocksize, &actread) < 0)
return FPGA_FAIL;
} else {
if (fs_read(filename, (u32) buf, pos, bsize, &actread) < 0)
return FPGA_FAIL;
}
} while (bsize > blocksize);
buf = zynq_align_dma_buffer((u32 *)buf, blocksize, swap);
if (zynq_dma_transfer((u32)buf | 1, bsize >> 2, 0xffffffff, 0))
return FPGA_FAIL;
dcache_enable();
isr_status = readl(&devcfg_base->int_sts);
/* Check FPGA configuration completion */
ts = get_timer(0);
while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) {
if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
printf("%s: Timeout wait for FPGA to config\n",
__func__);
return FPGA_FAIL;
}
isr_status = readl(&devcfg_base->int_sts);
}
debug("%s: FPGA config done\n", __func__);
if (!partialbit)
zynq_slcr_devcfg_enable();
return FPGA_SUCCESS;
}
#endif
struct xilinx_fpga_op zynq_op = {
.load = zynq_load,
#if defined(CONFIG_CMD_FPGA_LOADFS)
.loadfs = zynq_loadfs,
#endif
};