blob: c18e2acb6a80f90514ab98ce402e30dcdaa8630c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2011, Marvell Semiconductor Inc.
* Lei Wen <leiwen@marvell.com>
*
* Back ported to the 8xx platform (from the 8260 platform) by
* Murray.Jensen@cmst.csiro.au, 27-Jan-01.
*/
#include <common.h>
#include <command.h>
#include <config.h>
#include <net.h>
#include <malloc.h>
#include <asm/byteorder.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/unaligned.h>
#include <linux/types.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <usb/ci_udc.h>
#include "../host/ehci.h"
#include "ci_udc.h"
/*
* Check if the system has too long cachelines. If the cachelines are
* longer then 128b, the driver will not be able flush/invalidate data
* cache over separate QH entries. We use 128b because one QH entry is
* 64b long and there are always two QH list entries for each endpoint.
*/
#if ARCH_DMA_MINALIGN > 128
#error This driver can not work on systems with caches longer than 128b
#endif
/*
* Every QTD must be individually aligned, since we can program any
* QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN,
* and the USB HW requires 32-byte alignment. Align to both:
*/
#define ILIST_ALIGN roundup(ARCH_DMA_MINALIGN, 32)
/* Each QTD is this size */
#define ILIST_ENT_RAW_SZ sizeof(struct ept_queue_item)
/*
* Align the size of the QTD too, so we can add this value to each
* QTD's address to get another aligned address.
*/
#define ILIST_ENT_SZ roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN)
/* For each endpoint, we need 2 QTDs, one for each of IN and OUT */
#define ILIST_SZ (NUM_ENDPOINTS * 2 * ILIST_ENT_SZ)
#define EP_MAX_LENGTH_TRANSFER 0x4000
#ifndef DEBUG
#define DBG(x...) do {} while (0)
#else
#define DBG(x...) printf(x)
static const char *reqname(unsigned r)
{
switch (r) {
case USB_REQ_GET_STATUS: return "GET_STATUS";
case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE";
case USB_REQ_SET_FEATURE: return "SET_FEATURE";
case USB_REQ_SET_ADDRESS: return "SET_ADDRESS";
case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR";
case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR";
case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION";
case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION";
case USB_REQ_GET_INTERFACE: return "GET_INTERFACE";
case USB_REQ_SET_INTERFACE: return "SET_INTERFACE";
default: return "*UNKNOWN*";
}
}
#endif
static struct usb_endpoint_descriptor ep0_desc = {
.bLength = sizeof(struct usb_endpoint_descriptor),
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
};
static int ci_pullup(struct usb_gadget *gadget, int is_on);
static int ci_ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc);
static int ci_ep_disable(struct usb_ep *ep);
static int ci_ep_queue(struct usb_ep *ep,
struct usb_request *req, gfp_t gfp_flags);
static int ci_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
static struct usb_request *
ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags);
static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req);
static struct usb_gadget_ops ci_udc_ops = {
.pullup = ci_pullup,
};
static struct usb_ep_ops ci_ep_ops = {
.enable = ci_ep_enable,
.disable = ci_ep_disable,
.queue = ci_ep_queue,
.dequeue = ci_ep_dequeue,
.alloc_request = ci_ep_alloc_request,
.free_request = ci_ep_free_request,
};
__weak void ci_init_after_reset(struct ehci_ctrl *ctrl)
{
}
/* Init values for USB endpoints. */
static const struct usb_ep ci_ep_init[5] = {
[0] = { /* EP 0 */
.maxpacket = 64,
.name = "ep0",
.ops = &ci_ep_ops,
},
[1] = {
.maxpacket = 512,
.name = "ep1in-bulk",
.ops = &ci_ep_ops,
},
[2] = {
.maxpacket = 512,
.name = "ep2out-bulk",
.ops = &ci_ep_ops,
},
[3] = {
.maxpacket = 512,
.name = "ep3in-int",
.ops = &ci_ep_ops,
},
[4] = {
.maxpacket = 512,
.name = "ep-",
.ops = &ci_ep_ops,
},
};
static struct ci_drv controller = {
.gadget = {
.name = "ci_udc",
.ops = &ci_udc_ops,
.is_dualspeed = 1,
.max_speed = USB_SPEED_HIGH,
},
};
/**
* ci_get_qh() - return queue head for endpoint
* @ep_num: Endpoint number
* @dir_in: Direction of the endpoint (IN = 1, OUT = 0)
*
* This function returns the QH associated with particular endpoint
* and it's direction.
*/
static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in)
{
return &controller.epts[(ep_num * 2) + dir_in];
}
/**
* ci_get_qtd() - return queue item for endpoint
* @ep_num: Endpoint number
* @dir_in: Direction of the endpoint (IN = 1, OUT = 0)
*
* This function returns the QH associated with particular endpoint
* and it's direction.
*/
static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in)
{
int index = (ep_num * 2) + dir_in;
uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ);
return (struct ept_queue_item *)imem;
}
/**
* ci_flush_qh - flush cache over queue head
* @ep_num: Endpoint number
*
* This function flushes cache over QH for particular endpoint.
*/
static void ci_flush_qh(int ep_num)
{
struct ept_queue_head *head = ci_get_qh(ep_num, 0);
const unsigned long start = (unsigned long)head;
const unsigned long end = start + 2 * sizeof(*head);
flush_dcache_range(start, end);
}
/**
* ci_invalidate_qh - invalidate cache over queue head
* @ep_num: Endpoint number
*
* This function invalidates cache over QH for particular endpoint.
*/
static void ci_invalidate_qh(int ep_num)
{
struct ept_queue_head *head = ci_get_qh(ep_num, 0);
unsigned long start = (unsigned long)head;
unsigned long end = start + 2 * sizeof(*head);
invalidate_dcache_range(start, end);
}
/**
* ci_flush_qtd - flush cache over queue item
* @ep_num: Endpoint number
*
* This function flushes cache over qTD pair for particular endpoint.
*/
static void ci_flush_qtd(int ep_num)
{
struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
const unsigned long start = (unsigned long)item;
const unsigned long end = start + 2 * ILIST_ENT_SZ;
flush_dcache_range(start, end);
}
/**
* ci_flush_td - flush cache over queue item
* @td: td pointer
*
* This function flushes cache for particular transfer descriptor.
*/
static void ci_flush_td(struct ept_queue_item *td)
{
const unsigned long start = (unsigned long)td;
const unsigned long end = (unsigned long)td + ILIST_ENT_SZ;
flush_dcache_range(start, end);
}
/**
* ci_invalidate_qtd - invalidate cache over queue item
* @ep_num: Endpoint number
*
* This function invalidates cache over qTD pair for particular endpoint.
*/
static void ci_invalidate_qtd(int ep_num)
{
struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
const unsigned long start = (unsigned long)item;
const unsigned long end = start + 2 * ILIST_ENT_SZ;
invalidate_dcache_range(start, end);
}
/**
* ci_invalidate_td - invalidate cache over queue item
* @td: td pointer
*
* This function invalidates cache for particular transfer descriptor.
*/
static void ci_invalidate_td(struct ept_queue_item *td)
{
const unsigned long start = (unsigned long)td;
const unsigned long end = start + ILIST_ENT_SZ;
invalidate_dcache_range(start, end);
}
static struct usb_request *
ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags)
{
struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
int num = -1;
struct ci_req *ci_req;
if (ci_ep->desc)
num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if (num == 0 && controller.ep0_req)
return &controller.ep0_req->req;
ci_req = calloc(1, sizeof(*ci_req));
if (!ci_req)
return NULL;
INIT_LIST_HEAD(&ci_req->queue);
if (num == 0)
controller.ep0_req = ci_req;
return &ci_req->req;
}
static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req)
{
struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
struct ci_req *ci_req = container_of(req, struct ci_req, req);
int num = -1;
if (ci_ep->desc)
num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if (num == 0) {
if (!controller.ep0_req)
return;
controller.ep0_req = 0;
}
if (ci_req->b_buf)
free(ci_req->b_buf);
free(ci_req);
}
static void ep_enable(int num, int in, int maxpacket)
{
struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
unsigned n;
n = readl(&udc->epctrl[num]);
if (in)
n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
else
n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);
if (num != 0) {
struct ept_queue_head *head = ci_get_qh(num, in);
head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT;
ci_flush_qh(num);
}
writel(n, &udc->epctrl[num]);
}
static int ci_ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
int num, in;
num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
ci_ep->desc = desc;
ep->desc = desc;
if (num) {
int max = get_unaligned_le16(&desc->wMaxPacketSize);
if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL))
max = 64;
if (ep->maxpacket != max) {
DBG("%s: from %d to %d\n", __func__,
ep->maxpacket, max);
ep->maxpacket = max;
}
}
ep_enable(num, in, ep->maxpacket);
DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket);
return 0;
}
static int ci_ep_disable(struct usb_ep *ep)
{
struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
ci_ep->desc = NULL;
ep->desc = NULL;
return 0;
}
static int ci_bounce(struct ci_req *ci_req, int in)
{
struct usb_request *req = &ci_req->req;
unsigned long addr = (unsigned long)req->buf;
unsigned long hwaddr;
uint32_t aligned_used_len;
/* Input buffer address is not aligned. */
if (addr & (ARCH_DMA_MINALIGN - 1))
goto align;
/* Input buffer length is not aligned. */
if (req->length & (ARCH_DMA_MINALIGN - 1))
goto align;
/* The buffer is well aligned, only flush cache. */
ci_req->hw_len = req->length;
ci_req->hw_buf = req->buf;
goto flush;
align:
if (ci_req->b_buf && req->length > ci_req->b_len) {
free(ci_req->b_buf);
ci_req->b_buf = 0;
}
if (!ci_req->b_buf) {
ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN);
ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len);
if (!ci_req->b_buf)
return -ENOMEM;
}
ci_req->hw_len = ci_req->b_len;
ci_req->hw_buf = ci_req->b_buf;
if (in)
memcpy(ci_req->hw_buf, req->buf, req->length);
flush:
hwaddr = (unsigned long)ci_req->hw_buf;
aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN);
flush_dcache_range(hwaddr, hwaddr + aligned_used_len);
return 0;
}
static void ci_debounce(struct ci_req *ci_req, int in)
{
struct usb_request *req = &ci_req->req;
unsigned long addr = (unsigned long)req->buf;
unsigned long hwaddr = (unsigned long)ci_req->hw_buf;
uint32_t aligned_used_len;
if (in)
return;
aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN);
invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len);
if (addr == hwaddr)
return; /* not a bounce */
memcpy(req->buf, ci_req->hw_buf, req->actual);
}
static void ci_ep_submit_next_request(struct ci_ep *ci_ep)
{
struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
struct ept_queue_item *item;
struct ept_queue_head *head;
int bit, num, len, in;
struct ci_req *ci_req;
u8 *buf;
uint32_t len_left, len_this_dtd;
struct ept_queue_item *dtd, *qtd;
ci_ep->req_primed = true;
num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
item = ci_get_qtd(num, in);
head = ci_get_qh(num, in);
ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
len = ci_req->req.length;
head->next = (unsigned long)item;
head->info = 0;
ci_req->dtd_count = 0;
buf = ci_req->hw_buf;
len_left = len;
dtd = item;
do {
len_this_dtd = min(len_left, (unsigned)EP_MAX_LENGTH_TRANSFER);
dtd->info = INFO_BYTES(len_this_dtd) | INFO_ACTIVE;
dtd->page0 = (unsigned long)buf;
dtd->page1 = ((unsigned long)buf & 0xfffff000) + 0x1000;
dtd->page2 = ((unsigned long)buf & 0xfffff000) + 0x2000;
dtd->page3 = ((unsigned long)buf & 0xfffff000) + 0x3000;
dtd->page4 = ((unsigned long)buf & 0xfffff000) + 0x4000;
len_left -= len_this_dtd;
buf += len_this_dtd;
if (len_left) {
qtd = (struct ept_queue_item *)
memalign(ILIST_ALIGN, ILIST_ENT_SZ);
dtd->next = (unsigned long)qtd;
dtd = qtd;
memset(dtd, 0, ILIST_ENT_SZ);
}
ci_req->dtd_count++;
} while (len_left);
item = dtd;
/*
* When sending the data for an IN transaction, the attached host
* knows that all data for the IN is sent when one of the following
* occurs:
* a) A zero-length packet is transmitted.
* b) A packet with length that isn't an exact multiple of the ep's
* maxpacket is transmitted.
* c) Enough data is sent to exactly fill the host's maximum expected
* IN transaction size.
*
* One of these conditions MUST apply at the end of an IN transaction,
* or the transaction will not be considered complete by the host. If
* none of (a)..(c) already applies, then we must force (a) to apply
* by explicitly sending an extra zero-length packet.
*/
/* IN !a !b !c */
if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) {
/*
* Each endpoint has 2 items allocated, even though typically
* only 1 is used at a time since either an IN or an OUT but
* not both is queued. For an IN transaction, item currently
* points at the second of these items, so we know that we
* can use the other to transmit the extra zero-length packet.
*/
struct ept_queue_item *other_item = ci_get_qtd(num, 0);
item->next = (unsigned long)other_item;
item = other_item;
item->info = INFO_ACTIVE;
}
item->next = TERMINATE;
item->info |= INFO_IOC;
ci_flush_qtd(num);
item = (struct ept_queue_item *)(unsigned long)head->next;
while (item->next != TERMINATE) {
ci_flush_td((struct ept_queue_item *)(unsigned long)item->next);
item = (struct ept_queue_item *)(unsigned long)item->next;
}
DBG("ept%d %s queue len %x, req %p, buffer %p\n",
num, in ? "in" : "out", len, ci_req, ci_req->hw_buf);
ci_flush_qh(num);
if (in)
bit = EPT_TX(num);
else
bit = EPT_RX(num);
writel(bit, &udc->epprime);
}
static int ci_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct ci_ep *ci_ep = container_of(_ep, struct ci_ep, ep);
struct ci_req *ci_req;
list_for_each_entry(ci_req, &ci_ep->queue, queue) {
if (&ci_req->req == _req)
break;
}
if (&ci_req->req != _req)
return -EINVAL;
list_del_init(&ci_req->queue);
if (ci_req->req.status == -EINPROGRESS) {
ci_req->req.status = -ECONNRESET;
if (ci_req->req.complete)
ci_req->req.complete(_ep, _req);
}
return 0;
}
static int ci_ep_queue(struct usb_ep *ep,
struct usb_request *req, gfp_t gfp_flags)
{
struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
struct ci_req *ci_req = container_of(req, struct ci_req, req);
int in, ret;
int __maybe_unused num;
num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
if (!num && ci_ep->req_primed) {
/*
* The flipping of ep0 between IN and OUT relies on
* ci_ep_queue consuming the current IN/OUT setting
* immediately. If this is deferred to a later point when the
* req is pulled out of ci_req->queue, then the IN/OUT setting
* may have been changed since the req was queued, and state
* will get out of sync. This condition doesn't occur today,
* but could if bugs were introduced later, and this error
* check will save a lot of debugging time.
*/
printf("%s: ep0 transaction already in progress\n", __func__);
return -EPROTO;
}
ret = ci_bounce(ci_req, in);
if (ret)
return ret;
DBG("ept%d %s pre-queue req %p, buffer %p\n",
num, in ? "in" : "out", ci_req, ci_req->hw_buf);
list_add_tail(&ci_req->queue, &ci_ep->queue);
if (!ci_ep->req_primed)
ci_ep_submit_next_request(ci_ep);
return 0;
}
static void flip_ep0_direction(void)
{
if (ep0_desc.bEndpointAddress == USB_DIR_IN) {
DBG("%s: Flipping ep0 to OUT\n", __func__);
ep0_desc.bEndpointAddress = 0;
} else {
DBG("%s: Flipping ep0 to IN\n", __func__);
ep0_desc.bEndpointAddress = USB_DIR_IN;
}
}
static void handle_ep_complete(struct ci_ep *ci_ep)
{
struct ept_queue_item *item, *next_td;
int num, in, len, j;
struct ci_req *ci_req;
num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
item = ci_get_qtd(num, in);
ci_invalidate_qtd(num);
ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
next_td = item;
len = 0;
for (j = 0; j < ci_req->dtd_count; j++) {
ci_invalidate_td(next_td);
item = next_td;
len += (item->info >> 16) & 0x7fff;
if (item->info & 0xff)
printf("EP%d/%s FAIL info=%x pg0=%x\n",
num, in ? "in" : "out", item->info, item->page0);
if (j != ci_req->dtd_count - 1)
next_td = (struct ept_queue_item *)(unsigned long)
item->next;
if (j != 0)
free(item);
}
list_del_init(&ci_req->queue);
ci_ep->req_primed = false;
if (!list_empty(&ci_ep->queue))
ci_ep_submit_next_request(ci_ep);
ci_req->req.actual = ci_req->req.length - len;
ci_debounce(ci_req, in);
DBG("ept%d %s req %p, complete %x\n",
num, in ? "in" : "out", ci_req, len);
if (num != 0 || controller.ep0_data_phase)
ci_req->req.complete(&ci_ep->ep, &ci_req->req);
if (num == 0 && controller.ep0_data_phase) {
/*
* Data Stage is complete, so flip ep0 dir for Status Stage,
* which always transfers a packet in the opposite direction.
*/
DBG("%s: flip ep0 dir for Status Stage\n", __func__);
flip_ep0_direction();
controller.ep0_data_phase = false;
ci_req->req.length = 0;
usb_ep_queue(&ci_ep->ep, &ci_req->req, 0);
}
}
#define SETUP(type, request) (((type) << 8) | (request))
static void handle_setup(void)
{
struct ci_ep *ci_ep = &controller.ep[0];
struct ci_req *ci_req;
struct usb_request *req;
struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
struct ept_queue_head *head;
struct usb_ctrlrequest r;
int status = 0;
int num, in, _num, _in, i;
char *buf;
ci_req = controller.ep0_req;
req = &ci_req->req;
head = ci_get_qh(0, 0); /* EP0 OUT */
ci_invalidate_qh(0);
memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest));
#ifdef CONFIG_CI_UDC_HAS_HOSTPC
writel(EPT_RX(0), &udc->epsetupstat);
#else
writel(EPT_RX(0), &udc->epstat);
#endif
DBG("handle setup %s, %x, %x index %x value %x length %x\n",
reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex,
r.wValue, r.wLength);
/* Set EP0 dir for Data Stage based on Setup Stage data */
if (r.bRequestType & USB_DIR_IN) {
DBG("%s: Set ep0 to IN for Data Stage\n", __func__);
ep0_desc.bEndpointAddress = USB_DIR_IN;
} else {
DBG("%s: Set ep0 to OUT for Data Stage\n", __func__);
ep0_desc.bEndpointAddress = 0;
}
if (r.wLength) {
controller.ep0_data_phase = true;
} else {
/* 0 length -> no Data Stage. Flip dir for Status Stage */
DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__);
flip_ep0_direction();
controller.ep0_data_phase = false;
}
list_del_init(&ci_req->queue);
ci_ep->req_primed = false;
switch (SETUP(r.bRequestType, r.bRequest)) {
case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE):
_num = r.wIndex & 15;
_in = !!(r.wIndex & 0x80);
if ((r.wValue == 0) && (r.wLength == 0)) {
req->length = 0;
for (i = 0; i < NUM_ENDPOINTS; i++) {
struct ci_ep *ep = &controller.ep[i];
if (!ep->desc)
continue;
num = ep->desc->bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK;
in = (ep->desc->bEndpointAddress
& USB_DIR_IN) != 0;
if ((num == _num) && (in == _in)) {
ep_enable(num, in, ep->ep.maxpacket);
usb_ep_queue(controller.gadget.ep0,
req, 0);
break;
}
}
}
return;
case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS):
/*
* write address delayed (will take effect
* after the next IN txn)
*/
writel((r.wValue << 25) | (1 << 24), &udc->devaddr);
req->length = 0;
usb_ep_queue(controller.gadget.ep0, req, 0);
return;
case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS):
req->length = 2;
buf = (char *)req->buf;
buf[0] = 1 << USB_DEVICE_SELF_POWERED;
buf[1] = 0;
usb_ep_queue(controller.gadget.ep0, req, 0);
return;
}
/* pass request up to the gadget driver */
if (controller.driver)
status = controller.driver->setup(&controller.gadget, &r);
else
status = -ENODEV;
if (!status)
return;
DBG("STALL reqname %s type %x value %x, index %x\n",
reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex);
writel((1<<16) | (1 << 0), &udc->epctrl[0]);
}
static void stop_activity(void)
{
int i, num, in;
struct ept_queue_head *head;
struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
writel(readl(&udc->epcomp), &udc->epcomp);
#ifdef CONFIG_CI_UDC_HAS_HOSTPC
writel(readl(&udc->epsetupstat), &udc->epsetupstat);
#endif
writel(readl(&udc->epstat), &udc->epstat);
writel(0xffffffff, &udc->epflush);
/* error out any pending reqs */
for (i = 0; i < NUM_ENDPOINTS; i++) {
if (i != 0)
writel(0, &udc->epctrl[i]);
if (controller.ep[i].desc) {
num = controller.ep[i].desc->bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK;
in = (controller.ep[i].desc->bEndpointAddress
& USB_DIR_IN) != 0;
head = ci_get_qh(num, in);
head->info = INFO_ACTIVE;
ci_flush_qh(num);
}
}
}
void udc_irq(void)
{
struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
unsigned n = readl(&udc->usbsts);
writel(n, &udc->usbsts);
int bit, i, num, in;
n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
if (n == 0)
return;
if (n & STS_URI) {
DBG("-- reset --\n");
stop_activity();
}
if (n & STS_SLI)
DBG("-- suspend --\n");
if (n & STS_PCI) {
int max = 64;
int speed = USB_SPEED_FULL;
#ifdef CONFIG_CI_UDC_HAS_HOSTPC
bit = (readl(&udc->hostpc1_devlc) >> 25) & 3;
#else
bit = (readl(&udc->portsc) >> 26) & 3;
#endif
DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full");
if (bit == 2) {
speed = USB_SPEED_HIGH;
max = 512;
}
controller.gadget.speed = speed;
for (i = 1; i < NUM_ENDPOINTS; i++) {
if (controller.ep[i].ep.maxpacket > max)
controller.ep[i].ep.maxpacket = max;
}
}
if (n & STS_UEI)
printf("<UEI %x>\n", readl(&udc->epcomp));
if ((n & STS_UI) || (n & STS_UEI)) {
#ifdef CONFIG_CI_UDC_HAS_HOSTPC
n = readl(&udc->epsetupstat);
#else
n = readl(&udc->epstat);
#endif
if (n & EPT_RX(0))
handle_setup();
n = readl(&udc->epcomp);
if (n != 0)
writel(n, &udc->epcomp);
for (i = 0; i < NUM_ENDPOINTS && n; i++) {
if (controller.ep[i].desc) {
num = controller.ep[i].desc->bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK;
in = (controller.ep[i].desc->bEndpointAddress
& USB_DIR_IN) != 0;
bit = (in) ? EPT_TX(num) : EPT_RX(num);
if (n & bit)
handle_ep_complete(&controller.ep[i]);
}
}
}
}
int usb_gadget_handle_interrupts(int index)
{
u32 value;
struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
value = readl(&udc->usbsts);
if (value)
udc_irq();
return value;
}
void udc_disconnect(void)
{
struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
/* disable pullup */
stop_activity();
writel(USBCMD_FS2, &udc->usbcmd);
udelay(800);
if (controller.driver)
controller.driver->disconnect(&controller.gadget);
}
static int ci_pullup(struct usb_gadget *gadget, int is_on)
{
struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
if (is_on) {
/* RESET */
writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd);
udelay(200);
ci_init_after_reset(controller.ctrl);
writel((unsigned long)controller.epts, &udc->epinitaddr);
/* select DEVICE mode */
writel(USBMODE_DEVICE, &udc->usbmode);
#if !defined(CONFIG_USB_GADGET_DUALSPEED)
/* Port force Full-Speed Connect */
setbits_le32(&udc->portsc, PFSC);
#endif
writel(0xffffffff, &udc->epflush);
/* Turn on the USB connection by enabling the pullup resistor */
setbits_le32(&udc->usbcmd, USBCMD_ITC(MICRO_8FRAME) |
USBCMD_RUN);
} else {
udc_disconnect();
}
return 0;
}
static int ci_udc_probe(void)
{
struct ept_queue_head *head;
int i;
const int num = 2 * NUM_ENDPOINTS;
const int eplist_min_align = 4096;
const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN);
const int eplist_raw_sz = num * sizeof(struct ept_queue_head);
const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN);
/* The QH list must be aligned to 4096 bytes. */
controller.epts = memalign(eplist_align, eplist_sz);
if (!controller.epts)
return -ENOMEM;
memset(controller.epts, 0, eplist_sz);
controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ);
if (!controller.items_mem) {
free(controller.epts);
return -ENOMEM;
}
memset(controller.items_mem, 0, ILIST_SZ);
for (i = 0; i < 2 * NUM_ENDPOINTS; i++) {
/*
* Configure QH for each endpoint. The structure of the QH list
* is such that each two subsequent fields, N and N+1 where N is
* even, in the QH list represent QH for one endpoint. The Nth
* entry represents OUT configuration and the N+1th entry does
* represent IN configuration of the endpoint.
*/
head = controller.epts + i;
if (i < 2)
head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE)
| CONFIG_ZLT | CONFIG_IOS;
else
head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE)
| CONFIG_ZLT;
head->next = TERMINATE;
head->info = 0;
if (i & 1) {
ci_flush_qh(i / 2);
ci_flush_qtd(i / 2);
}
}
INIT_LIST_HEAD(&controller.gadget.ep_list);
/* Init EP 0 */
memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init));
controller.ep[0].desc = &ep0_desc;
INIT_LIST_HEAD(&controller.ep[0].queue);
controller.ep[0].req_primed = false;
controller.gadget.ep0 = &controller.ep[0].ep;
INIT_LIST_HEAD(&controller.gadget.ep0->ep_list);
/* Init EP 1..3 */
for (i = 1; i < 4; i++) {
memcpy(&controller.ep[i].ep, &ci_ep_init[i],
sizeof(*ci_ep_init));
INIT_LIST_HEAD(&controller.ep[i].queue);
controller.ep[i].req_primed = false;
list_add_tail(&controller.ep[i].ep.ep_list,
&controller.gadget.ep_list);
}
/* Init EP 4..n */
for (i = 4; i < NUM_ENDPOINTS; i++) {
memcpy(&controller.ep[i].ep, &ci_ep_init[4],
sizeof(*ci_ep_init));
INIT_LIST_HEAD(&controller.ep[i].queue);
controller.ep[i].req_primed = false;
list_add_tail(&controller.ep[i].ep.ep_list,
&controller.gadget.ep_list);
}
ci_ep_alloc_request(&controller.ep[0].ep, 0);
if (!controller.ep0_req) {
free(controller.items_mem);
free(controller.epts);
return -ENOMEM;
}
return 0;
}
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
int ret;
if (!driver)
return -EINVAL;
if (!driver->bind || !driver->setup || !driver->disconnect)
return -EINVAL;
#if CONFIG_IS_ENABLED(DM_USB)
ret = usb_setup_ehci_gadget(&controller.ctrl);
#else
ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl);
#endif
if (ret)
return ret;
ret = ci_udc_probe();
if (ret) {
DBG("udc probe failed, returned %d\n", ret);
return ret;
}
ret = driver->bind(&controller.gadget);
if (ret) {
DBG("driver->bind() returned %d\n", ret);
return ret;
}
controller.driver = driver;
return 0;
}
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
udc_disconnect();
driver->unbind(&controller.gadget);
controller.driver = NULL;
ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req);
free(controller.items_mem);
free(controller.epts);
#if CONFIG_IS_ENABLED(DM_USB)
usb_remove_ehci_gadget(&controller.ctrl);
#else
usb_lowlevel_stop(0);
controller.ctrl = NULL;
#endif
return 0;
}
bool dfu_usb_get_reset(void)
{
struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
return !!(readl(&udc->usbsts) & STS_URI);
}