blob: 9998c07a4738920fbcf93d7e1e43bec2bc62be13 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015-2016 Marvell International Ltd.
*/
#include <common.h>
#include <fdtdec.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include "comphy_core.h"
#include "comphy_hpipe.h"
#include "sata.h"
#include "utmi_phy.h"
DECLARE_GLOBAL_DATA_PTR;
#define SD_ADDR(base, lane) (base + 0x1000 * lane)
#define HPIPE_ADDR(base, lane) (SD_ADDR(base, lane) + 0x800)
#define COMPHY_ADDR(base, lane) (base + 0x28 * lane)
struct utmi_phy_data {
void __iomem *utmi_base_addr;
void __iomem *usb_cfg_addr;
void __iomem *utmi_cfg_addr;
u32 utmi_phy_port;
};
/*
* For CP-110 we have 2 Selector registers "PHY Selectors",
* and "PIPE Selectors".
* PIPE selector include USB and PCIe options.
* PHY selector include the Ethernet and SATA options, every Ethernet
* option has different options, for example: serdes lane2 had option
* Eth_port_0 that include (SGMII0, RXAUI0, SFI)
*/
struct comphy_mux_data cp110_comphy_phy_mux_data[] = {
{4, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_SGMII1, 0x1}, /* Lane 0 */
{PHY_TYPE_SATA1, 0x4} } },
{4, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_SGMII2, 0x1}, /* Lane 1 */
{PHY_TYPE_SATA0, 0x4} } },
{6, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_SGMII0, 0x1}, /* Lane 2 */
{PHY_TYPE_RXAUI0, 0x1}, {PHY_TYPE_SFI, 0x1},
{PHY_TYPE_SATA0, 0x4} } },
{8, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_RXAUI1, 0x1}, /* Lane 3 */
{PHY_TYPE_SGMII1, 0x2}, {PHY_TYPE_SATA1, 0x4} } },
{7, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_SGMII0, 0x2}, /* Lane 4 */
{PHY_TYPE_RXAUI0, 0x2}, {PHY_TYPE_SFI, 0x2},
{PHY_TYPE_SGMII1, 0x1} } },
{6, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_SGMII2, 0x1}, /* Lane 5 */
{PHY_TYPE_RXAUI1, 0x2}, {PHY_TYPE_SATA1, 0x4} } },
};
struct comphy_mux_data cp110_comphy_pipe_mux_data[] = {
{2, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_PEX0, 0x4} } }, /* Lane 0 */
{4, {{PHY_TYPE_UNCONNECTED, 0x0}, /* Lane 1 */
{PHY_TYPE_USB3_HOST0, 0x1}, {PHY_TYPE_USB3_DEVICE, 0x2},
{PHY_TYPE_PEX0, 0x4} } },
{3, {{PHY_TYPE_UNCONNECTED, 0x0}, /* Lane 2 */
{PHY_TYPE_USB3_HOST0, 0x1}, {PHY_TYPE_PEX0, 0x4} } },
{3, {{PHY_TYPE_UNCONNECTED, 0x0}, /* Lane 3 */
{PHY_TYPE_USB3_HOST1, 0x1}, {PHY_TYPE_PEX0, 0x4} } },
{4, {{PHY_TYPE_UNCONNECTED, 0x0}, /* Lane 4 */
{PHY_TYPE_USB3_HOST1, 0x1},
{PHY_TYPE_USB3_DEVICE, 0x2}, {PHY_TYPE_PEX1, 0x4} } },
{2, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_PEX2, 0x4} } }, /* Lane 5 */
};
static u32 polling_with_timeout(void __iomem *addr, u32 val,
u32 mask, unsigned long usec_timout)
{
u32 data;
do {
udelay(1);
data = readl(addr) & mask;
} while (data != val && --usec_timout > 0);
if (usec_timout == 0)
return data;
return 0;
}
static int comphy_pcie_power_up(u32 lane, u32 pcie_width, bool clk_src,
bool is_end_point, void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
u32 pcie_clk = 0; /* set input by default */
debug_enter();
/*
* ToDo:
* Add SAR (Sample-At-Reset) configuration for the PCIe clock
* direction. SAR code is currently not ported from Marvell
* U-Boot to mainline version.
*
* SerDes Lane 4/5 got the PCIe ref-clock #1,
* and SerDes Lane 0 got PCIe ref-clock #0
*/
debug("PCIe clock = %x\n", pcie_clk);
debug("PCIe RC = %d\n", !is_end_point);
debug("PCIe width = %d\n", pcie_width);
/* enable PCIe by4 and by2 */
if (lane == 0) {
if (pcie_width == 4) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_PCIE_X4_EN_OFFSET,
COMMON_PHY_SD_CTRL1_PCIE_X4_EN_MASK);
} else if (pcie_width == 2) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_PCIE_X2_EN_OFFSET,
COMMON_PHY_SD_CTRL1_PCIE_X2_EN_MASK);
}
}
/*
* If PCIe clock is output and clock source from SerDes lane 5,
* we need to configure the clock-source MUX.
* By default, the clock source is from lane 4
*/
if (pcie_clk && clk_src && (lane == 5)) {
reg_set((void __iomem *)DFX_DEV_GEN_CTRL12,
0x3 << DFX_DEV_GEN_PCIE_CLK_SRC_OFFSET,
DFX_DEV_GEN_PCIE_CLK_SRC_MASK);
}
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x1 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
mask |= COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
mask |= COMMON_PHY_PHY_MODE_MASK;
data |= 0x0 << COMMON_PHY_PHY_MODE_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* release from hard reset */
mask = COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x1 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* Set PIPE soft reset */
mask = HPIPE_RST_CLK_CTRL_PIPE_RST_MASK;
data = 0x1 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET;
/* Set PHY datapath width mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_FIXED_PCLK_MASK;
data |= 0x1 << HPIPE_RST_CLK_CTRL_FIXED_PCLK_OFFSET;
/* Set Data bus width USB mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_PIPE_WIDTH_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_PIPE_WIDTH_OFFSET;
/* Set CORE_CLK output frequency for 250Mhz */
mask |= HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG, data, mask);
/* Set PLL ready delay for 0x2 */
data = 0x2 << HPIPE_CLK_SRC_LO_PLL_RDY_DL_OFFSET;
mask = HPIPE_CLK_SRC_LO_PLL_RDY_DL_MASK;
if (pcie_width != 1) {
data |= 0x1 << HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SEL_OFFSET;
mask |= HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SEL_MASK;
data |= 0x1 << HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SCALE_OFFSET;
mask |= HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SCALE_MASK;
}
reg_set(hpipe_addr + HPIPE_CLK_SRC_LO_REG, data, mask);
/* Set PIPE mode interface to PCIe3 - 0x1 & set lane order */
data = 0x1 << HPIPE_CLK_SRC_HI_MODE_PIPE_OFFSET;
mask = HPIPE_CLK_SRC_HI_MODE_PIPE_MASK;
if (pcie_width != 1) {
mask |= HPIPE_CLK_SRC_HI_LANE_STRT_MASK;
mask |= HPIPE_CLK_SRC_HI_LANE_MASTER_MASK;
mask |= HPIPE_CLK_SRC_HI_LANE_BREAK_MASK;
if (lane == 0) {
data |= 0x1 << HPIPE_CLK_SRC_HI_LANE_STRT_OFFSET;
data |= 0x1 << HPIPE_CLK_SRC_HI_LANE_MASTER_OFFSET;
} else if (lane == (pcie_width - 1)) {
data |= 0x1 << HPIPE_CLK_SRC_HI_LANE_BREAK_OFFSET;
}
}
reg_set(hpipe_addr + HPIPE_CLK_SRC_HI_REG, data, mask);
/* Config update polarity equalization */
reg_set(hpipe_addr + HPIPE_LANE_EQ_CFG1_REG,
0x1 << HPIPE_CFG_UPDATE_POLARITY_OFFSET,
HPIPE_CFG_UPDATE_POLARITY_MASK);
/* Set PIPE version 4 to mode enable */
reg_set(hpipe_addr + HPIPE_DFE_CTRL_28_REG,
0x1 << HPIPE_DFE_CTRL_28_PIPE4_OFFSET,
HPIPE_DFE_CTRL_28_PIPE4_MASK);
/* TODO: check if pcie clock is output/input - for bringup use input*/
/* Enable PIN clock 100M_125M */
mask = 0;
data = 0;
/* Only if clock is output, configure the clock-source mux */
if (pcie_clk) {
mask |= HPIPE_MISC_CLK100M_125M_MASK;
data |= 0x1 << HPIPE_MISC_CLK100M_125M_OFFSET;
}
/*
* Set PIN_TXDCLK_2X Clock Frequency Selection for outputs 500MHz
* clock
*/
mask |= HPIPE_MISC_TXDCLK_2X_MASK;
data |= 0x0 << HPIPE_MISC_TXDCLK_2X_OFFSET;
/* Enable 500MHz Clock */
mask |= HPIPE_MISC_CLK500_EN_MASK;
data |= 0x1 << HPIPE_MISC_CLK500_EN_OFFSET;
if (pcie_clk) { /* output */
/* Set reference clock comes from group 1 */
mask |= HPIPE_MISC_REFCLK_SEL_MASK;
data |= 0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET;
} else {
/* Set reference clock comes from group 2 */
mask |= HPIPE_MISC_REFCLK_SEL_MASK;
data |= 0x1 << HPIPE_MISC_REFCLK_SEL_OFFSET;
}
mask |= HPIPE_MISC_ICP_FORCE_MASK;
data |= 0x1 << HPIPE_MISC_ICP_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_MISC_REG, data, mask);
if (pcie_clk) { /* output */
/* Set reference frequcency select - 0x2 for 25MHz*/
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x2 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
} else {
/* Set reference frequcency select - 0x0 for 100MHz*/
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x0 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
}
/* Set PHY mode to PCIe */
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x3 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* ref clock alignment */
if (pcie_width != 1) {
mask = HPIPE_LANE_ALIGN_OFF_MASK;
data = 0x0 << HPIPE_LANE_ALIGN_OFF_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_ALIGN_REG, data, mask);
}
/*
* Set the amount of time spent in the LoZ state - set for 0x7 only if
* the PCIe clock is output
*/
if (pcie_clk) {
reg_set(hpipe_addr + HPIPE_GLOBAL_PM_CTRL,
0x7 << HPIPE_GLOBAL_PM_RXDLOZ_WAIT_OFFSET,
HPIPE_GLOBAL_PM_RXDLOZ_WAIT_MASK);
}
/* Set Maximal PHY Generation Setting(8Gbps) */
mask = HPIPE_INTERFACE_GEN_MAX_MASK;
data = 0x2 << HPIPE_INTERFACE_GEN_MAX_OFFSET;
/* Bypass frame detection and sync detection for RX DATA */
mask = HPIPE_INTERFACE_DET_BYPASS_MASK;
data = 0x1 << HPIPE_INTERFACE_DET_BYPASS_OFFSET;
/* Set Link Train Mode (Tx training control pins are used) */
mask |= HPIPE_INTERFACE_LINK_TRAIN_MASK;
data |= 0x1 << HPIPE_INTERFACE_LINK_TRAIN_OFFSET;
reg_set(hpipe_addr + HPIPE_INTERFACE_REG, data, mask);
/* Set Idle_sync enable */
mask = HPIPE_PCIE_IDLE_SYNC_MASK;
data = 0x1 << HPIPE_PCIE_IDLE_SYNC_OFFSET;
/* Select bits for PCIE Gen3(32bit) */
mask |= HPIPE_PCIE_SEL_BITS_MASK;
data |= 0x2 << HPIPE_PCIE_SEL_BITS_OFFSET;
reg_set(hpipe_addr + HPIPE_PCIE_REG0, data, mask);
/* Enable Tx_adapt_g1 */
mask = HPIPE_TX_TRAIN_CTRL_G1_MASK;
data = 0x1 << HPIPE_TX_TRAIN_CTRL_G1_OFFSET;
/* Enable Tx_adapt_gn1 */
mask |= HPIPE_TX_TRAIN_CTRL_GN1_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_CTRL_GN1_OFFSET;
/* Disable Tx_adapt_g0 */
mask |= HPIPE_TX_TRAIN_CTRL_G0_MASK;
data |= 0x0 << HPIPE_TX_TRAIN_CTRL_G0_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_REG, data, mask);
/* Set reg_tx_train_chk_init */
mask = HPIPE_TX_TRAIN_CHK_INIT_MASK;
data = 0x0 << HPIPE_TX_TRAIN_CHK_INIT_OFFSET;
/* Enable TX_COE_FM_PIN_PCIE3_EN */
mask |= HPIPE_TX_TRAIN_COE_FM_PIN_PCIE3_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_COE_FM_PIN_PCIE3_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_REG, data, mask);
debug("stage: TRx training parameters\n");
/* Set Preset sweep configurations */
mask = HPIPE_TX_TX_STATUS_CHECK_MODE_MASK;
data = 0x1 << HPIPE_TX_STATUS_CHECK_MODE_OFFSET;
mask |= HPIPE_TX_NUM_OF_PRESET_MASK;
data |= 0x7 << HPIPE_TX_NUM_OF_PRESET_OFFSET;
mask |= HPIPE_TX_SWEEP_PRESET_EN_MASK;
data |= 0x1 << HPIPE_TX_SWEEP_PRESET_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_11_REG, data, mask);
/* Tx train start configuration */
mask = HPIPE_TX_TRAIN_START_SQ_EN_MASK;
data = 0x1 << HPIPE_TX_TRAIN_START_SQ_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_START_FRM_DET_EN_MASK;
data |= 0x0 << HPIPE_TX_TRAIN_START_FRM_DET_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_START_FRM_LOCK_EN_MASK;
data |= 0x0 << HPIPE_TX_TRAIN_START_FRM_LOCK_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_WAIT_TIME_EN_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_WAIT_TIME_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_5_REG, data, mask);
/* Enable Tx train P2P */
mask = HPIPE_TX_TRAIN_P2P_HOLD_MASK;
data = 0x1 << HPIPE_TX_TRAIN_P2P_HOLD_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_0_REG, data, mask);
/* Configure Tx train timeout */
mask = HPIPE_TRX_TRAIN_TIMER_MASK;
data = 0x17 << HPIPE_TRX_TRAIN_TIMER_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_4_REG, data, mask);
/* Disable G0/G1/GN1 adaptation */
mask = HPIPE_TX_TRAIN_CTRL_G1_MASK | HPIPE_TX_TRAIN_CTRL_GN1_MASK
| HPIPE_TX_TRAIN_CTRL_G0_OFFSET;
data = 0;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_REG, data, mask);
/* Disable DTL frequency loop */
mask = HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data = 0x0 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Configure G3 DFE */
mask = HPIPE_G3_DFE_RES_MASK;
data = 0x3 << HPIPE_G3_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_4_REG, data, mask);
/* Use TX/RX training result for DFE */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x0 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
/* Configure initial and final coefficient value for receiver */
mask = HPIPE_G3_SET_1_G3_RX_SELMUPI_MASK;
data = 0x1 << HPIPE_G3_SET_1_G3_RX_SELMUPI_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_SELMUPF_MASK;
data |= 0x1 << HPIPE_G3_SET_1_G3_RX_SELMUPF_OFFSET;
mask |= HPIPE_G3_SET_1_G3_SAMPLER_INPAIRX2_EN_MASK;
data |= 0x0 << HPIPE_G3_SET_1_G3_SAMPLER_INPAIRX2_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SET_1_REG, data, mask);
/* Trigger sampler enable pulse */
mask = HPIPE_SMAPLER_MASK;
data = 0x1 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
udelay(5);
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, 0, mask);
/* FFE resistor tuning for different bandwidth */
mask = HPIPE_G3_FFE_DEG_RES_LEVEL_MASK;
data = 0x1 << HPIPE_G3_FFE_DEG_RES_LEVEL_OFFSET;
mask |= HPIPE_G3_FFE_LOAD_RES_LEVEL_MASK;
data |= 0x3 << HPIPE_G3_FFE_LOAD_RES_LEVEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_3_REG, data, mask);
/* Pattern lock lost timeout disable */
mask = HPIPE_PATTERN_LOCK_LOST_TIMEOUT_EN_MASK;
data = 0x0 << HPIPE_PATTERN_LOCK_LOST_TIMEOUT_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_FRAME_DETECT_CTRL_3_REG, data, mask);
/* Configure DFE adaptations */
mask = HPIPE_CDR_MAX_DFE_ADAPT_1_MASK;
data = 0x1 << HPIPE_CDR_MAX_DFE_ADAPT_1_OFFSET;
mask |= HPIPE_CDR_MAX_DFE_ADAPT_0_MASK;
data |= 0x0 << HPIPE_CDR_MAX_DFE_ADAPT_0_OFFSET;
mask |= HPIPE_CDR_RX_MAX_DFE_ADAPT_1_MASK;
data |= 0x0 << HPIPE_CDR_RX_MAX_DFE_ADAPT_1_OFFSET;
reg_set(hpipe_addr + HPIPE_CDR_CONTROL_REG, data, mask);
mask = HPIPE_DFE_TX_MAX_DFE_ADAPT_MASK;
data = 0x0 << HPIPE_DFE_TX_MAX_DFE_ADAPT_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_CONTROL_REG, data, mask);
/* Genration 2 setting 1*/
mask = HPIPE_G2_SET_1_G2_RX_SELMUPI_MASK;
data = 0x0 << HPIPE_G2_SET_1_G2_RX_SELMUPI_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_SELMUPP_MASK;
data |= 0x1 << HPIPE_G2_SET_1_G2_RX_SELMUPP_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_SELMUFI_MASK;
data |= 0x0 << HPIPE_G2_SET_1_G2_RX_SELMUFI_OFFSET;
reg_set(hpipe_addr + HPIPE_G2_SET_1_REG, data, mask);
/* DFE enable */
mask = HPIPE_G2_DFE_RES_MASK;
data = 0x3 << HPIPE_G2_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G2_SETTINGS_4_REG, data, mask);
/* Configure DFE Resolution */
mask = HPIPE_LANE_CFG4_DFE_EN_SEL_MASK;
data = 0x1 << HPIPE_LANE_CFG4_DFE_EN_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_CFG4_REG, data, mask);
/* VDD calibration control */
mask = HPIPE_EXT_SELLV_RXSAMPL_MASK;
data = 0x16 << HPIPE_EXT_SELLV_RXSAMPL_OFFSET;
reg_set(hpipe_addr + HPIPE_VDD_CAL_CTRL_REG, data, mask);
/* Set PLL Charge-pump Current Control */
mask = HPIPE_G3_SETTING_5_G3_ICP_MASK;
data = 0x4 << HPIPE_G3_SETTING_5_G3_ICP_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_5_REG, data, mask);
/* Set lane rqualization remote setting */
mask = HPIPE_LANE_CFG_FOM_DIRN_OVERRIDE_MASK;
data = 0x1 << HPIPE_LANE_CFG_FOM_DIRN_OVERRIDE_OFFSET;
mask |= HPIPE_LANE_CFG_FOM_ONLY_MODE_MASK;
data |= 0x1 << HPIPE_LANE_CFG_FOM_ONLY_MODE_OFFFSET;
mask |= HPIPE_LANE_CFG_FOM_PRESET_VECTOR_MASK;
data |= 0x2 << HPIPE_LANE_CFG_FOM_PRESET_VECTOR_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_EQ_REMOTE_SETTING_REG, data, mask);
if (!is_end_point) {
/* Set phy in root complex mode */
mask = HPIPE_CFG_PHY_RC_EP_MASK;
data = 0x1 << HPIPE_CFG_PHY_RC_EP_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_EQU_CONFIG_0_REG, data, mask);
}
debug("stage: Comphy power up\n");
/*
* For PCIe by4 or by2 - release from reset only after finish to
* configure all lanes
*/
if ((pcie_width == 1) || (lane == (pcie_width - 1))) {
u32 i, start_lane, end_lane;
if (pcie_width != 1) {
/* allows writing to all lanes in one write */
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x0 <<
COMMON_PHY_SD_CTRL1_COMPHY_0_4_PORT_OFFSET,
COMMON_PHY_SD_CTRL1_COMPHY_0_4_PORT_MASK);
start_lane = 0;
end_lane = pcie_width;
/*
* Release from PIPE soft reset
* for PCIe by4 or by2 - release from soft reset
* all lanes - can't use read modify write
*/
reg_set(HPIPE_ADDR(hpipe_base, 0) +
HPIPE_RST_CLK_CTRL_REG, 0x24, 0xffffffff);
} else {
start_lane = lane;
end_lane = lane + 1;
/*
* Release from PIPE soft reset
* for PCIe by4 or by2 - release from soft reset
* all lanes
*/
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG,
0x0 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET,
HPIPE_RST_CLK_CTRL_PIPE_RST_MASK);
}
if (pcie_width != 1) {
/* disable writing to all lanes with one write */
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x3210 <<
COMMON_PHY_SD_CTRL1_COMPHY_0_4_PORT_OFFSET,
COMMON_PHY_SD_CTRL1_COMPHY_0_4_PORT_MASK);
}
debug("stage: Check PLL\n");
/* Read lane status */
for (i = start_lane; i < end_lane; i++) {
addr = HPIPE_ADDR(hpipe_base, i) +
HPIPE_LANE_STATUS1_REG;
data = HPIPE_LANE_STATUS1_PCLK_EN_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
hpipe_addr + HPIPE_LANE_STATUS1_REG,
data);
pr_err("HPIPE_LANE_STATUS1_PCLK_EN_MASK is 0\n");
ret = 0;
}
}
}
debug_exit();
return ret;
}
static int comphy_usb3_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x1 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
mask |= COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
mask |= COMMON_PHY_PHY_MODE_MASK;
data |= 0x1 << COMMON_PHY_PHY_MODE_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* release from hard reset */
mask = COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x1 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* Set PIPE soft reset */
mask = HPIPE_RST_CLK_CTRL_PIPE_RST_MASK;
data = 0x1 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET;
/* Set PHY datapath width mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_FIXED_PCLK_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_FIXED_PCLK_OFFSET;
/* Set Data bus width USB mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_PIPE_WIDTH_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_PIPE_WIDTH_OFFSET;
/* Set CORE_CLK output frequency for 250Mhz */
mask |= HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG, data, mask);
/* Set PLL ready delay for 0x2 */
reg_set(hpipe_addr + HPIPE_CLK_SRC_LO_REG,
0x2 << HPIPE_CLK_SRC_LO_PLL_RDY_DL_OFFSET,
HPIPE_CLK_SRC_LO_PLL_RDY_DL_MASK);
/* Set reference clock to come from group 1 - 25Mhz */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Set reference frequcency select - 0x2 */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x2 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
/* Set PHY mode to USB - 0x5 */
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x5 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Set the amount of time spent in the LoZ state - set for 0x7 */
reg_set(hpipe_addr + HPIPE_GLOBAL_PM_CTRL,
0x7 << HPIPE_GLOBAL_PM_RXDLOZ_WAIT_OFFSET,
HPIPE_GLOBAL_PM_RXDLOZ_WAIT_MASK);
/* Set max PHY generation setting - 5Gbps */
reg_set(hpipe_addr + HPIPE_INTERFACE_REG,
0x1 << HPIPE_INTERFACE_GEN_MAX_OFFSET,
HPIPE_INTERFACE_GEN_MAX_MASK);
/* Set select data width 20Bit (SEL_BITS[2:0]) */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x1 << HPIPE_LOOPBACK_SEL_OFFSET,
HPIPE_LOOPBACK_SEL_MASK);
/* select de-emphasize 3.5db */
reg_set(hpipe_addr + HPIPE_LANE_CONFIG0_REG,
0x1 << HPIPE_LANE_CONFIG0_TXDEEMPH0_OFFSET,
HPIPE_LANE_CONFIG0_TXDEEMPH0_MASK);
/* override tx margining from the MAC */
reg_set(hpipe_addr + HPIPE_TST_MODE_CTRL_REG,
0x1 << HPIPE_TST_MODE_CTRL_MODE_MARGIN_OFFSET,
HPIPE_TST_MODE_CTRL_MODE_MARGIN_MASK);
/* Start analog paramters from ETP(HW) */
debug("stage: Analog paramters from ETP(HW)\n");
/* Set Pin DFE_PAT_DIS -> Bit[1]: PIN_DFE_PAT_DIS = 0x0 */
mask = HPIPE_LANE_CFG4_DFE_CTRL_MASK;
data = 0x1 << HPIPE_LANE_CFG4_DFE_CTRL_OFFSET;
/* Set Override PHY DFE control pins for 0x1 */
mask |= HPIPE_LANE_CFG4_DFE_OVER_MASK;
data |= 0x1 << HPIPE_LANE_CFG4_DFE_OVER_OFFSET;
/* Set Spread Spectrum Clock Enable fot 0x1 */
mask |= HPIPE_LANE_CFG4_SSC_CTRL_MASK;
data |= 0x1 << HPIPE_LANE_CFG4_SSC_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_CFG4_REG, data, mask);
/* End of analog parameters */
debug("stage: Comphy power up\n");
/* Release from PIPE soft reset */
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG,
0x0 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET,
HPIPE_RST_CLK_CTRL_PIPE_RST_MASK);
/* wait 15ms - for comphy calibration done */
debug("stage: Check PLL\n");
/* Read lane status */
addr = hpipe_addr + HPIPE_LANE_STATUS1_REG;
data = HPIPE_LANE_STATUS1_PCLK_EN_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
hpipe_addr + HPIPE_LANE_STATUS1_REG, data);
pr_err("HPIPE_LANE_STATUS1_PCLK_EN_MASK is 0\n");
ret = 0;
}
debug_exit();
return ret;
}
static int comphy_sata_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base, int cp_index,
u32 invert)
{
u32 mask, data, i, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
void __iomem *sata_base = NULL;
int sata_node = -1; /* Set to -1 in order to read the first sata node */
debug_enter();
/*
* Assumption - each CP has only one SATA controller
* Calling fdt_node_offset_by_compatible first time (with sata_node = -1
* will return the first node always.
* In order to parse each CPs SATA node, fdt_node_offset_by_compatible
* must be called again (according to the CP id)
*/
for (i = 0; i < (cp_index + 1); i++)
sata_node = fdt_node_offset_by_compatible(
gd->fdt_blob, sata_node, "marvell,armada-8k-ahci");
if (sata_node == 0) {
pr_err("SATA node not found in FDT\n");
return 0;
}
sata_base = (void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, sata_node, "reg", 0, NULL, true);
if (sata_base == NULL) {
pr_err("SATA address not found in FDT\n");
return 0;
}
debug("SATA address found in FDT %p\n", sata_base);
debug("stage: MAC configuration - power down comphy\n");
/*
* MAC configuration powe down comphy use indirect address for
* vendor spesific SATA control register
*/
reg_set(sata_base + SATA3_VENDOR_ADDRESS,
SATA_CONTROL_REG << SATA3_VENDOR_ADDR_OFSSET,
SATA3_VENDOR_ADDR_MASK);
/* SATA 0 power down */
mask = SATA3_CTRL_SATA0_PD_MASK;
data = 0x1 << SATA3_CTRL_SATA0_PD_OFFSET;
/* SATA 1 power down */
mask |= SATA3_CTRL_SATA1_PD_MASK;
data |= 0x1 << SATA3_CTRL_SATA1_PD_OFFSET;
/* SATA SSU disable */
mask |= SATA3_CTRL_SATA1_ENABLE_MASK;
data |= 0x0 << SATA3_CTRL_SATA1_ENABLE_OFFSET;
/* SATA port 1 disable */
mask |= SATA3_CTRL_SATA_SSU_MASK;
data |= 0x0 << SATA3_CTRL_SATA_SSU_OFFSET;
reg_set(sata_base + SATA3_VENDOR_DATA, data, mask);
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
mask |= COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Set select data width 40Bit - SATA mode only */
reg_set(comphy_addr + COMMON_PHY_CFG6_REG,
0x1 << COMMON_PHY_CFG6_IF_40_SEL_OFFSET,
COMMON_PHY_CFG6_IF_40_SEL_MASK);
/* release from hard reset in SD external */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
debug("stage: Comphy configuration\n");
/* Start comphy Configuration */
/* Set reference clock to comes from group 1 - choose 25Mhz */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Reference frequency select set 1 (for SATA = 25Mhz) */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
/* PHY mode select (set SATA = 0x0 */
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x0 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Set max PHY generation setting - 6Gbps */
reg_set(hpipe_addr + HPIPE_INTERFACE_REG,
0x2 << HPIPE_INTERFACE_GEN_MAX_OFFSET,
HPIPE_INTERFACE_GEN_MAX_MASK);
/* Set select data width 40Bit (SEL_BITS[2:0]) */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x2 << HPIPE_LOOPBACK_SEL_OFFSET, HPIPE_LOOPBACK_SEL_MASK);
debug("stage: Analog paramters from ETP(HW)\n");
/* Set analog parameters from ETP(HW) */
/* G1 settings */
mask = HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data = 0x0 << HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPP_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPP_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUFI_MASK;
data |= 0x0 << HPIPE_G1_SET_1_G1_RX_SELMUFI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUFF_MASK;
data |= 0x3 << HPIPE_G1_SET_1_G1_RX_SELMUFF_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_DIGCK_DIV_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_DIGCK_DIV_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_1_REG, data, mask);
mask = HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_MASK;
data = 0xf << HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_MASK;
data |= 0x2 << HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_MASK;
data |= 0x1 << HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_DEG_RES_LEVEL_MASK;
data |= 0x1 << HPIPE_G1_SETTINGS_3_G1_FFE_DEG_RES_LEVEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_LOAD_RES_LEVEL_MASK;
data |= 0x1 << HPIPE_G1_SETTINGS_3_G1_FFE_LOAD_RES_LEVEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* G2 settings */
mask = HPIPE_G2_SET_1_G2_RX_SELMUPI_MASK;
data = 0x0 << HPIPE_G2_SET_1_G2_RX_SELMUPI_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_SELMUPP_MASK;
data |= 0x1 << HPIPE_G2_SET_1_G2_RX_SELMUPP_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_SELMUFI_MASK;
data |= 0x0 << HPIPE_G2_SET_1_G2_RX_SELMUFI_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_SELMUFF_MASK;
data |= 0x3 << HPIPE_G2_SET_1_G2_RX_SELMUFF_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_DIGCK_DIV_MASK;
data |= 0x1 << HPIPE_G2_SET_1_G2_RX_DIGCK_DIV_OFFSET;
reg_set(hpipe_addr + HPIPE_G2_SET_1_REG, data, mask);
/* G3 settings */
mask = HPIPE_G3_SET_1_G3_RX_SELMUPI_MASK;
data = 0x2 << HPIPE_G3_SET_1_G3_RX_SELMUPI_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_SELMUPF_MASK;
data |= 0x2 << HPIPE_G3_SET_1_G3_RX_SELMUPF_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_SELMUFI_MASK;
data |= 0x3 << HPIPE_G3_SET_1_G3_RX_SELMUFI_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_SELMUFF_MASK;
data |= 0x3 << HPIPE_G3_SET_1_G3_RX_SELMUFF_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_DFE_EN_MASK;
data |= 0x1 << HPIPE_G3_SET_1_G3_RX_DFE_EN_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_DIGCK_DIV_MASK;
data |= 0x2 << HPIPE_G3_SET_1_G3_RX_DIGCK_DIV_OFFSET;
mask |= HPIPE_G3_SET_1_G3_SAMPLER_INPAIRX2_EN_MASK;
data |= 0x0 << HPIPE_G3_SET_1_G3_SAMPLER_INPAIRX2_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SET_1_REG, data, mask);
/* DTL Control */
mask = HPIPE_PWR_CTR_DTL_SQ_DET_EN_MASK;
data = 0x1 << HPIPE_PWR_CTR_DTL_SQ_DET_EN_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_SQ_PLOOP_EN_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_SQ_PLOOP_EN_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_CLAMPING_SEL_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_CLAMPING_SEL_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_INTPCLK_DIV_FORCE_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_INTPCLK_DIV_FORCE_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_CLK_MODE_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_CLK_MODE_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_CLK_MODE_FORCE_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_CLK_MODE_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Trigger sampler enable pulse (by toggleing the bit) */
mask = HPIPE_SMAPLER_MASK;
data = 0x1 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
mask = HPIPE_SMAPLER_MASK;
data = 0x0 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
/* VDD Calibration Control 3 */
mask = HPIPE_EXT_SELLV_RXSAMPL_MASK;
data = 0x10 << HPIPE_EXT_SELLV_RXSAMPL_OFFSET;
reg_set(hpipe_addr + HPIPE_VDD_CAL_CTRL_REG, data, mask);
/* DFE Resolution Control */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x1 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
/* DFE F3-F5 Coefficient Control */
mask = HPIPE_DFE_F3_F5_DFE_EN_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_EN_OFFSET;
mask |= HPIPE_DFE_F3_F5_DFE_CTRL_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_F3_F5_REG, data, mask);
/* G3 Setting 3 */
mask = HPIPE_G3_FFE_CAP_SEL_MASK;
data = 0xf << HPIPE_G3_FFE_CAP_SEL_OFFSET;
mask |= HPIPE_G3_FFE_RES_SEL_MASK;
data |= 0x4 << HPIPE_G3_FFE_RES_SEL_OFFSET;
mask |= HPIPE_G3_FFE_SETTING_FORCE_MASK;
data |= 0x1 << HPIPE_G3_FFE_SETTING_FORCE_OFFSET;
mask |= HPIPE_G3_FFE_DEG_RES_LEVEL_MASK;
data |= 0x1 << HPIPE_G3_FFE_DEG_RES_LEVEL_OFFSET;
mask |= HPIPE_G3_FFE_LOAD_RES_LEVEL_MASK;
data |= 0x3 << HPIPE_G3_FFE_LOAD_RES_LEVEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_3_REG, data, mask);
/* G3 Setting 4 */
mask = HPIPE_G3_DFE_RES_MASK;
data = 0x2 << HPIPE_G3_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_4_REG, data, mask);
/* Offset Phase Control */
mask = HPIPE_OS_PH_OFFSET_MASK;
data = 0x5c << HPIPE_OS_PH_OFFSET_OFFSET;
mask |= HPIPE_OS_PH_OFFSET_FORCE_MASK;
data |= 0x1 << HPIPE_OS_PH_OFFSET_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_PHASE_CONTROL_REG, data, mask);
mask = HPIPE_OS_PH_VALID_MASK;
data = 0x1 << HPIPE_OS_PH_VALID_OFFSET;
reg_set(hpipe_addr + HPIPE_PHASE_CONTROL_REG, data, mask);
mask = HPIPE_OS_PH_VALID_MASK;
data = 0x0 << HPIPE_OS_PH_VALID_OFFSET;
reg_set(hpipe_addr + HPIPE_PHASE_CONTROL_REG, data, mask);
/* Set G1 TX amplitude and TX post emphasis value */
mask = HPIPE_G1_SET_0_G1_TX_AMP_MASK;
data = 0x8 << HPIPE_G1_SET_0_G1_TX_AMP_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_AMP_ADJ_MASK;
data |= 0x1 << HPIPE_G1_SET_0_G1_TX_AMP_ADJ_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_EMPH1_MASK;
data |= 0x1 << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_EMPH1_EN_MASK;
data |= 0x1 << HPIPE_G1_SET_0_G1_TX_EMPH1_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG, data, mask);
/* Set G2 TX amplitude and TX post emphasis value */
mask = HPIPE_G2_SET_0_G2_TX_AMP_MASK;
data = 0xa << HPIPE_G2_SET_0_G2_TX_AMP_OFFSET;
mask |= HPIPE_G2_SET_0_G2_TX_AMP_ADJ_MASK;
data |= 0x1 << HPIPE_G2_SET_0_G2_TX_AMP_ADJ_OFFSET;
mask |= HPIPE_G2_SET_0_G2_TX_EMPH1_MASK;
data |= 0x2 << HPIPE_G2_SET_0_G2_TX_EMPH1_OFFSET;
mask |= HPIPE_G2_SET_0_G2_TX_EMPH1_EN_MASK;
data |= 0x1 << HPIPE_G2_SET_0_G2_TX_EMPH1_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G2_SET_0_REG, data, mask);
/* Set G3 TX amplitude and TX post emphasis value */
mask = HPIPE_G3_SET_0_G3_TX_AMP_MASK;
data = 0xe << HPIPE_G3_SET_0_G3_TX_AMP_OFFSET;
mask |= HPIPE_G3_SET_0_G3_TX_AMP_ADJ_MASK;
data |= 0x1 << HPIPE_G3_SET_0_G3_TX_AMP_ADJ_OFFSET;
mask |= HPIPE_G3_SET_0_G3_TX_EMPH1_MASK;
data |= 0x6 << HPIPE_G3_SET_0_G3_TX_EMPH1_OFFSET;
mask |= HPIPE_G3_SET_0_G3_TX_EMPH1_EN_MASK;
data |= 0x1 << HPIPE_G3_SET_0_G3_TX_EMPH1_EN_OFFSET;
mask |= HPIPE_G3_SET_0_G3_TX_SLEW_RATE_SEL_MASK;
data |= 0x4 << HPIPE_G3_SET_0_G3_TX_SLEW_RATE_SEL_OFFSET;
mask |= HPIPE_G3_SET_0_G3_TX_SLEW_CTRL_EN_MASK;
data |= 0x0 << HPIPE_G3_SET_0_G3_TX_SLEW_CTRL_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SET_0_REG, data, mask);
/* SERDES External Configuration 2 register */
mask = SD_EXTERNAL_CONFIG2_SSC_ENABLE_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG2_SSC_ENABLE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG2_REG, data, mask);
/* DFE reset sequence */
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x1 << HPIPE_PWR_CTR_RST_DFE_OFFSET,
HPIPE_PWR_CTR_RST_DFE_MASK);
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x0 << HPIPE_PWR_CTR_RST_DFE_OFFSET,
HPIPE_PWR_CTR_RST_DFE_MASK);
/* Set RX / TX swaps */
data = mask = 0;
if (invert & PHY_POLARITY_TXD_INVERT) {
data |= (1 << HPIPE_SYNC_PATTERN_TXD_SWAP_OFFSET);
mask |= HPIPE_SYNC_PATTERN_TXD_SWAP_MASK;
}
if (invert & PHY_POLARITY_RXD_INVERT) {
data |= (1 << HPIPE_SYNC_PATTERN_RXD_SWAP_OFFSET);
mask |= HPIPE_SYNC_PATTERN_RXD_SWAP_MASK;
}
reg_set(hpipe_addr + HPIPE_SYNC_PATTERN_REG, data, mask);
/* SW reset for interupt logic */
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x1 << HPIPE_PWR_CTR_SFT_RST_OFFSET,
HPIPE_PWR_CTR_SFT_RST_MASK);
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x0 << HPIPE_PWR_CTR_SFT_RST_OFFSET,
HPIPE_PWR_CTR_SFT_RST_MASK);
debug("stage: Comphy power up\n");
/*
* MAC configuration power up comphy - power up PLL/TX/RX
* use indirect address for vendor spesific SATA control register
*/
reg_set(sata_base + SATA3_VENDOR_ADDRESS,
SATA_CONTROL_REG << SATA3_VENDOR_ADDR_OFSSET,
SATA3_VENDOR_ADDR_MASK);
/* SATA 0 power up */
mask = SATA3_CTRL_SATA0_PD_MASK;
data = 0x0 << SATA3_CTRL_SATA0_PD_OFFSET;
/* SATA 1 power up */
mask |= SATA3_CTRL_SATA1_PD_MASK;
data |= 0x0 << SATA3_CTRL_SATA1_PD_OFFSET;
/* SATA SSU enable */
mask |= SATA3_CTRL_SATA1_ENABLE_MASK;
data |= 0x1 << SATA3_CTRL_SATA1_ENABLE_OFFSET;
/* SATA port 1 enable */
mask |= SATA3_CTRL_SATA_SSU_MASK;
data |= 0x1 << SATA3_CTRL_SATA_SSU_OFFSET;
reg_set(sata_base + SATA3_VENDOR_DATA, data, mask);
/* MBUS request size and interface select register */
reg_set(sata_base + SATA3_VENDOR_ADDRESS,
SATA_MBUS_SIZE_SELECT_REG << SATA3_VENDOR_ADDR_OFSSET,
SATA3_VENDOR_ADDR_MASK);
/* Mbus regret enable */
reg_set(sata_base + SATA3_VENDOR_DATA,
0x1 << SATA_MBUS_REGRET_EN_OFFSET, SATA_MBUS_REGRET_EN_MASK);
debug("stage: Check PLL\n");
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_TX_MASK &
SD_EXTERNAL_STATUS0_PLL_RX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
hpipe_addr + HPIPE_LANE_STATUS1_REG, data);
pr_err("SD_EXTERNAL_STATUS0_PLL_TX is %d, SD_EXTERNAL_STATUS0_PLL_RX is %d\n",
(data & SD_EXTERNAL_STATUS0_PLL_TX_MASK),
(data & SD_EXTERNAL_STATUS0_PLL_RX_MASK));
ret = 0;
}
debug_exit();
return ret;
}
static int comphy_sgmii_power_up(u32 lane, u32 sgmii_speed,
void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Select Baud Rate of Comphy And PD_PLL/Tx/Rx */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_MASK;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_MASK;
if (sgmii_speed == PHY_SPEED_1_25G) {
data |= 0x6 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
data |= 0x6 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
} else {
/* 3.125G */
data |= 0x8 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
data |= 0x8 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
}
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_MASK;
data |= 1 << SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* set reference clock */
mask = HPIPE_MISC_REFCLK_SEL_MASK;
data = 0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_MISC_REG, data, mask);
/* Power and PLL Control */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x4 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Loopback register */
mask = HPIPE_LOOPBACK_SEL_MASK;
data = 0x1 << HPIPE_LOOPBACK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG, data, mask);
/* rx control 1 */
mask = HPIPE_RX_CONTROL_1_RXCLK2X_SEL_MASK;
data = 0x1 << HPIPE_RX_CONTROL_1_RXCLK2X_SEL_OFFSET;
mask |= HPIPE_RX_CONTROL_1_CLK8T_EN_MASK;
data |= 0x0 << HPIPE_RX_CONTROL_1_CLK8T_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CONTROL_1_REG, data, mask);
/* DTL Control */
mask = HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data = 0x0 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Set analog paramters from ETP(HW) - for now use the default datas */
debug("stage: Analog paramters from ETP(HW)\n");
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG,
0x1 << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET,
HPIPE_G1_SET_0_G1_TX_EMPH1_MASK);
debug("stage: RFU configurations- Power Up PLL,Tx,Rx\n");
/* SERDES External Configuration */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* check PLL rx & tx ready */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_RX_MASK |
SD_EXTERNAL_STATUS0_PLL_TX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
pr_err("SD_EXTERNAL_STATUS0_PLL_RX is %d, SD_EXTERNAL_STATUS0_PLL_TX is %d\n",
(data & SD_EXTERNAL_STATUS0_PLL_RX_MASK),
(data & SD_EXTERNAL_STATUS0_PLL_TX_MASK));
ret = 0;
}
/* RX init */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* check that RX init done */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_RX_INIT_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n", sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
pr_err("SD_EXTERNAL_STATUS0_RX_INIT is 0\n");
ret = 0;
}
debug("stage: RF Reset\n");
/* RF Reset */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
debug_exit();
return ret;
}
static int comphy_sfi_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base, u32 speed)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Select Baud Rate of Comphy And PD_PLL/Tx/Rx */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_MASK;
data |= 0xE << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_MASK;
data |= 0xE << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* set reference clock */
mask = HPIPE_MISC_ICP_FORCE_MASK;
data = (speed == PHY_SPEED_5_15625G) ?
(0x0 << HPIPE_MISC_ICP_FORCE_OFFSET) :
(0x1 << HPIPE_MISC_ICP_FORCE_OFFSET);
mask |= HPIPE_MISC_REFCLK_SEL_MASK;
data |= 0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_MISC_REG, data, mask);
/* Power and PLL Control */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x4 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Loopback register */
mask = HPIPE_LOOPBACK_SEL_MASK;
data = 0x1 << HPIPE_LOOPBACK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG, data, mask);
/* rx control 1 */
mask = HPIPE_RX_CONTROL_1_RXCLK2X_SEL_MASK;
data = 0x1 << HPIPE_RX_CONTROL_1_RXCLK2X_SEL_OFFSET;
mask |= HPIPE_RX_CONTROL_1_CLK8T_EN_MASK;
data |= 0x1 << HPIPE_RX_CONTROL_1_CLK8T_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CONTROL_1_REG, data, mask);
/* DTL Control */
mask = HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data = 0x1 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Transmitter/Receiver Speed Divider Force */
if (speed == PHY_SPEED_5_15625G) {
mask = HPIPE_SPD_DIV_FORCE_RX_SPD_DIV_MASK;
data = 1 << HPIPE_SPD_DIV_FORCE_RX_SPD_DIV_OFFSET;
mask |= HPIPE_SPD_DIV_FORCE_RX_SPD_DIV_FORCE_MASK;
data |= 1 << HPIPE_SPD_DIV_FORCE_RX_SPD_DIV_FORCE_OFFSET;
mask |= HPIPE_SPD_DIV_FORCE_TX_SPD_DIV_MASK;
data |= 1 << HPIPE_SPD_DIV_FORCE_TX_SPD_DIV_OFFSET;
mask |= HPIPE_SPD_DIV_FORCE_TX_SPD_DIV_FORCE_MASK;
data |= 1 << HPIPE_SPD_DIV_FORCE_TX_SPD_DIV_FORCE_OFFSET;
} else {
mask = HPIPE_TXDIGCK_DIV_FORCE_MASK;
data = 0x1 << HPIPE_TXDIGCK_DIV_FORCE_OFFSET;
}
reg_set(hpipe_addr + HPIPE_SPD_DIV_FORCE_REG, data, mask);
/* Set analog paramters from ETP(HW) */
debug("stage: Analog paramters from ETP(HW)\n");
/* SERDES External Configuration 2 */
mask = SD_EXTERNAL_CONFIG2_PIN_DFE_EN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG2_PIN_DFE_EN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG2_REG, data, mask);
/* 0x7-DFE Resolution control */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x1 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
/* 0xd-G1_Setting_0 */
if (speed == PHY_SPEED_5_15625G) {
mask = HPIPE_G1_SET_0_G1_TX_EMPH1_MASK;
data = 0x6 << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET;
} else {
mask = HPIPE_G1_SET_0_G1_TX_AMP_MASK;
data = 0x1c << HPIPE_G1_SET_0_G1_TX_AMP_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_EMPH1_MASK;
data |= 0xe << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET;
}
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG, data, mask);
/* Genration 1 setting 2 (G1_Setting_2) */
mask = HPIPE_G1_SET_2_G1_TX_EMPH0_MASK;
data = 0x0 << HPIPE_G1_SET_2_G1_TX_EMPH0_OFFSET;
mask |= HPIPE_G1_SET_2_G1_TX_EMPH0_EN_MASK;
data |= 0x1 << HPIPE_G1_SET_2_G1_TX_EMPH0_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_2_REG, data, mask);
/* Transmitter Slew Rate Control register (tx_reg1) */
mask = HPIPE_TX_REG1_TX_EMPH_RES_MASK;
data = 0x3 << HPIPE_TX_REG1_TX_EMPH_RES_OFFSET;
mask |= HPIPE_TX_REG1_SLC_EN_MASK;
data |= 0x3f << HPIPE_TX_REG1_SLC_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_REG1_REG, data, mask);
/* Impedance Calibration Control register (cal_reg1) */
mask = HPIPE_CAL_REG_1_EXT_TXIMP_MASK;
data = 0xe << HPIPE_CAL_REG_1_EXT_TXIMP_OFFSET;
mask |= HPIPE_CAL_REG_1_EXT_TXIMP_EN_MASK;
data |= 0x1 << HPIPE_CAL_REG_1_EXT_TXIMP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_CAL_REG1_REG, data, mask);
/* Generation 1 Setting 5 (g1_setting_5) */
mask = HPIPE_G1_SETTING_5_G1_ICP_MASK;
data = 0 << HPIPE_CAL_REG_1_EXT_TXIMP_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTING_5_REG, data, mask);
/* 0xE-G1_Setting_1 */
mask = HPIPE_G1_SET_1_G1_RX_DFE_EN_MASK;
data = 0x1 << HPIPE_G1_SET_1_G1_RX_DFE_EN_OFFSET;
if (speed == PHY_SPEED_5_15625G) {
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPP_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPP_OFFSET;
} else {
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data |= 0x2 << HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPP_MASK;
data |= 0x2 << HPIPE_G1_SET_1_G1_RX_SELMUPP_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUFI_MASK;
data |= 0x0 << HPIPE_G1_SET_1_G1_RX_SELMUFI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUFF_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUFF_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_DIGCK_DIV_MASK;
data |= 0x3 << HPIPE_G1_SET_1_G1_RX_DIGCK_DIV_OFFSET;
}
reg_set(hpipe_addr + HPIPE_G1_SET_1_REG, data, mask);
/* 0xA-DFE_Reg3 */
mask = HPIPE_DFE_F3_F5_DFE_EN_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_EN_OFFSET;
mask |= HPIPE_DFE_F3_F5_DFE_CTRL_MASK;
data |= 0x0 << HPIPE_DFE_F3_F5_DFE_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_F3_F5_REG, data, mask);
/* 0x111-G1_Setting_4 */
mask = HPIPE_G1_SETTINGS_4_G1_DFE_RES_MASK;
data = 0x1 << HPIPE_G1_SETTINGS_4_G1_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_4_REG, data, mask);
/* Genration 1 setting 3 (G1_Setting_3) */
mask = HPIPE_G1_SETTINGS_3_G1_FBCK_SEL_MASK;
data = 0x1 << HPIPE_G1_SETTINGS_3_G1_FBCK_SEL_OFFSET;
if (speed == PHY_SPEED_5_15625G) {
/* Force FFE (Feed Forward Equalization) to 5G */
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_MASK;
data |= 0xf << HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_MASK;
data |= 0x4 << HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_MASK;
data |= 0x1 << HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_OFFSET;
}
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* Connfigure RX training timer */
mask = HPIPE_RX_TRAIN_TIMER_MASK;
data = 0x13 << HPIPE_RX_TRAIN_TIMER_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_5_REG, data, mask);
/* Enable TX train peak to peak hold */
mask = HPIPE_TX_TRAIN_P2P_HOLD_MASK;
data = 0x1 << HPIPE_TX_TRAIN_P2P_HOLD_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_0_REG, data, mask);
/* Configure TX preset index */
mask = HPIPE_TX_PRESET_INDEX_MASK;
data = 0x2 << HPIPE_TX_PRESET_INDEX_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_PRESET_INDEX_REG, data, mask);
/* Disable pattern lock lost timeout */
mask = HPIPE_PATTERN_LOCK_LOST_TIMEOUT_EN_MASK;
data = 0x0 << HPIPE_PATTERN_LOCK_LOST_TIMEOUT_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_FRAME_DETECT_CTRL_3_REG, data, mask);
/* Configure TX training pattern and TX training 16bit auto */
mask = HPIPE_TX_TRAIN_16BIT_AUTO_EN_MASK;
data = 0x1 << HPIPE_TX_TRAIN_16BIT_AUTO_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_PAT_SEL_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_PAT_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_REG, data, mask);
/* Configure Training patten number */
mask = HPIPE_TRAIN_PAT_NUM_MASK;
data = 0x88 << HPIPE_TRAIN_PAT_NUM_OFFSET;
reg_set(hpipe_addr + HPIPE_FRAME_DETECT_CTRL_0_REG, data, mask);
/* Configure differencial manchester encoter to ethernet mode */
mask = HPIPE_DME_ETHERNET_MODE_MASK;
data = 0x1 << HPIPE_DME_ETHERNET_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_DME_REG, data, mask);
/* Configure VDD Continuous Calibration */
mask = HPIPE_CAL_VDD_CONT_MODE_MASK;
data = 0x1 << HPIPE_CAL_VDD_CONT_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_VDD_CAL_0_REG, data, mask);
/* Trigger sampler enable pulse (by toggleing the bit) */
mask = HPIPE_RX_SAMPLER_OS_GAIN_MASK;
data = 0x3 << HPIPE_RX_SAMPLER_OS_GAIN_OFFSET;
mask |= HPIPE_SMAPLER_MASK;
data |= 0x1 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
mask = HPIPE_SMAPLER_MASK;
data = 0x0 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
/* Set External RX Regulator Control */
mask = HPIPE_EXT_SELLV_RXSAMPL_MASK;
data = 0x1A << HPIPE_EXT_SELLV_RXSAMPL_OFFSET;
reg_set(hpipe_addr + HPIPE_VDD_CAL_CTRL_REG, data, mask);
debug("stage: RFU configurations- Power Up PLL,Tx,Rx\n");
/* SERDES External Configuration */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* check PLL rx & tx ready */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_RX_MASK |
SD_EXTERNAL_STATUS0_PLL_TX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n", sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
pr_err("SD_EXTERNAL_STATUS0_PLL_RX is %d, SD_EXTERNAL_STATUS0_PLL_TX is %d\n",
(data & SD_EXTERNAL_STATUS0_PLL_RX_MASK),
(data & SD_EXTERNAL_STATUS0_PLL_TX_MASK));
ret = 0;
}
/* RX init */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* check that RX init done */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_RX_INIT_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
pr_err("SD_EXTERNAL_STATUS0_RX_INIT is 0\n");
ret = 0;
}
debug("stage: RF Reset\n");
/* RF Reset */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
debug_exit();
return ret;
}
static int comphy_rxauii_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
if (lane == 2) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_RXAUI0_OFFSET,
COMMON_PHY_SD_CTRL1_RXAUI0_MASK);
}
if (lane == 4) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_RXAUI1_OFFSET,
COMMON_PHY_SD_CTRL1_RXAUI1_MASK);
}
/* Select Baud Rate of Comphy And PD_PLL/Tx/Rx */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_MASK;
data |= 0xB << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_MASK;
data |= 0xB << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_MEDIA_MODE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_MEDIA_MODE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* set reference clock */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Power and PLL Control */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x4 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Loopback register */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x1 << HPIPE_LOOPBACK_SEL_OFFSET, HPIPE_LOOPBACK_SEL_MASK);
/* rx control 1 */
mask = HPIPE_RX_CONTROL_1_RXCLK2X_SEL_MASK;
data = 0x1 << HPIPE_RX_CONTROL_1_RXCLK2X_SEL_OFFSET;
mask |= HPIPE_RX_CONTROL_1_CLK8T_EN_MASK;
data |= 0x1 << HPIPE_RX_CONTROL_1_CLK8T_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CONTROL_1_REG, data, mask);
/* DTL Control */
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG,
0x0 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET,
HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK);
/* Set analog paramters from ETP(HW) */
debug("stage: Analog paramters from ETP(HW)\n");
/* SERDES External Configuration 2 */
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG2_REG,
0x1 << SD_EXTERNAL_CONFIG2_PIN_DFE_EN_OFFSET,
SD_EXTERNAL_CONFIG2_PIN_DFE_EN_MASK);
/* 0x7-DFE Resolution control */
reg_set(hpipe_addr + HPIPE_DFE_REG0, 0x1 << HPIPE_DFE_RES_FORCE_OFFSET,
HPIPE_DFE_RES_FORCE_MASK);
/* 0xd-G1_Setting_0 */
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG,
0xd << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET,
HPIPE_G1_SET_0_G1_TX_EMPH1_MASK);
/* 0xE-G1_Setting_1 */
mask = HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data = 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPP_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPP_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_DFE_EN_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_DFE_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_1_REG, data, mask);
/* 0xA-DFE_Reg3 */
mask = HPIPE_DFE_F3_F5_DFE_EN_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_EN_OFFSET;
mask |= HPIPE_DFE_F3_F5_DFE_CTRL_MASK;
data |= 0x0 << HPIPE_DFE_F3_F5_DFE_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_F3_F5_REG, data, mask);
/* 0x111-G1_Setting_4 */
mask = HPIPE_G1_SETTINGS_4_G1_DFE_RES_MASK;
data = 0x1 << HPIPE_G1_SETTINGS_4_G1_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_4_REG, data, mask);
debug("stage: RFU configurations- Power Up PLL,Tx,Rx\n");
/* SERDES External Configuration */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* check PLL rx & tx ready */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_RX_MASK |
SD_EXTERNAL_STATUS0_PLL_TX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
pr_err("SD_EXTERNAL_STATUS0_PLL_RX is %d, SD_EXTERNAL_STATUS0_PLL_TX is %d\n",
(data & SD_EXTERNAL_STATUS0_PLL_RX_MASK),
(data & SD_EXTERNAL_STATUS0_PLL_TX_MASK));
ret = 0;
}
/* RX init */
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG,
0x1 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET,
SD_EXTERNAL_CONFIG1_RX_INIT_MASK);
/* check that RX init done */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_RX_INIT_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
pr_err("SD_EXTERNAL_STATUS0_RX_INIT is 0\n");
ret = 0;
}
debug("stage: RF Reset\n");
/* RF Reset */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
debug_exit();
return ret;
}
static void comphy_utmi_power_down(u32 utmi_index, void __iomem *utmi_base_addr,
void __iomem *usb_cfg_addr,
void __iomem *utmi_cfg_addr,
u32 utmi_phy_port)
{
u32 mask, data;
debug_enter();
debug("stage: UTMI %d - Power down transceiver (power down Phy), Power down PLL, and SuspendDM\n",
utmi_index);
/* Power down UTMI PHY */
reg_set(utmi_cfg_addr, 0x0 << UTMI_PHY_CFG_PU_OFFSET,
UTMI_PHY_CFG_PU_MASK);
/*
* If UTMI connected to USB Device, configure mux prior to PHY init
* (Device can be connected to UTMI0 or to UTMI1)
*/
if (utmi_phy_port == UTMI_PHY_TO_USB3_DEVICE0) {
debug("stage: UTMI %d - Enable Device mode and configure UTMI mux\n",
utmi_index);
/* USB3 Device UTMI enable */
mask = UTMI_USB_CFG_DEVICE_EN_MASK;
data = 0x1 << UTMI_USB_CFG_DEVICE_EN_OFFSET;
/* USB3 Device UTMI MUX */
mask |= UTMI_USB_CFG_DEVICE_MUX_MASK;
data |= utmi_index << UTMI_USB_CFG_DEVICE_MUX_OFFSET;
reg_set(usb_cfg_addr, data, mask);
}
/* Set Test suspendm mode */
mask = UTMI_CTRL_STATUS0_SUSPENDM_MASK;
data = 0x1 << UTMI_CTRL_STATUS0_SUSPENDM_OFFSET;
/* Enable Test UTMI select */
mask |= UTMI_CTRL_STATUS0_TEST_SEL_MASK;
data |= 0x1 << UTMI_CTRL_STATUS0_TEST_SEL_OFFSET;
reg_set(utmi_base_addr + UTMI_CTRL_STATUS0_REG, data, mask);
/* Wait for UTMI power down */
mdelay(1);
debug_exit();
return;
}
static void comphy_utmi_phy_config(u32 utmi_index, void __iomem *utmi_base_addr,
void __iomem *usb_cfg_addr,
void __iomem *utmi_cfg_addr,
u32 utmi_phy_port)
{
u32 mask, data;
debug_exit();
debug("stage: Configure UTMI PHY %d registers\n", utmi_index);
/* Reference Clock Divider Select */
mask = UTMI_PLL_CTRL_REFDIV_MASK;
data = 0x5 << UTMI_PLL_CTRL_REFDIV_OFFSET;
/* Feedback Clock Divider Select - 90 for 25Mhz*/
mask |= UTMI_PLL_CTRL_FBDIV_MASK;
data |= 0x60 << UTMI_PLL_CTRL_FBDIV_OFFSET;
/* Select LPFR - 0x0 for 25Mhz/5=5Mhz*/
mask |= UTMI_PLL_CTRL_SEL_LPFR_MASK;
data |= 0x0 << UTMI_PLL_CTRL_SEL_LPFR_OFFSET;
reg_set(utmi_base_addr + UTMI_PLL_CTRL_REG, data, mask);
/* Impedance Calibration Threshold Setting */
reg_set(utmi_base_addr + UTMI_CALIB_CTRL_REG,
0x6 << UTMI_CALIB_CTRL_IMPCAL_VTH_OFFSET,
UTMI_CALIB_CTRL_IMPCAL_VTH_MASK);
/* Set LS TX driver strength coarse control */
mask = UTMI_TX_CH_CTRL_DRV_EN_LS_MASK;
data = 0x3 << UTMI_TX_CH_CTRL_DRV_EN_LS_OFFSET;
/* Set LS TX driver fine adjustment */
mask |= UTMI_TX_CH_CTRL_IMP_SEL_LS_MASK;
data |= 0x3 << UTMI_TX_CH_CTRL_IMP_SEL_LS_OFFSET;
reg_set(utmi_base_addr + UTMI_TX_CH_CTRL_REG, data, mask);
/* Enable SQ */
mask = UTMI_RX_CH_CTRL0_SQ_DET_MASK;
data = 0x0 << UTMI_RX_CH_CTRL0_SQ_DET_OFFSET;
/* Enable analog squelch detect */
mask |= UTMI_RX_CH_CTRL0_SQ_ANA_DTC_MASK;
data |= 0x1 << UTMI_RX_CH_CTRL0_SQ_ANA_DTC_OFFSET;
reg_set(utmi_base_addr + UTMI_RX_CH_CTRL0_REG, data, mask);
/* Set External squelch calibration number */
mask = UTMI_RX_CH_CTRL1_SQ_AMP_CAL_MASK;
data = 0x1 << UTMI_RX_CH_CTRL1_SQ_AMP_CAL_OFFSET;
/* Enable the External squelch calibration */
mask |= UTMI_RX_CH_CTRL1_SQ_AMP_CAL_EN_MASK;
data |= 0x1 << UTMI_RX_CH_CTRL1_SQ_AMP_CAL_EN_OFFSET;
reg_set(utmi_base_addr + UTMI_RX_CH_CTRL1_REG, data, mask);
/* Set Control VDAT Reference Voltage - 0.325V */
mask = UTMI_CHGDTC_CTRL_VDAT_MASK;
data = 0x1 << UTMI_CHGDTC_CTRL_VDAT_OFFSET;
/* Set Control VSRC Reference Voltage - 0.6V */
mask |= UTMI_CHGDTC_CTRL_VSRC_MASK;
data |= 0x1 << UTMI_CHGDTC_CTRL_VSRC_OFFSET;
reg_set(utmi_base_addr + UTMI_CHGDTC_CTRL_REG, data, mask);
debug_exit();
return;
}
static int comphy_utmi_power_up(u32 utmi_index, void __iomem *utmi_base_addr,
void __iomem *usb_cfg_addr,
void __iomem *utmi_cfg_addr, u32 utmi_phy_port)
{
u32 data, mask, ret = 1;
void __iomem *addr;
debug_enter();
debug("stage: UTMI %d - Power up transceiver(Power up Phy), and exit SuspendDM\n",
utmi_index);
/* Power UP UTMI PHY */
reg_set(utmi_cfg_addr, 0x1 << UTMI_PHY_CFG_PU_OFFSET,
UTMI_PHY_CFG_PU_MASK);
/* Disable Test UTMI select */
reg_set(utmi_base_addr + UTMI_CTRL_STATUS0_REG,
0x0 << UTMI_CTRL_STATUS0_TEST_SEL_OFFSET,
UTMI_CTRL_STATUS0_TEST_SEL_MASK);
debug("stage: Polling for PLL and impedance calibration done, and PLL ready done\n");
addr = utmi_base_addr + UTMI_CALIB_CTRL_REG;
data = UTMI_CALIB_CTRL_IMPCAL_DONE_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
pr_err("Impedance calibration is not done\n");
debug("Read from reg = %p - value = 0x%x\n", addr, data);
ret = 0;
}
data = UTMI_CALIB_CTRL_PLLCAL_DONE_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
pr_err("PLL calibration is not done\n");
debug("Read from reg = %p - value = 0x%x\n", addr, data);
ret = 0;
}
addr = utmi_base_addr + UTMI_PLL_CTRL_REG;
data = UTMI_PLL_CTRL_PLL_RDY_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
pr_err("PLL is not ready\n");
debug("Read from reg = %p - value = 0x%x\n", addr, data);
ret = 0;
}
if (ret)
debug("Passed\n");
else
debug("\n");
debug_exit();
return ret;
}
/*
* comphy_utmi_phy_init initialize the UTMI PHY
* the init split in 3 parts:
* 1. Power down transceiver and PLL
* 2. UTMI PHY configure
* 3. Powe up transceiver and PLL
* Note: - Power down/up should be once for both UTMI PHYs
* - comphy_dedicated_phys_init call this function if at least there is
* one UTMI PHY exists in FDT blob. access to cp110_utmi_data[0] is
* legal
*/
static void comphy_utmi_phy_init(u32 utmi_phy_count,
struct utmi_phy_data *cp110_utmi_data)
{
u32 i;
debug_enter();
/* UTMI Power down */
for (i = 0; i < utmi_phy_count; i++) {
comphy_utmi_power_down(i, cp110_utmi_data[i].utmi_base_addr,
cp110_utmi_data[i].usb_cfg_addr,
cp110_utmi_data[i].utmi_cfg_addr,
cp110_utmi_data[i].utmi_phy_port);
}
/* PLL Power down */
debug("stage: UTMI PHY power down PLL\n");
for (i = 0; i < utmi_phy_count; i++) {
reg_set(cp110_utmi_data[i].usb_cfg_addr,
0x0 << UTMI_USB_CFG_PLL_OFFSET, UTMI_USB_CFG_PLL_MASK);
}
/* UTMI configure */
for (i = 0; i < utmi_phy_count; i++) {
comphy_utmi_phy_config(i, cp110_utmi_data[i].utmi_base_addr,
cp110_utmi_data[i].usb_cfg_addr,
cp110_utmi_data[i].utmi_cfg_addr,
cp110_utmi_data[i].utmi_phy_port);
}
/* UTMI Power up */
for (i = 0; i < utmi_phy_count; i++) {
if (!comphy_utmi_power_up(i, cp110_utmi_data[i].utmi_base_addr,
cp110_utmi_data[i].usb_cfg_addr,
cp110_utmi_data[i].utmi_cfg_addr,
cp110_utmi_data[i].utmi_phy_port)) {
pr_err("Failed to initialize UTMI PHY %d\n", i);
continue;
}
printf("UTMI PHY %d initialized to ", i);
if (cp110_utmi_data[i].utmi_phy_port ==
UTMI_PHY_TO_USB3_DEVICE0)
printf("USB Device\n");
else
printf("USB Host%d\n",
cp110_utmi_data[i].utmi_phy_port);
}
/* PLL Power up */
debug("stage: UTMI PHY power up PLL\n");
for (i = 0; i < utmi_phy_count; i++) {
reg_set(cp110_utmi_data[i].usb_cfg_addr,
0x1 << UTMI_USB_CFG_PLL_OFFSET, UTMI_USB_CFG_PLL_MASK);
}
debug_exit();
return;
}
/*
* comphy_dedicated_phys_init initialize the dedicated PHYs
* - not muxed SerDes lanes e.g. UTMI PHY
*/
void comphy_dedicated_phys_init(void)
{
struct utmi_phy_data cp110_utmi_data[MAX_UTMI_PHY_COUNT];
int node;
int i;
debug_enter();
debug("Initialize USB UTMI PHYs\n");
/* Find the UTMI phy node in device tree and go over them */
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1,
"marvell,mvebu-utmi-2.6.0");
i = 0;
while (node > 0) {
/* get base address of UTMI phy */
cp110_utmi_data[i].utmi_base_addr =
(void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, node, "reg", 0, NULL, true);
if (cp110_utmi_data[i].utmi_base_addr == NULL) {
pr_err("UTMI PHY base address is invalid\n");
i++;
continue;
}
/* get usb config address */
cp110_utmi_data[i].usb_cfg_addr =
(void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, node, "reg", 1, NULL, true);
if (cp110_utmi_data[i].usb_cfg_addr == NULL) {
pr_err("UTMI PHY base address is invalid\n");
i++;
continue;
}
/* get UTMI config address */
cp110_utmi_data[i].utmi_cfg_addr =
(void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, node, "reg", 2, NULL, true);
if (cp110_utmi_data[i].utmi_cfg_addr == NULL) {
pr_err("UTMI PHY base address is invalid\n");
i++;
continue;
}
/*
* get the port number (to check if the utmi connected to
* host/device)
*/
cp110_utmi_data[i].utmi_phy_port = fdtdec_get_int(
gd->fdt_blob, node, "utmi-port", UTMI_PHY_INVALID);
if (cp110_utmi_data[i].utmi_phy_port == UTMI_PHY_INVALID) {
pr_err("UTMI PHY port type is invalid\n");
i++;
continue;
}
node = fdt_node_offset_by_compatible(
gd->fdt_blob, node, "marvell,mvebu-utmi-2.6.0");
i++;
}
if (i > 0)
comphy_utmi_phy_init(i, cp110_utmi_data);
debug_exit();
}
static void comphy_mux_cp110_init(struct chip_serdes_phy_config *ptr_chip_cfg,
struct comphy_map *serdes_map)
{
void __iomem *comphy_base_addr;
struct comphy_map comphy_map_pipe_data[MAX_LANE_OPTIONS];
struct comphy_map comphy_map_phy_data[MAX_LANE_OPTIONS];
u32 lane, comphy_max_count;
comphy_max_count = ptr_chip_cfg->comphy_lanes_count;
comphy_base_addr = ptr_chip_cfg->comphy_base_addr;
/*
* Copy the SerDes map configuration for PIPE map and PHY map
* the comphy_mux_init modify the type of the lane if the type
* is not valid because we have 2 selectores run the
* comphy_mux_init twice and after that update the original
* serdes_map
*/
for (lane = 0; lane < comphy_max_count; lane++) {
comphy_map_pipe_data[lane].type = serdes_map[lane].type;
comphy_map_pipe_data[lane].speed = serdes_map[lane].speed;
comphy_map_phy_data[lane].type = serdes_map[lane].type;
comphy_map_phy_data[lane].speed = serdes_map[lane].speed;
}
ptr_chip_cfg->mux_data = cp110_comphy_phy_mux_data;
comphy_mux_init(ptr_chip_cfg, comphy_map_phy_data,
comphy_base_addr + COMMON_SELECTOR_PHY_OFFSET);
ptr_chip_cfg->mux_data = cp110_comphy_pipe_mux_data;
comphy_mux_init(ptr_chip_cfg, comphy_map_pipe_data,
comphy_base_addr + COMMON_SELECTOR_PIPE_OFFSET);
/* Fix the type after check the PHY and PIPE configuration */
for (lane = 0; lane < comphy_max_count; lane++) {
if ((comphy_map_pipe_data[lane].type == PHY_TYPE_UNCONNECTED) &&
(comphy_map_phy_data[lane].type == PHY_TYPE_UNCONNECTED))
serdes_map[lane].type = PHY_TYPE_UNCONNECTED;
}
}
int comphy_cp110_init(struct chip_serdes_phy_config *ptr_chip_cfg,
struct comphy_map *serdes_map)
{
struct comphy_map *ptr_comphy_map;
void __iomem *comphy_base_addr, *hpipe_base_addr;
u32 comphy_max_count, lane, ret = 0;
u32 pcie_width = 0;
debug_enter();
comphy_max_count = ptr_chip_cfg->comphy_lanes_count;
comphy_base_addr = ptr_chip_cfg->comphy_base_addr;
hpipe_base_addr = ptr_chip_cfg->hpipe3_base_addr;
/* Config Comphy mux configuration */
comphy_mux_cp110_init(ptr_chip_cfg, serdes_map);
/* Check if the first 4 lanes configured as By-4 */
for (lane = 0, ptr_comphy_map = serdes_map; lane < 4;
lane++, ptr_comphy_map++) {
if (ptr_comphy_map->type != PHY_TYPE_PEX0)
break;
pcie_width++;
}
for (lane = 0, ptr_comphy_map = serdes_map; lane < comphy_max_count;
lane++, ptr_comphy_map++) {
debug("Initialize serdes number %d\n", lane);
debug("Serdes type = 0x%x\n", ptr_comphy_map->type);
if (lane == 4) {
/*
* PCIe lanes above the first 4 lanes, can be only
* by1
*/
pcie_width = 1;
}
switch (ptr_comphy_map->type) {
case PHY_TYPE_UNCONNECTED:
case PHY_TYPE_IGNORE:
continue;
break;
case PHY_TYPE_PEX0:
case PHY_TYPE_PEX1:
case PHY_TYPE_PEX2:
case PHY_TYPE_PEX3:
ret = comphy_pcie_power_up(
lane, pcie_width, ptr_comphy_map->clk_src,
serdes_map->end_point,
hpipe_base_addr, comphy_base_addr);
break;
case PHY_TYPE_SATA0:
case PHY_TYPE_SATA1:
case PHY_TYPE_SATA2:
case PHY_TYPE_SATA3:
ret = comphy_sata_power_up(
lane, hpipe_base_addr, comphy_base_addr,
ptr_chip_cfg->cp_index,
serdes_map[lane].invert);
break;
case PHY_TYPE_USB3_HOST0:
case PHY_TYPE_USB3_HOST1:
case PHY_TYPE_USB3_DEVICE:
ret = comphy_usb3_power_up(lane, hpipe_base_addr,
comphy_base_addr);
break;
case PHY_TYPE_SGMII0:
case PHY_TYPE_SGMII1:
case PHY_TYPE_SGMII2:
case PHY_TYPE_SGMII3:
if (ptr_comphy_map->speed == PHY_SPEED_INVALID) {
debug("Warning: SGMII PHY speed in lane %d is invalid, set PHY speed to 1.25G\n",
lane);
ptr_comphy_map->speed = PHY_SPEED_1_25G;
}
ret = comphy_sgmii_power_up(
lane, ptr_comphy_map->speed, hpipe_base_addr,
comphy_base_addr);
break;
case PHY_TYPE_SFI:
ret = comphy_sfi_power_up(lane, hpipe_base_addr,
comphy_base_addr,
ptr_comphy_map->speed);
break;
case PHY_TYPE_RXAUI0:
case PHY_TYPE_RXAUI1:
ret = comphy_rxauii_power_up(lane, hpipe_base_addr,
comphy_base_addr);
break;
default:
debug("Unknown SerDes type, skip initialize SerDes %d\n",
lane);
break;
}
if (ret == 0) {
/*
* If interface wans't initialized, set the lane to
* PHY_TYPE_UNCONNECTED state.
*/
ptr_comphy_map->type = PHY_TYPE_UNCONNECTED;
pr_err("PLL is not locked - Failed to initialize lane %d\n",
lane);
}
}
debug_exit();
return 0;
}