blob: a168196fd4d2868f71986472e3cfec770da3df51 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) Excito Elektronik i Skåne AB, 2010.
* Author: Tor Krill <tor@excito.com>
*
* Copyright (C) 2015 Stefan Roese <sr@denx.de>
*/
/*
* This driver supports the SATA controller of some Mavell SoC's.
* Here a (most likely incomplete) list of the supported SoC's:
* - Kirkwood
* - Armada 370
* - Armada XP
*
* This driver implementation is an alternative to the already available
* driver via the "ide" commands interface (drivers/block/mvsata_ide.c).
* But this driver only supports PIO mode and as this new driver also
* supports transfer via DMA, its much faster.
*
* Please note, that the newer SoC's (e.g. Armada 38x) are not supported
* by this driver. As they have an AHCI compatible SATA controller
* integrated.
*/
/*
* TODO:
* Better error recovery
* No support for using PRDs (Thus max 64KB transfers)
* No NCQ support
* No port multiplier support
*/
#include <common.h>
#include <fis.h>
#include <libata.h>
#include <malloc.h>
#include <sata.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <linux/mbus.h>
#if defined(CONFIG_KIRKWOOD)
#include <asm/arch/kirkwood.h>
#define SATAHC_BASE KW_SATA_BASE
#else
#include <asm/arch/soc.h>
#define SATAHC_BASE MVEBU_AXP_SATA_BASE
#endif
#define SATA0_BASE (SATAHC_BASE + 0x2000)
#define SATA1_BASE (SATAHC_BASE + 0x4000)
/* EDMA registers */
#define EDMA_CFG 0x000
#define EDMA_CFG_NCQ (1 << 5)
#define EDMA_CFG_EQUE (1 << 9)
#define EDMA_TIMER 0x004
#define EDMA_IECR 0x008
#define EDMA_IEMR 0x00c
#define EDMA_RQBA_HI 0x010
#define EDMA_RQIPR 0x014
#define EDMA_RQIPR_IPMASK (0x1f << 5)
#define EDMA_RQIPR_IPSHIFT 5
#define EDMA_RQOPR 0x018
#define EDMA_RQOPR_OPMASK (0x1f << 5)
#define EDMA_RQOPR_OPSHIFT 5
#define EDMA_RSBA_HI 0x01c
#define EDMA_RSIPR 0x020
#define EDMA_RSIPR_IPMASK (0x1f << 3)
#define EDMA_RSIPR_IPSHIFT 3
#define EDMA_RSOPR 0x024
#define EDMA_RSOPR_OPMASK (0x1f << 3)
#define EDMA_RSOPR_OPSHIFT 3
#define EDMA_CMD 0x028
#define EDMA_CMD_ENEDMA (0x01 << 0)
#define EDMA_CMD_DISEDMA (0x01 << 1)
#define EDMA_CMD_ATARST (0x01 << 2)
#define EDMA_CMD_FREEZE (0x01 << 4)
#define EDMA_TEST_CTL 0x02c
#define EDMA_STATUS 0x030
#define EDMA_IORTO 0x034
#define EDMA_CDTR 0x040
#define EDMA_HLTCND 0x060
#define EDMA_NTSR 0x094
/* Basic DMA registers */
#define BDMA_CMD 0x224
#define BDMA_STATUS 0x228
#define BDMA_DTLB 0x22c
#define BDMA_DTHB 0x230
#define BDMA_DRL 0x234
#define BDMA_DRH 0x238
/* SATA Interface registers */
#define SIR_ICFG 0x050
#define SIR_CFG_GEN2EN (0x1 << 7)
#define SIR_PLL_CFG 0x054
#define SIR_SSTATUS 0x300
#define SSTATUS_DET_MASK (0x0f << 0)
#define SIR_SERROR 0x304
#define SIR_SCONTROL 0x308
#define SIR_SCONTROL_DETEN (0x01 << 0)
#define SIR_LTMODE 0x30c
#define SIR_LTMODE_NELBE (0x01 << 7)
#define SIR_PHYMODE3 0x310
#define SIR_PHYMODE4 0x314
#define SIR_PHYMODE1 0x32c
#define SIR_PHYMODE2 0x330
#define SIR_BIST_CTRL 0x334
#define SIR_BIST_DW1 0x338
#define SIR_BIST_DW2 0x33c
#define SIR_SERR_IRQ_MASK 0x340
#define SIR_SATA_IFCTRL 0x344
#define SIR_SATA_TESTCTRL 0x348
#define SIR_SATA_IFSTATUS 0x34c
#define SIR_VEND_UNIQ 0x35c
#define SIR_FIS_CFG 0x360
#define SIR_FIS_IRQ_CAUSE 0x364
#define SIR_FIS_IRQ_MASK 0x368
#define SIR_FIS_DWORD0 0x370
#define SIR_FIS_DWORD1 0x374
#define SIR_FIS_DWORD2 0x378
#define SIR_FIS_DWORD3 0x37c
#define SIR_FIS_DWORD4 0x380
#define SIR_FIS_DWORD5 0x384
#define SIR_FIS_DWORD6 0x388
#define SIR_PHYM9_GEN2 0x398
#define SIR_PHYM9_GEN1 0x39c
#define SIR_PHY_CFG 0x3a0
#define SIR_PHYCTL 0x3a4
#define SIR_PHYM10 0x3a8
#define SIR_PHYM12 0x3b0
/* Shadow registers */
#define PIO_DATA 0x100
#define PIO_ERR_FEATURES 0x104
#define PIO_SECTOR_COUNT 0x108
#define PIO_LBA_LOW 0x10c
#define PIO_LBA_MID 0x110
#define PIO_LBA_HI 0x114
#define PIO_DEVICE 0x118
#define PIO_CMD_STATUS 0x11c
#define PIO_STATUS_ERR (0x01 << 0)
#define PIO_STATUS_DRQ (0x01 << 3)
#define PIO_STATUS_DF (0x01 << 5)
#define PIO_STATUS_DRDY (0x01 << 6)
#define PIO_STATUS_BSY (0x01 << 7)
#define PIO_CTRL_ALTSTAT 0x120
/* SATAHC arbiter registers */
#define SATAHC_CFG 0x000
#define SATAHC_RQOP 0x004
#define SATAHC_RQIP 0x008
#define SATAHC_ICT 0x00c
#define SATAHC_ITT 0x010
#define SATAHC_ICR 0x014
#define SATAHC_ICR_PORT0 (0x01 << 0)
#define SATAHC_ICR_PORT1 (0x01 << 1)
#define SATAHC_MIC 0x020
#define SATAHC_MIM 0x024
#define SATAHC_LED_CFG 0x02c
#define REQUEST_QUEUE_SIZE 32
#define RESPONSE_QUEUE_SIZE REQUEST_QUEUE_SIZE
struct crqb {
u32 dtb_low; /* DW0 */
u32 dtb_high; /* DW1 */
u32 control_flags; /* DW2 */
u32 drb_count; /* DW3 */
u32 ata_cmd_feat; /* DW4 */
u32 ata_addr; /* DW5 */
u32 ata_addr_exp; /* DW6 */
u32 ata_sect_count; /* DW7 */
};
#define CRQB_ALIGN 0x400
#define CRQB_CNTRLFLAGS_DIR (0x01 << 0)
#define CRQB_CNTRLFLAGS_DQTAGMASK (0x1f << 1)
#define CRQB_CNTRLFLAGS_DQTAGSHIFT 1
#define CRQB_CNTRLFLAGS_PMPORTMASK (0x0f << 12)
#define CRQB_CNTRLFLAGS_PMPORTSHIFT 12
#define CRQB_CNTRLFLAGS_PRDMODE (0x01 << 16)
#define CRQB_CNTRLFLAGS_HQTAGMASK (0x1f << 17)
#define CRQB_CNTRLFLAGS_HQTAGSHIFT 17
#define CRQB_CMDFEAT_CMDMASK (0xff << 16)
#define CRQB_CMDFEAT_CMDSHIFT 16
#define CRQB_CMDFEAT_FEATMASK (0xff << 16)
#define CRQB_CMDFEAT_FEATSHIFT 24
#define CRQB_ADDR_LBA_LOWMASK (0xff << 0)
#define CRQB_ADDR_LBA_LOWSHIFT 0
#define CRQB_ADDR_LBA_MIDMASK (0xff << 8)
#define CRQB_ADDR_LBA_MIDSHIFT 8
#define CRQB_ADDR_LBA_HIGHMASK (0xff << 16)
#define CRQB_ADDR_LBA_HIGHSHIFT 16
#define CRQB_ADDR_DEVICE_MASK (0xff << 24)
#define CRQB_ADDR_DEVICE_SHIFT 24
#define CRQB_ADDR_LBA_LOW_EXP_MASK (0xff << 0)
#define CRQB_ADDR_LBA_LOW_EXP_SHIFT 0
#define CRQB_ADDR_LBA_MID_EXP_MASK (0xff << 8)
#define CRQB_ADDR_LBA_MID_EXP_SHIFT 8
#define CRQB_ADDR_LBA_HIGH_EXP_MASK (0xff << 16)
#define CRQB_ADDR_LBA_HIGH_EXP_SHIFT 16
#define CRQB_ADDR_FEATURE_EXP_MASK (0xff << 24)
#define CRQB_ADDR_FEATURE_EXP_SHIFT 24
#define CRQB_SECTCOUNT_COUNT_MASK (0xff << 0)
#define CRQB_SECTCOUNT_COUNT_SHIFT 0
#define CRQB_SECTCOUNT_COUNT_EXP_MASK (0xff << 8)
#define CRQB_SECTCOUNT_COUNT_EXP_SHIFT 8
#define MVSATA_WIN_CONTROL(w) (MVEBU_AXP_SATA_BASE + 0x30 + ((w) << 4))
#define MVSATA_WIN_BASE(w) (MVEBU_AXP_SATA_BASE + 0x34 + ((w) << 4))
struct eprd {
u32 phyaddr_low;
u32 bytecount_eot;
u32 phyaddr_hi;
u32 reserved;
};
#define EPRD_PHYADDR_MASK 0xfffffffe
#define EPRD_BYTECOUNT_MASK 0x0000ffff
#define EPRD_EOT (0x01 << 31)
struct crpb {
u32 id;
u32 flags;
u32 timestamp;
};
#define CRPB_ALIGN 0x100
#define READ_CMD 0
#define WRITE_CMD 1
/*
* Since we don't use PRDs yet max transfer size
* is 64KB
*/
#define MV_ATA_MAX_SECTORS (65535 / ATA_SECT_SIZE)
/* Keep track if hw is initialized or not */
static u32 hw_init;
struct mv_priv {
char name[12];
u32 link;
u32 regbase;
u32 queue_depth;
u16 pio;
u16 mwdma;
u16 udma;
void *crqb_alloc;
struct crqb *request;
void *crpb_alloc;
struct crpb *response;
};
static int ata_wait_register(u32 *addr, u32 mask, u32 val, u32 timeout_msec)
{
ulong start;
start = get_timer(0);
do {
if ((in_le32(addr) & mask) == val)
return 0;
} while (get_timer(start) < timeout_msec);
return -ETIMEDOUT;
}
/* Cut from sata_mv in linux kernel */
static int mv_stop_edma_engine(int port)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
int i;
/* Disable eDMA. The disable bit auto clears. */
out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_DISEDMA);
/* Wait for the chip to confirm eDMA is off. */
for (i = 10000; i > 0; i--) {
u32 reg = in_le32(priv->regbase + EDMA_CMD);
if (!(reg & EDMA_CMD_ENEDMA)) {
debug("EDMA stop on port %d succesful\n", port);
return 0;
}
udelay(10);
}
debug("EDMA stop on port %d failed\n", port);
return -1;
}
static int mv_start_edma_engine(int port)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
u32 tmp;
/* Check preconditions */
tmp = in_le32(priv->regbase + SIR_SSTATUS);
if ((tmp & SSTATUS_DET_MASK) != 0x03) {
printf("Device error on port: %d\n", port);
return -1;
}
tmp = in_le32(priv->regbase + PIO_CMD_STATUS);
if (tmp & (ATA_BUSY | ATA_DRQ)) {
printf("Device not ready on port: %d\n", port);
return -1;
}
/* Clear interrupt cause */
out_le32(priv->regbase + EDMA_IECR, 0x0);
tmp = in_le32(SATAHC_BASE + SATAHC_ICR);
tmp &= ~(port == 0 ? SATAHC_ICR_PORT0 : SATAHC_ICR_PORT1);
out_le32(SATAHC_BASE + SATAHC_ICR, tmp);
/* Configure edma operation */
tmp = in_le32(priv->regbase + EDMA_CFG);
tmp &= ~EDMA_CFG_NCQ; /* No NCQ */
tmp &= ~EDMA_CFG_EQUE; /* Dont queue operations */
out_le32(priv->regbase + EDMA_CFG, tmp);
out_le32(priv->regbase + SIR_FIS_IRQ_CAUSE, 0x0);
/* Configure fis, set all to no-wait for now */
out_le32(priv->regbase + SIR_FIS_CFG, 0x0);
/* Setup request queue */
out_le32(priv->regbase + EDMA_RQBA_HI, 0x0);
out_le32(priv->regbase + EDMA_RQIPR, priv->request);
out_le32(priv->regbase + EDMA_RQOPR, 0x0);
/* Setup response queue */
out_le32(priv->regbase + EDMA_RSBA_HI, 0x0);
out_le32(priv->regbase + EDMA_RSOPR, priv->response);
out_le32(priv->regbase + EDMA_RSIPR, 0x0);
/* Start edma */
out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_ENEDMA);
return 0;
}
static int mv_reset_channel(int port)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
/* Make sure edma is stopped */
mv_stop_edma_engine(port);
out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_ATARST);
udelay(25); /* allow reset propagation */
out_le32(priv->regbase + EDMA_CMD, 0);
mdelay(10);
return 0;
}
static void mv_reset_port(int port)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
mv_reset_channel(port);
out_le32(priv->regbase + EDMA_CMD, 0x0);
out_le32(priv->regbase + EDMA_CFG, 0x101f);
out_le32(priv->regbase + EDMA_IECR, 0x0);
out_le32(priv->regbase + EDMA_IEMR, 0x0);
out_le32(priv->regbase + EDMA_RQBA_HI, 0x0);
out_le32(priv->regbase + EDMA_RQIPR, 0x0);
out_le32(priv->regbase + EDMA_RQOPR, 0x0);
out_le32(priv->regbase + EDMA_RSBA_HI, 0x0);
out_le32(priv->regbase + EDMA_RSIPR, 0x0);
out_le32(priv->regbase + EDMA_RSOPR, 0x0);
out_le32(priv->regbase + EDMA_IORTO, 0xfa);
}
static void mv_reset_one_hc(void)
{
out_le32(SATAHC_BASE + SATAHC_ICT, 0x00);
out_le32(SATAHC_BASE + SATAHC_ITT, 0x00);
out_le32(SATAHC_BASE + SATAHC_ICR, 0x00);
}
static int probe_port(int port)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
int tries, tries2, set15 = 0;
u32 tmp;
debug("Probe port: %d\n", port);
for (tries = 0; tries < 2; tries++) {
/* Clear SError */
out_le32(priv->regbase + SIR_SERROR, 0x0);
/* trigger com-init */
tmp = in_le32(priv->regbase + SIR_SCONTROL);
tmp = (tmp & 0x0f0) | 0x300 | SIR_SCONTROL_DETEN;
out_le32(priv->regbase + SIR_SCONTROL, tmp);
mdelay(1);
tmp = in_le32(priv->regbase + SIR_SCONTROL);
tries2 = 5;
do {
tmp = (tmp & 0x0f0) | 0x300;
out_le32(priv->regbase + SIR_SCONTROL, tmp);
mdelay(10);
tmp = in_le32(priv->regbase + SIR_SCONTROL);
} while ((tmp & 0xf0f) != 0x300 && tries2--);
mdelay(10);
for (tries2 = 0; tries2 < 200; tries2++) {
tmp = in_le32(priv->regbase + SIR_SSTATUS);
if ((tmp & SSTATUS_DET_MASK) == 0x03) {
debug("Found device on port\n");
return 0;
}
mdelay(1);
}
if ((tmp & SSTATUS_DET_MASK) == 0) {
debug("No device attached on port %d\n", port);
return -ENODEV;
}
if (!set15) {
/* Try on 1.5Gb/S */
debug("Try 1.5Gb link\n");
set15 = 1;
out_le32(priv->regbase + SIR_SCONTROL, 0x304);
tmp = in_le32(priv->regbase + SIR_ICFG);
tmp &= ~SIR_CFG_GEN2EN;
out_le32(priv->regbase + SIR_ICFG, tmp);
mv_reset_channel(port);
}
}
debug("Failed to probe port\n");
return -1;
}
/* Get request queue in pointer */
static int get_reqip(int port)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
u32 tmp;
tmp = in_le32(priv->regbase + EDMA_RQIPR) & EDMA_RQIPR_IPMASK;
tmp = tmp >> EDMA_RQIPR_IPSHIFT;
return tmp;
}
static void set_reqip(int port, int reqin)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
u32 tmp;
tmp = in_le32(priv->regbase + EDMA_RQIPR) & ~EDMA_RQIPR_IPMASK;
tmp |= ((reqin << EDMA_RQIPR_IPSHIFT) & EDMA_RQIPR_IPMASK);
out_le32(priv->regbase + EDMA_RQIPR, tmp);
}
/* Get next available slot, ignoring possible overwrite */
static int get_next_reqip(int port)
{
int slot = get_reqip(port);
slot = (slot + 1) % REQUEST_QUEUE_SIZE;
return slot;
}
/* Get response queue in pointer */
static int get_rspip(int port)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
u32 tmp;
tmp = in_le32(priv->regbase + EDMA_RSIPR) & EDMA_RSIPR_IPMASK;
tmp = tmp >> EDMA_RSIPR_IPSHIFT;
return tmp;
}
/* Get response queue out pointer */
static int get_rspop(int port)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
u32 tmp;
tmp = in_le32(priv->regbase + EDMA_RSOPR) & EDMA_RSOPR_OPMASK;
tmp = tmp >> EDMA_RSOPR_OPSHIFT;
return tmp;
}
/* Get next response queue pointer */
static int get_next_rspop(int port)
{
return (get_rspop(port) + 1) % RESPONSE_QUEUE_SIZE;
}
/* Set response queue pointer */
static void set_rspop(int port, int reqin)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
u32 tmp;
tmp = in_le32(priv->regbase + EDMA_RSOPR) & ~EDMA_RSOPR_OPMASK;
tmp |= ((reqin << EDMA_RSOPR_OPSHIFT) & EDMA_RSOPR_OPMASK);
out_le32(priv->regbase + EDMA_RSOPR, tmp);
}
static int wait_dma_completion(int port, int index, u32 timeout_msec)
{
u32 tmp, res;
tmp = port == 0 ? SATAHC_ICR_PORT0 : SATAHC_ICR_PORT1;
res = ata_wait_register((u32 *)(SATAHC_BASE + SATAHC_ICR), tmp,
tmp, timeout_msec);
if (res)
printf("Failed to wait for completion on port %d\n", port);
return res;
}
static void process_responses(int port)
{
#ifdef DEBUG
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
#endif
u32 tmp;
u32 outind = get_rspop(port);
/* Ack interrupts */
tmp = in_le32(SATAHC_BASE + SATAHC_ICR);
if (port == 0)
tmp &= ~(BIT(0) | BIT(8));
else
tmp &= ~(BIT(1) | BIT(9));
tmp &= ~(BIT(4));
out_le32(SATAHC_BASE + SATAHC_ICR, tmp);
while (get_rspip(port) != outind) {
#ifdef DEBUG
debug("Response index %d flags %08x on port %d\n", outind,
priv->response[outind].flags, port);
#endif
outind = get_next_rspop(port);
set_rspop(port, outind);
}
}
static int mv_ata_exec_ata_cmd(int port, struct sata_fis_h2d *cfis,
u8 *buffer, u32 len, u32 iswrite)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
struct crqb *req;
int slot;
u32 start;
if (len >= 64 * 1024) {
printf("We only support <64K transfers for now\n");
return -1;
}
/* Initialize request */
slot = get_reqip(port);
memset(&priv->request[slot], 0, sizeof(struct crqb));
req = &priv->request[slot];
req->dtb_low = (u32)buffer;
/* Dont use PRDs */
req->control_flags = CRQB_CNTRLFLAGS_PRDMODE;
req->control_flags |= iswrite ? 0 : CRQB_CNTRLFLAGS_DIR;
req->control_flags |=
((cfis->pm_port_c << CRQB_CNTRLFLAGS_PMPORTSHIFT)
& CRQB_CNTRLFLAGS_PMPORTMASK);
req->drb_count = len;
req->ata_cmd_feat = (cfis->command << CRQB_CMDFEAT_CMDSHIFT) &
CRQB_CMDFEAT_CMDMASK;
req->ata_cmd_feat |= (cfis->features << CRQB_CMDFEAT_FEATSHIFT) &
CRQB_CMDFEAT_FEATMASK;
req->ata_addr = (cfis->lba_low << CRQB_ADDR_LBA_LOWSHIFT) &
CRQB_ADDR_LBA_LOWMASK;
req->ata_addr |= (cfis->lba_mid << CRQB_ADDR_LBA_MIDSHIFT) &
CRQB_ADDR_LBA_MIDMASK;
req->ata_addr |= (cfis->lba_high << CRQB_ADDR_LBA_HIGHSHIFT) &
CRQB_ADDR_LBA_HIGHMASK;
req->ata_addr |= (cfis->device << CRQB_ADDR_DEVICE_SHIFT) &
CRQB_ADDR_DEVICE_MASK;
req->ata_addr_exp = (cfis->lba_low_exp << CRQB_ADDR_LBA_LOW_EXP_SHIFT) &
CRQB_ADDR_LBA_LOW_EXP_MASK;
req->ata_addr_exp |=
(cfis->lba_mid_exp << CRQB_ADDR_LBA_MID_EXP_SHIFT) &
CRQB_ADDR_LBA_MID_EXP_MASK;
req->ata_addr_exp |=
(cfis->lba_high_exp << CRQB_ADDR_LBA_HIGH_EXP_SHIFT) &
CRQB_ADDR_LBA_HIGH_EXP_MASK;
req->ata_addr_exp |=
(cfis->features_exp << CRQB_ADDR_FEATURE_EXP_SHIFT) &
CRQB_ADDR_FEATURE_EXP_MASK;
req->ata_sect_count =
(cfis->sector_count << CRQB_SECTCOUNT_COUNT_SHIFT) &
CRQB_SECTCOUNT_COUNT_MASK;
req->ata_sect_count |=
(cfis->sector_count_exp << CRQB_SECTCOUNT_COUNT_EXP_SHIFT) &
CRQB_SECTCOUNT_COUNT_EXP_MASK;
/* Flush data */
start = (u32)req & ~(ARCH_DMA_MINALIGN - 1);
flush_dcache_range(start,
start + ALIGN(sizeof(*req), ARCH_DMA_MINALIGN));
/* Trigger operation */
slot = get_next_reqip(port);
set_reqip(port, slot);
/* Wait for completion */
if (wait_dma_completion(port, slot, 10000)) {
printf("ATA operation timed out\n");
return -1;
}
process_responses(port);
/* Invalidate data on read */
if (buffer && len) {
start = (u32)buffer & ~(ARCH_DMA_MINALIGN - 1);
invalidate_dcache_range(start,
start + ALIGN(len, ARCH_DMA_MINALIGN));
}
return len;
}
static u32 mv_sata_rw_cmd_ext(int port, lbaint_t start, u32 blkcnt,
u8 *buffer, int is_write)
{
struct sata_fis_h2d cfis;
u32 res;
u64 block;
block = (u64)start;
memset(&cfis, 0, sizeof(struct sata_fis_h2d));
cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
cfis.command = (is_write) ? ATA_CMD_WRITE_EXT : ATA_CMD_READ_EXT;
cfis.lba_high_exp = (block >> 40) & 0xff;
cfis.lba_mid_exp = (block >> 32) & 0xff;
cfis.lba_low_exp = (block >> 24) & 0xff;
cfis.lba_high = (block >> 16) & 0xff;
cfis.lba_mid = (block >> 8) & 0xff;
cfis.lba_low = block & 0xff;
cfis.device = ATA_LBA;
cfis.sector_count_exp = (blkcnt >> 8) & 0xff;
cfis.sector_count = blkcnt & 0xff;
res = mv_ata_exec_ata_cmd(port, &cfis, buffer, ATA_SECT_SIZE * blkcnt,
is_write);
return res >= 0 ? blkcnt : res;
}
static u32 mv_sata_rw_cmd(int port, lbaint_t start, u32 blkcnt, u8 *buffer,
int is_write)
{
struct sata_fis_h2d cfis;
lbaint_t block;
u32 res;
block = start;
memset(&cfis, 0, sizeof(struct sata_fis_h2d));
cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
cfis.command = (is_write) ? ATA_CMD_WRITE : ATA_CMD_READ;
cfis.device = ATA_LBA;
cfis.device |= (block >> 24) & 0xf;
cfis.lba_high = (block >> 16) & 0xff;
cfis.lba_mid = (block >> 8) & 0xff;
cfis.lba_low = block & 0xff;
cfis.sector_count = (u8)(blkcnt & 0xff);
res = mv_ata_exec_ata_cmd(port, &cfis, buffer, ATA_SECT_SIZE * blkcnt,
is_write);
return res >= 0 ? blkcnt : res;
}
static u32 ata_low_level_rw(int dev, lbaint_t blknr, lbaint_t blkcnt,
void *buffer, int is_write)
{
lbaint_t start, blks;
u8 *addr;
int max_blks;
debug("%s: %ld %ld\n", __func__, blknr, blkcnt);
start = blknr;
blks = blkcnt;
addr = (u8 *)buffer;
max_blks = MV_ATA_MAX_SECTORS;
do {
if (blks > max_blks) {
if (sata_dev_desc[dev].lba48) {
mv_sata_rw_cmd_ext(dev, start, max_blks, addr,
is_write);
} else {
mv_sata_rw_cmd(dev, start, max_blks, addr,
is_write);
}
start += max_blks;
blks -= max_blks;
addr += ATA_SECT_SIZE * max_blks;
} else {
if (sata_dev_desc[dev].lba48) {
mv_sata_rw_cmd_ext(dev, start, blks, addr,
is_write);
} else {
mv_sata_rw_cmd(dev, start, blks, addr,
is_write);
}
start += blks;
blks = 0;
addr += ATA_SECT_SIZE * blks;
}
} while (blks != 0);
return blkcnt;
}
static int mv_ata_exec_ata_cmd_nondma(int port,
struct sata_fis_h2d *cfis, u8 *buffer,
u32 len, u32 iswrite)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
int i;
u16 *tp;
debug("%s\n", __func__);
out_le32(priv->regbase + PIO_SECTOR_COUNT, cfis->sector_count);
out_le32(priv->regbase + PIO_LBA_HI, cfis->lba_high);
out_le32(priv->regbase + PIO_LBA_MID, cfis->lba_mid);
out_le32(priv->regbase + PIO_LBA_LOW, cfis->lba_low);
out_le32(priv->regbase + PIO_ERR_FEATURES, cfis->features);
out_le32(priv->regbase + PIO_DEVICE, cfis->device);
out_le32(priv->regbase + PIO_CMD_STATUS, cfis->command);
if (ata_wait_register((u32 *)(priv->regbase + PIO_CMD_STATUS),
ATA_BUSY, 0x0, 10000)) {
debug("Failed to wait for completion\n");
return -1;
}
if (len > 0) {
tp = (u16 *)buffer;
for (i = 0; i < len / 2; i++) {
if (iswrite)
out_le16(priv->regbase + PIO_DATA, *tp++);
else
*tp++ = in_le16(priv->regbase + PIO_DATA);
}
}
return len;
}
static int mv_sata_identify(int port, u16 *id)
{
struct sata_fis_h2d h2d;
memset(&h2d, 0, sizeof(struct sata_fis_h2d));
h2d.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
h2d.command = ATA_CMD_ID_ATA;
/* Give device time to get operational */
mdelay(10);
return mv_ata_exec_ata_cmd_nondma(port, &h2d, (u8 *)id,
ATA_ID_WORDS * 2, READ_CMD);
}
static void mv_sata_xfer_mode(int port, u16 *id)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
priv->pio = id[ATA_ID_PIO_MODES];
priv->mwdma = id[ATA_ID_MWDMA_MODES];
priv->udma = id[ATA_ID_UDMA_MODES];
debug("pio %04x, mwdma %04x, udma %04x\n", priv->pio, priv->mwdma,
priv->udma);
}
static void mv_sata_set_features(int port)
{
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
struct sata_fis_h2d cfis;
u8 udma_cap;
memset(&cfis, 0, sizeof(struct sata_fis_h2d));
cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
cfis.command = ATA_CMD_SET_FEATURES;
cfis.features = SETFEATURES_XFER;
/* First check the device capablity */
udma_cap = (u8) (priv->udma & 0xff);
if (udma_cap == ATA_UDMA6)
cfis.sector_count = XFER_UDMA_6;
if (udma_cap == ATA_UDMA5)
cfis.sector_count = XFER_UDMA_5;
if (udma_cap == ATA_UDMA4)
cfis.sector_count = XFER_UDMA_4;
if (udma_cap == ATA_UDMA3)
cfis.sector_count = XFER_UDMA_3;
mv_ata_exec_ata_cmd_nondma(port, &cfis, NULL, 0, READ_CMD);
}
int mv_sata_spin_down(int dev)
{
struct sata_fis_h2d cfis;
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[dev].priv;
if (priv->link == 0) {
debug("No device on port: %d\n", dev);
return 1;
}
memset(&cfis, 0, sizeof(struct sata_fis_h2d));
cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
cfis.command = ATA_CMD_STANDBY;
return mv_ata_exec_ata_cmd_nondma(dev, &cfis, NULL, 0, READ_CMD);
}
int mv_sata_spin_up(int dev)
{
struct sata_fis_h2d cfis;
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[dev].priv;
if (priv->link == 0) {
debug("No device on port: %d\n", dev);
return 1;
}
memset(&cfis, 0, sizeof(struct sata_fis_h2d));
cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
cfis.command = ATA_CMD_IDLE;
return mv_ata_exec_ata_cmd_nondma(dev, &cfis, NULL, 0, READ_CMD);
}
ulong sata_read(int dev, ulong blknr, lbaint_t blkcnt, void *buffer)
{
return ata_low_level_rw(dev, blknr, blkcnt, buffer, READ_CMD);
}
ulong sata_write(int dev, ulong blknr, lbaint_t blkcnt, const void *buffer)
{
return ata_low_level_rw(dev, blknr, blkcnt, (void *)buffer, WRITE_CMD);
}
/*
* Initialize SATA memory windows
*/
static void mvsata_ide_conf_mbus_windows(void)
{
const struct mbus_dram_target_info *dram;
int i;
dram = mvebu_mbus_dram_info();
/* Disable windows, Set Size/Base to 0 */
for (i = 0; i < 4; i++) {
writel(0, MVSATA_WIN_CONTROL(i));
writel(0, MVSATA_WIN_BASE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
MVSATA_WIN_CONTROL(i));
writel(cs->base & 0xffff0000, MVSATA_WIN_BASE(i));
}
}
int init_sata(int dev)
{
struct mv_priv *priv;
debug("Initialize sata dev: %d\n", dev);
if (dev < 0 || dev >= CONFIG_SYS_SATA_MAX_DEVICE) {
printf("Invalid sata device %d\n", dev);
return -1;
}
priv = (struct mv_priv *)malloc(sizeof(struct mv_priv));
if (!priv) {
printf("Failed to allocate memory for private sata data\n");
return -ENOMEM;
}
memset((void *)priv, 0, sizeof(struct mv_priv));
/* Allocate and align request buffer */
priv->crqb_alloc = malloc(sizeof(struct crqb) * REQUEST_QUEUE_SIZE +
CRQB_ALIGN);
if (!priv->crqb_alloc) {
printf("Unable to allocate memory for request queue\n");
return -ENOMEM;
}
memset(priv->crqb_alloc, 0,
sizeof(struct crqb) * REQUEST_QUEUE_SIZE + CRQB_ALIGN);
priv->request = (struct crqb *)(((u32) priv->crqb_alloc + CRQB_ALIGN) &
~(CRQB_ALIGN - 1));
/* Allocate and align response buffer */
priv->crpb_alloc = malloc(sizeof(struct crpb) * REQUEST_QUEUE_SIZE +
CRPB_ALIGN);
if (!priv->crpb_alloc) {
printf("Unable to allocate memory for response queue\n");
return -ENOMEM;
}
memset(priv->crpb_alloc, 0,
sizeof(struct crpb) * REQUEST_QUEUE_SIZE + CRPB_ALIGN);
priv->response = (struct crpb *)(((u32) priv->crpb_alloc + CRPB_ALIGN) &
~(CRPB_ALIGN - 1));
sata_dev_desc[dev].priv = (void *)priv;
sprintf(priv->name, "SATA%d", dev);
priv->regbase = dev == 0 ? SATA0_BASE : SATA1_BASE;
if (!hw_init) {
debug("Initialize sata hw\n");
hw_init = 1;
mv_reset_one_hc();
mvsata_ide_conf_mbus_windows();
}
mv_reset_port(dev);
if (probe_port(dev)) {
priv->link = 0;
return -ENODEV;
}
priv->link = 1;
return 0;
}
int reset_sata(int dev)
{
return 0;
}
int scan_sata(int port)
{
unsigned char serial[ATA_ID_SERNO_LEN + 1];
unsigned char firmware[ATA_ID_FW_REV_LEN + 1];
unsigned char product[ATA_ID_PROD_LEN + 1];
u64 n_sectors;
u16 *id;
struct mv_priv *priv = (struct mv_priv *)sata_dev_desc[port].priv;
if (!priv->link)
return -ENODEV;
id = (u16 *)malloc(ATA_ID_WORDS * 2);
if (!id) {
printf("Failed to malloc id data\n");
return -ENOMEM;
}
mv_sata_identify(port, id);
ata_swap_buf_le16(id, ATA_ID_WORDS);
#ifdef DEBUG
ata_dump_id(id);
#endif
/* Serial number */
ata_id_c_string(id, serial, ATA_ID_SERNO, sizeof(serial));
memcpy(sata_dev_desc[port].product, serial, sizeof(serial));
/* Firmware version */
ata_id_c_string(id, firmware, ATA_ID_FW_REV, sizeof(firmware));
memcpy(sata_dev_desc[port].revision, firmware, sizeof(firmware));
/* Product model */
ata_id_c_string(id, product, ATA_ID_PROD, sizeof(product));
memcpy(sata_dev_desc[port].vendor, product, sizeof(product));
/* Total sectors */
n_sectors = ata_id_n_sectors(id);
sata_dev_desc[port].lba = n_sectors;
/* Check if support LBA48 */
if (ata_id_has_lba48(id)) {
sata_dev_desc[port].lba48 = 1;
debug("Device support LBA48\n");
}
/* Get the NCQ queue depth from device */
priv->queue_depth = ata_id_queue_depth(id);
/* Get the xfer mode from device */
mv_sata_xfer_mode(port, id);
/* Set the xfer mode to highest speed */
mv_sata_set_features(port);
/* Start up */
mv_start_edma_engine(port);
return 0;
}