blob: 2a6626b44318bac582e7b7a1040f00bd57f1a7ee [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* from linux:
* c94e289f195e: usb: gadget: remove incorrect __init/__exit annotations
*
* at91_udc -- driver for at91-series USB peripheral controller
*
* Copyright (C) 2004 by Thomas Rathbone
* Copyright (C) 2005 by HP Labs
* Copyright (C) 2005 by David Brownell
*/
#undef VERBOSE_DEBUG
#undef PACKET_TRACE
#include <common.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/hardware.h>
#include <mach/at91_matrix.h>
#include <linux/list.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/at91_udc.h>
#include <malloc.h>
#include "at91_udc.h"
/*
* This controller is simple and PIO-only. It's used in many AT91-series
* full speed USB controllers, including the at91rm9200 (arm920T, with MMU),
* at91sam926x (arm926ejs, with MMU), and several no-mmu versions.
*
* This driver expects the board has been wired with two GPIOs supporting
* a VBUS sensing IRQ, and a D+ pullup. (They may be omitted, but the
* testing hasn't covered such cases.)
*
* The pullup is most important (so it's integrated on sam926x parts). It
* provides software control over whether the host enumerates the device.
*
* The VBUS sensing helps during enumeration, and allows both USB clocks
* (and the transceiver) to stay gated off until they're necessary, saving
* power. During USB suspend, the 48 MHz clock is gated off in hardware;
* it may also be gated off by software during some Linux sleep states.
*/
#define DRIVER_VERSION "3 May 2006"
static const char driver_name [] = "at91_udc";
static const char * const ep_names[] = {
"ep0",
"ep1",
"ep2",
"ep3-int",
"ep4",
"ep5",
};
#define ep0name ep_names[0]
#define at91_udp_read(udc, reg) \
__raw_readl((udc)->udp_baseaddr + (reg))
#define at91_udp_write(udc, reg, val) \
__raw_writel((val), (udc)->udp_baseaddr + (reg))
static struct at91_udc *controller;
/*-------------------------------------------------------------------------*/
static void done(struct at91_ep *ep, struct at91_request *req, int status)
{
unsigned stopped = ep->stopped;
struct at91_udc *udc = ep->udc;
list_del_init(&req->queue);
if (req->req.status == -EINPROGRESS)
req->req.status = status;
else
status = req->req.status;
if (status && status != -ESHUTDOWN)
VDBG("%s done %p, status %d\n", ep->ep.name, req, status);
ep->stopped = 1;
spin_unlock(&udc->lock);
req->req.complete(&ep->ep, &req->req);
spin_lock(&udc->lock);
ep->stopped = stopped;
/* ep0 is always ready; other endpoints need a non-empty queue */
if (list_empty(&ep->queue) && ep->int_mask != (1 << 0))
at91_udp_write(udc, AT91_UDP_IDR, ep->int_mask);
}
/*-------------------------------------------------------------------------*/
/* bits indicating OUT fifo has data ready */
#define RX_DATA_READY (AT91_UDP_RX_DATA_BK0 | AT91_UDP_RX_DATA_BK1)
/*
* Endpoint FIFO CSR bits have a mix of bits, making it unsafe to just write
* back most of the value you just read (because of side effects, including
* bits that may change after reading and before writing).
*
* Except when changing a specific bit, always write values which:
* - clear SET_FX bits (setting them could change something)
* - set CLR_FX bits (clearing them could change something)
*
* There are also state bits like FORCESTALL, EPEDS, DIR, and EPTYPE
* that shouldn't normally be changed.
*
* NOTE at91sam9260 docs mention synch between UDPCK and MCK clock domains,
* implying a need to wait for one write to complete (test relevant bits)
* before starting the next write. This shouldn't be an issue given how
* infrequently we write, except maybe for write-then-read idioms.
*/
#define SET_FX (AT91_UDP_TXPKTRDY)
#define CLR_FX (RX_DATA_READY | AT91_UDP_RXSETUP \
| AT91_UDP_STALLSENT | AT91_UDP_TXCOMP)
/* pull OUT packet data from the endpoint's fifo */
static int read_fifo (struct at91_ep *ep, struct at91_request *req)
{
u32 __iomem *creg = ep->creg;
u8 __iomem *dreg = ep->creg + (AT91_UDP_FDR(0) - AT91_UDP_CSR(0));
u32 csr;
u8 *buf;
unsigned int count, bufferspace, is_done;
buf = req->req.buf + req->req.actual;
bufferspace = req->req.length - req->req.actual;
/*
* there might be nothing to read if ep_queue() calls us,
* or if we already emptied both pingpong buffers
*/
rescan:
csr = __raw_readl(creg);
if ((csr & RX_DATA_READY) == 0)
return 0;
count = (csr & AT91_UDP_RXBYTECNT) >> 16;
if (count > ep->ep.maxpacket)
count = ep->ep.maxpacket;
if (count > bufferspace) {
DBG("%s buffer overflow\n", ep->ep.name);
req->req.status = -EOVERFLOW;
count = bufferspace;
}
__raw_readsb((unsigned long)dreg, buf, count);
/* release and swap pingpong mem bank */
csr |= CLR_FX;
if (ep->is_pingpong) {
if (ep->fifo_bank == 0) {
csr &= ~(SET_FX | AT91_UDP_RX_DATA_BK0);
ep->fifo_bank = 1;
} else {
csr &= ~(SET_FX | AT91_UDP_RX_DATA_BK1);
ep->fifo_bank = 0;
}
} else
csr &= ~(SET_FX | AT91_UDP_RX_DATA_BK0);
__raw_writel(csr, creg);
req->req.actual += count;
is_done = (count < ep->ep.maxpacket);
if (count == bufferspace)
is_done = 1;
PACKET("%s %p out/%d%s\n", ep->ep.name, &req->req, count,
is_done ? " (done)" : "");
/*
* avoid extra trips through IRQ logic for packets already in
* the fifo ... maybe preventing an extra (expensive) OUT-NAK
*/
if (is_done)
done(ep, req, 0);
else if (ep->is_pingpong) {
/*
* One dummy read to delay the code because of a HW glitch:
* CSR returns bad RXCOUNT when read too soon after updating
* RX_DATA_BK flags.
*/
csr = __raw_readl(creg);
bufferspace -= count;
buf += count;
goto rescan;
}
return is_done;
}
/* load fifo for an IN packet */
static int write_fifo(struct at91_ep *ep, struct at91_request *req)
{
u32 __iomem *creg = ep->creg;
u32 csr = __raw_readl(creg);
u8 __iomem *dreg = ep->creg + (AT91_UDP_FDR(0) - AT91_UDP_CSR(0));
unsigned total, count, is_last;
u8 *buf;
/*
* TODO: allow for writing two packets to the fifo ... that'll
* reduce the amount of IN-NAKing, but probably won't affect
* throughput much. (Unlike preventing OUT-NAKing!)
*/
/*
* If ep_queue() calls us, the queue is empty and possibly in
* odd states like TXCOMP not yet cleared (we do it, saving at
* least one IRQ) or the fifo not yet being free. Those aren't
* issues normally (IRQ handler fast path).
*/
if (unlikely(csr & (AT91_UDP_TXCOMP | AT91_UDP_TXPKTRDY))) {
if (csr & AT91_UDP_TXCOMP) {
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_TXCOMP);
__raw_writel(csr, creg);
csr = __raw_readl(creg);
}
if (csr & AT91_UDP_TXPKTRDY)
return 0;
}
buf = req->req.buf + req->req.actual;
prefetch(buf);
total = req->req.length - req->req.actual;
if (ep->ep.maxpacket < total) {
count = ep->ep.maxpacket;
is_last = 0;
} else {
count = total;
is_last = (count < ep->ep.maxpacket) || !req->req.zero;
}
/*
* Write the packet, maybe it's a ZLP.
*
* NOTE: incrementing req->actual before we receive the ACK means
* gadget driver IN bytecounts can be wrong in fault cases. That's
* fixable with PIO drivers like this one (save "count" here, and
* do the increment later on TX irq), but not for most DMA hardware.
*
* So all gadget drivers must accept that potential error. Some
* hardware supports precise fifo status reporting, letting them
* recover when the actual bytecount matters (e.g. for USB Test
* and Measurement Class devices).
*/
__raw_writesb((unsigned long)dreg, buf, count);
csr &= ~SET_FX;
csr |= CLR_FX | AT91_UDP_TXPKTRDY;
__raw_writel(csr, creg);
req->req.actual += count;
PACKET("%s %p in/%d%s\n", ep->ep.name, &req->req, count,
is_last ? " (done)" : "");
if (is_last)
done(ep, req, 0);
return is_last;
}
static void nuke(struct at91_ep *ep, int status)
{
struct at91_request *req;
/* terminate any request in the queue */
ep->stopped = 1;
if (list_empty(&ep->queue))
return;
VDBG("%s %s\n", __func__, ep->ep.name);
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct at91_request, queue);
done(ep, req, status);
}
}
/*-------------------------------------------------------------------------*/
static int at91_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct at91_ep *ep = container_of(_ep, struct at91_ep, ep);
struct at91_udc *udc;
u16 maxpacket;
u32 tmp;
unsigned long flags;
if (!_ep || !ep
|| !desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| (maxpacket = usb_endpoint_maxp(desc)) == 0
|| maxpacket > ep->maxpacket) {
DBG("bad ep or descriptor\n");
return -EINVAL;
}
udc = ep->udc;
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
DBG("bogus device state\n");
return -ESHUTDOWN;
}
tmp = usb_endpoint_type(desc);
switch (tmp) {
case USB_ENDPOINT_XFER_CONTROL:
DBG("only one control endpoint\n");
return -EINVAL;
case USB_ENDPOINT_XFER_INT:
if (maxpacket > 64)
goto bogus_max;
break;
case USB_ENDPOINT_XFER_BULK:
switch (maxpacket) {
case 8:
case 16:
case 32:
case 64:
goto ok;
}
bogus_max:
DBG("bogus maxpacket %d\n", maxpacket);
return -EINVAL;
case USB_ENDPOINT_XFER_ISOC:
if (!ep->is_pingpong) {
DBG("iso requires double buffering\n");
return -EINVAL;
}
break;
}
ok:
spin_lock_irqsave(&udc->lock, flags);
/* initialize endpoint to match this descriptor */
ep->is_in = usb_endpoint_dir_in(desc);
ep->is_iso = (tmp == USB_ENDPOINT_XFER_ISOC);
ep->stopped = 0;
if (ep->is_in)
tmp |= 0x04;
tmp <<= 8;
tmp |= AT91_UDP_EPEDS;
__raw_writel(tmp, ep->creg);
ep->ep.maxpacket = maxpacket;
/*
* reset/init endpoint fifo. NOTE: leaves fifo_bank alone,
* since endpoint resets don't reset hw pingpong state.
*/
at91_udp_write(udc, AT91_UDP_RST_EP, ep->int_mask);
at91_udp_write(udc, AT91_UDP_RST_EP, 0);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int at91_ep_disable (struct usb_ep * _ep)
{
struct at91_ep *ep = container_of(_ep, struct at91_ep, ep);
struct at91_udc *udc = ep->udc;
unsigned long flags;
if (ep == &ep->udc->ep[0])
return -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
nuke(ep, -ESHUTDOWN);
/* restore the endpoint's pristine config */
ep->ep.desc = NULL;
ep->ep.maxpacket = ep->maxpacket;
/* reset fifos and endpoint */
if (ep->udc->clocked) {
at91_udp_write(udc, AT91_UDP_RST_EP, ep->int_mask);
at91_udp_write(udc, AT91_UDP_RST_EP, 0);
__raw_writel(0, ep->creg);
}
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/*
* this is a PIO-only driver, so there's nothing
* interesting for request or buffer allocation.
*/
static struct usb_request *
at91_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct at91_request *req;
req = kzalloc(sizeof (struct at91_request), gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
static void at91_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct at91_request *req;
req = container_of(_req, struct at91_request, req);
BUG_ON(!list_empty(&req->queue));
kfree(req);
}
static int at91_ep_queue(struct usb_ep *_ep,
struct usb_request *_req, gfp_t gfp_flags)
{
struct at91_request *req;
struct at91_ep *ep;
struct at91_udc *udc;
int status;
unsigned long flags;
req = container_of(_req, struct at91_request, req);
ep = container_of(_ep, struct at91_ep, ep);
if (!_req || !_req->complete
|| !_req->buf || !list_empty(&req->queue)) {
DBG("invalid request\n");
return -EINVAL;
}
if (!_ep || (!ep->ep.desc && ep->ep.name != ep0name)) {
DBG("invalid ep\n");
return -EINVAL;
}
udc = ep->udc;
if (!udc || !udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
DBG("invalid device\n");
return -EINVAL;
}
_req->status = -EINPROGRESS;
_req->actual = 0;
spin_lock_irqsave(&udc->lock, flags);
/* try to kickstart any empty and idle queue */
if (list_empty(&ep->queue) && !ep->stopped) {
int is_ep0;
/*
* If this control request has a non-empty DATA stage, this
* will start that stage. It works just like a non-control
* request (until the status stage starts, maybe early).
*
* If the data stage is empty, then this starts a successful
* IN/STATUS stage. (Unsuccessful ones use set_halt.)
*/
is_ep0 = (ep->ep.name == ep0name);
if (is_ep0) {
u32 tmp;
if (!udc->req_pending) {
status = -EINVAL;
goto done;
}
/*
* defer changing CONFG until after the gadget driver
* reconfigures the endpoints.
*/
if (udc->wait_for_config_ack) {
tmp = at91_udp_read(udc, AT91_UDP_GLB_STAT);
tmp ^= AT91_UDP_CONFG;
VDBG("toggle config\n");
at91_udp_write(udc, AT91_UDP_GLB_STAT, tmp);
}
if (req->req.length == 0) {
ep0_in_status:
PACKET("ep0 in/status\n");
status = 0;
tmp = __raw_readl(ep->creg);
tmp &= ~SET_FX;
tmp |= CLR_FX | AT91_UDP_TXPKTRDY;
__raw_writel(tmp, ep->creg);
udc->req_pending = 0;
goto done;
}
}
if (ep->is_in)
status = write_fifo(ep, req);
else {
status = read_fifo(ep, req);
/* IN/STATUS stage is otherwise triggered by irq */
if (status && is_ep0)
goto ep0_in_status;
}
} else
status = 0;
if (req && !status) {
list_add_tail (&req->queue, &ep->queue);
at91_udp_write(udc, AT91_UDP_IER, ep->int_mask);
}
done:
spin_unlock_irqrestore(&udc->lock, flags);
return (status < 0) ? status : 0;
}
static int at91_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct at91_ep *ep;
struct at91_request *req;
unsigned long flags;
ep = container_of(_ep, struct at91_ep, ep);
if (!_ep || ep->ep.name == ep0name)
return -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry (req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
spin_unlock_irqrestore(&udc->lock, flags);
return -EINVAL;
}
done(ep, req, -ECONNRESET);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int at91_ep_set_halt(struct usb_ep *_ep, int value)
{
struct at91_ep *ep = container_of(_ep, struct at91_ep, ep);
struct at91_udc *udc = ep->udc;
u32 __iomem *creg;
u32 csr;
unsigned long flags;
int status = 0;
if (!_ep || ep->is_iso || !ep->udc->clocked)
return -EINVAL;
creg = ep->creg;
spin_lock_irqsave(&udc->lock, flags);
csr = __raw_readl(creg);
/*
* fail with still-busy IN endpoints, ensuring correct sequencing
* of data tx then stall. note that the fifo rx bytecount isn't
* completely accurate as a tx bytecount.
*/
if (ep->is_in && (!list_empty(&ep->queue) || (csr >> 16) != 0))
status = -EAGAIN;
else {
csr |= CLR_FX;
csr &= ~SET_FX;
if (value) {
csr |= AT91_UDP_FORCESTALL;
VDBG("halt %s\n", ep->ep.name);
} else {
at91_udp_write(udc, AT91_UDP_RST_EP, ep->int_mask);
at91_udp_write(udc, AT91_UDP_RST_EP, 0);
csr &= ~AT91_UDP_FORCESTALL;
}
__raw_writel(csr, creg);
}
spin_unlock_irqrestore(&udc->lock, flags);
return status;
}
static const struct usb_ep_ops at91_ep_ops = {
.enable = at91_ep_enable,
.disable = at91_ep_disable,
.alloc_request = at91_ep_alloc_request,
.free_request = at91_ep_free_request,
.queue = at91_ep_queue,
.dequeue = at91_ep_dequeue,
.set_halt = at91_ep_set_halt,
/* there's only imprecise fifo status reporting */
};
/*-------------------------------------------------------------------------*/
static int at91_get_frame(struct usb_gadget *gadget)
{
struct at91_udc *udc = to_udc(gadget);
if (!to_udc(gadget)->clocked)
return -EINVAL;
return at91_udp_read(udc, AT91_UDP_FRM_NUM) & AT91_UDP_NUM;
}
static int at91_wakeup(struct usb_gadget *gadget)
{
struct at91_udc *udc = to_udc(gadget);
u32 glbstate;
int status = -EINVAL;
unsigned long flags;
DBG("%s\n", __func__ );
spin_lock_irqsave(&udc->lock, flags);
if (!udc->clocked || !udc->suspended)
goto done;
/* NOTE: some "early versions" handle ESR differently ... */
glbstate = at91_udp_read(udc, AT91_UDP_GLB_STAT);
if (!(glbstate & AT91_UDP_ESR))
goto done;
glbstate |= AT91_UDP_ESR;
at91_udp_write(udc, AT91_UDP_GLB_STAT, glbstate);
done:
spin_unlock_irqrestore(&udc->lock, flags);
return status;
}
/* reinit == restore initial software state */
static void udc_reinit(struct at91_udc *udc)
{
u32 i;
INIT_LIST_HEAD(&udc->gadget.ep_list);
INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
for (i = 0; i < NUM_ENDPOINTS; i++) {
struct at91_ep *ep = &udc->ep[i];
if (i != 0)
list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
ep->ep.desc = NULL;
ep->stopped = 0;
ep->fifo_bank = 0;
usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
ep->creg = (void __iomem *) udc->udp_baseaddr + AT91_UDP_CSR(i);
/* initialize one queue per endpoint */
INIT_LIST_HEAD(&ep->queue);
}
}
static void reset_gadget(struct at91_udc *udc)
{
struct usb_gadget_driver *driver = udc->driver;
int i;
if (udc->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->suspended = 0;
for (i = 0; i < NUM_ENDPOINTS; i++) {
struct at91_ep *ep = &udc->ep[i];
ep->stopped = 1;
nuke(ep, -ESHUTDOWN);
}
if (driver) {
spin_unlock(&udc->lock);
udc->driver->disconnect(&udc->gadget);
spin_lock(&udc->lock);
}
udc_reinit(udc);
}
static void stop_activity(struct at91_udc *udc)
{
struct usb_gadget_driver *driver = udc->driver;
int i;
if (udc->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->suspended = 0;
for (i = 0; i < NUM_ENDPOINTS; i++) {
struct at91_ep *ep = &udc->ep[i];
ep->stopped = 1;
nuke(ep, -ESHUTDOWN);
}
if (driver) {
spin_unlock(&udc->lock);
driver->disconnect(&udc->gadget);
spin_lock(&udc->lock);
}
udc_reinit(udc);
}
static void clk_on(struct at91_udc *udc)
{
if (udc->clocked)
return;
udc->clocked = 1;
}
static void clk_off(struct at91_udc *udc)
{
if (!udc->clocked)
return;
udc->clocked = 0;
udc->gadget.speed = USB_SPEED_UNKNOWN;
}
/*
* activate/deactivate link with host; minimize power usage for
* inactive links by cutting clocks and transceiver power.
*/
static void pullup(struct at91_udc *udc, int is_on)
{
if (!udc->enabled || !udc->vbus)
is_on = 0;
DBG("%sactive\n", is_on ? "" : "in");
if (is_on) {
clk_on(udc);
at91_udp_write(udc, AT91_UDP_ICR, AT91_UDP_RXRSM);
at91_udp_write(udc, AT91_UDP_TXVC, 0);
} else {
stop_activity(udc);
at91_udp_write(udc, AT91_UDP_IDR, AT91_UDP_RXRSM);
at91_udp_write(udc, AT91_UDP_TXVC, AT91_UDP_TXVC_TXVDIS);
clk_off(udc);
}
if (udc->caps && udc->caps->pullup)
udc->caps->pullup(udc, is_on);
}
/* vbus is here! turn everything on that's ready */
static int at91_vbus_session(struct usb_gadget *gadget, int is_active)
{
struct at91_udc *udc = to_udc(gadget);
unsigned long flags;
/* VDBG("vbus %s\n", is_active ? "on" : "off"); */
spin_lock_irqsave(&udc->lock, flags);
udc->vbus = (is_active != 0);
if (udc->driver)
pullup(udc, is_active);
else
pullup(udc, 0);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int at91_pullup(struct usb_gadget *gadget, int is_on)
{
struct at91_udc *udc = to_udc(gadget);
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
udc->enabled = is_on = !!is_on;
pullup(udc, is_on);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int at91_set_selfpowered(struct usb_gadget *gadget, int is_on)
{
struct at91_udc *udc = to_udc(gadget);
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
udc->selfpowered = (is_on != 0);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int at91_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver);
static int at91_stop(struct usb_gadget *gadget);
static const struct usb_gadget_ops at91_udc_ops = {
.get_frame = at91_get_frame,
.wakeup = at91_wakeup,
.set_selfpowered = at91_set_selfpowered,
.vbus_session = at91_vbus_session,
.pullup = at91_pullup,
.udc_start = at91_start,
.udc_stop = at91_stop,
/*
* VBUS-powered devices may also also want to support bigger
* power budgets after an appropriate SET_CONFIGURATION.
*/
/* .vbus_power = at91_vbus_power, */
};
/*-------------------------------------------------------------------------*/
static int handle_ep(struct at91_ep *ep)
{
struct at91_request *req;
u32 __iomem *creg = ep->creg;
u32 csr = __raw_readl(creg);
if (!list_empty(&ep->queue))
req = list_entry(ep->queue.next,
struct at91_request, queue);
else
req = NULL;
if (ep->is_in) {
if (csr & (AT91_UDP_STALLSENT | AT91_UDP_TXCOMP)) {
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_STALLSENT | AT91_UDP_TXCOMP);
__raw_writel(csr, creg);
}
if (req)
return write_fifo(ep, req);
} else {
if (csr & AT91_UDP_STALLSENT) {
/* STALLSENT bit == ISOERR */
if (ep->is_iso && req)
req->req.status = -EILSEQ;
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_STALLSENT);
__raw_writel(csr, creg);
csr = __raw_readl(creg);
}
if (req && (csr & RX_DATA_READY))
return read_fifo(ep, req);
}
return 0;
}
union setup {
u8 raw[8];
struct usb_ctrlrequest r;
};
static void handle_setup(struct at91_udc *udc, struct at91_ep *ep, u32 csr)
{
u32 __iomem *creg = ep->creg;
u8 __iomem *dreg = ep->creg + (AT91_UDP_FDR(0) - AT91_UDP_CSR(0));
unsigned rxcount, i = 0;
u32 tmp;
union setup pkt;
int status = 0;
/* read and ack SETUP; hard-fail for bogus packets */
rxcount = (csr & AT91_UDP_RXBYTECNT) >> 16;
if (likely(rxcount == 8)) {
while (rxcount--)
pkt.raw[i++] = __raw_readb(dreg);
if (pkt.r.bRequestType & USB_DIR_IN) {
csr |= AT91_UDP_DIR;
ep->is_in = 1;
} else {
csr &= ~AT91_UDP_DIR;
ep->is_in = 0;
}
} else {
/* REVISIT this happens sometimes under load; why?? */
ERR("SETUP len %d, csr %08x\n", rxcount, csr);
status = -EINVAL;
}
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_RXSETUP);
__raw_writel(csr, creg);
udc->wait_for_addr_ack = 0;
udc->wait_for_config_ack = 0;
ep->stopped = 0;
if (unlikely(status != 0))
goto stall;
#define w_index le16_to_cpu(pkt.r.wIndex)
#define w_value le16_to_cpu(pkt.r.wValue)
#define w_length le16_to_cpu(pkt.r.wLength)
VDBG("SETUP %02x.%02x v%04x i%04x l%04x\n",
pkt.r.bRequestType, pkt.r.bRequest,
w_value, w_index, w_length);
/*
* A few standard requests get handled here, ones that touch
* hardware ... notably for device and endpoint features.
*/
udc->req_pending = 1;
csr = __raw_readl(creg);
csr |= CLR_FX;
csr &= ~SET_FX;
switch ((pkt.r.bRequestType << 8) | pkt.r.bRequest) {
case ((USB_TYPE_STANDARD|USB_RECIP_DEVICE) << 8)
| USB_REQ_SET_ADDRESS:
__raw_writel(csr | AT91_UDP_TXPKTRDY, creg);
udc->addr = w_value;
udc->wait_for_addr_ack = 1;
udc->req_pending = 0;
/* FADDR is set later, when we ack host STATUS */
return;
case ((USB_TYPE_STANDARD|USB_RECIP_DEVICE) << 8)
| USB_REQ_SET_CONFIGURATION:
tmp = at91_udp_read(udc, AT91_UDP_GLB_STAT) & AT91_UDP_CONFG;
if (pkt.r.wValue)
udc->wait_for_config_ack = (tmp == 0);
else
udc->wait_for_config_ack = (tmp != 0);
if (udc->wait_for_config_ack)
VDBG("wait for config\n");
/* CONFG is toggled later, if gadget driver succeeds */
break;
/*
* Hosts may set or clear remote wakeup status, and
* devices may report they're VBUS powered.
*/
case ((USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_DEVICE) << 8)
| USB_REQ_GET_STATUS:
tmp = (udc->selfpowered << USB_DEVICE_SELF_POWERED);
if (at91_udp_read(udc, AT91_UDP_GLB_STAT) & AT91_UDP_ESR)
tmp |= (1 << USB_DEVICE_REMOTE_WAKEUP);
PACKET("get device status\n");
__raw_writeb(tmp, dreg);
__raw_writeb(0, dreg);
goto write_in;
/* then STATUS starts later, automatically */
case ((USB_TYPE_STANDARD|USB_RECIP_DEVICE) << 8)
| USB_REQ_SET_FEATURE:
if (w_value != USB_DEVICE_REMOTE_WAKEUP)
goto stall;
tmp = at91_udp_read(udc, AT91_UDP_GLB_STAT);
tmp |= AT91_UDP_ESR;
at91_udp_write(udc, AT91_UDP_GLB_STAT, tmp);
goto succeed;
case ((USB_TYPE_STANDARD|USB_RECIP_DEVICE) << 8)
| USB_REQ_CLEAR_FEATURE:
if (w_value != USB_DEVICE_REMOTE_WAKEUP)
goto stall;
tmp = at91_udp_read(udc, AT91_UDP_GLB_STAT);
tmp &= ~AT91_UDP_ESR;
at91_udp_write(udc, AT91_UDP_GLB_STAT, tmp);
goto succeed;
/*
* Interfaces have no feature settings; this is pretty useless.
* we won't even insist the interface exists...
*/
case ((USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_INTERFACE) << 8)
| USB_REQ_GET_STATUS:
PACKET("get interface status\n");
__raw_writeb(0, dreg);
__raw_writeb(0, dreg);
goto write_in;
/* then STATUS starts later, automatically */
case ((USB_TYPE_STANDARD|USB_RECIP_INTERFACE) << 8)
| USB_REQ_SET_FEATURE:
case ((USB_TYPE_STANDARD|USB_RECIP_INTERFACE) << 8)
| USB_REQ_CLEAR_FEATURE:
goto stall;
/*
* Hosts may clear bulk/intr endpoint halt after the gadget
* driver sets it (not widely used); or set it (for testing)
*/
case ((USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_ENDPOINT) << 8)
| USB_REQ_GET_STATUS:
tmp = w_index & USB_ENDPOINT_NUMBER_MASK;
ep = &udc->ep[tmp];
if (tmp >= NUM_ENDPOINTS || (tmp && !ep->ep.desc))
goto stall;
if (tmp) {
if ((w_index & USB_DIR_IN)) {
if (!ep->is_in)
goto stall;
} else if (ep->is_in)
goto stall;
}
PACKET("get %s status\n", ep->ep.name);
if (__raw_readl(ep->creg) & AT91_UDP_FORCESTALL)
tmp = (1 << USB_ENDPOINT_HALT);
else
tmp = 0;
__raw_writeb(tmp, dreg);
__raw_writeb(0, dreg);
goto write_in;
/* then STATUS starts later, automatically */
case ((USB_TYPE_STANDARD|USB_RECIP_ENDPOINT) << 8)
| USB_REQ_SET_FEATURE:
tmp = w_index & USB_ENDPOINT_NUMBER_MASK;
ep = &udc->ep[tmp];
if (w_value != USB_ENDPOINT_HALT || tmp >= NUM_ENDPOINTS)
goto stall;
if (!ep->ep.desc || ep->is_iso)
goto stall;
if ((w_index & USB_DIR_IN)) {
if (!ep->is_in)
goto stall;
} else if (ep->is_in)
goto stall;
tmp = __raw_readl(ep->creg);
tmp &= ~SET_FX;
tmp |= CLR_FX | AT91_UDP_FORCESTALL;
__raw_writel(tmp, ep->creg);
goto succeed;
case ((USB_TYPE_STANDARD|USB_RECIP_ENDPOINT) << 8)
| USB_REQ_CLEAR_FEATURE:
tmp = w_index & USB_ENDPOINT_NUMBER_MASK;
ep = &udc->ep[tmp];
if (w_value != USB_ENDPOINT_HALT || tmp >= NUM_ENDPOINTS)
goto stall;
if (tmp == 0)
goto succeed;
if (!ep->ep.desc || ep->is_iso)
goto stall;
if ((w_index & USB_DIR_IN)) {
if (!ep->is_in)
goto stall;
} else if (ep->is_in)
goto stall;
at91_udp_write(udc, AT91_UDP_RST_EP, ep->int_mask);
at91_udp_write(udc, AT91_UDP_RST_EP, 0);
tmp = __raw_readl(ep->creg);
tmp |= CLR_FX;
tmp &= ~(SET_FX | AT91_UDP_FORCESTALL);
__raw_writel(tmp, ep->creg);
if (!list_empty(&ep->queue))
handle_ep(ep);
goto succeed;
}
#undef w_value
#undef w_index
#undef w_length
/* pass request up to the gadget driver */
if (udc->driver) {
spin_unlock(&udc->lock);
status = udc->driver->setup(&udc->gadget, &pkt.r);
spin_lock(&udc->lock);
}
else
status = -ENODEV;
if (status < 0) {
stall:
VDBG("req %02x.%02x protocol STALL; stat %d\n",
pkt.r.bRequestType, pkt.r.bRequest, status);
csr |= AT91_UDP_FORCESTALL;
__raw_writel(csr, creg);
udc->req_pending = 0;
}
return;
succeed:
/* immediate successful (IN) STATUS after zero length DATA */
PACKET("ep0 in/status\n");
write_in:
csr |= AT91_UDP_TXPKTRDY;
__raw_writel(csr, creg);
udc->req_pending = 0;
}
static void handle_ep0(struct at91_udc *udc)
{
struct at91_ep *ep0 = &udc->ep[0];
u32 __iomem *creg = ep0->creg;
u32 csr = __raw_readl(creg);
struct at91_request *req;
if (unlikely(csr & AT91_UDP_STALLSENT)) {
nuke(ep0, -EPROTO);
udc->req_pending = 0;
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_STALLSENT | AT91_UDP_FORCESTALL);
__raw_writel(csr, creg);
VDBG("ep0 stalled\n");
csr = __raw_readl(creg);
}
if (csr & AT91_UDP_RXSETUP) {
nuke(ep0, 0);
udc->req_pending = 0;
handle_setup(udc, ep0, csr);
return;
}
if (list_empty(&ep0->queue))
req = NULL;
else
req = list_entry(ep0->queue.next, struct at91_request, queue);
/* host ACKed an IN packet that we sent */
if (csr & AT91_UDP_TXCOMP) {
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_TXCOMP);
/* write more IN DATA? */
if (req && ep0->is_in) {
if (handle_ep(ep0))
udc->req_pending = 0;
/*
* Ack after:
* - last IN DATA packet (including GET_STATUS)
* - IN/STATUS for OUT DATA
* - IN/STATUS for any zero-length DATA stage
* except for the IN DATA case, the host should send
* an OUT status later, which we'll ack.
*/
} else {
udc->req_pending = 0;
__raw_writel(csr, creg);
/*
* SET_ADDRESS takes effect only after the STATUS
* (to the original address) gets acked.
*/
if (udc->wait_for_addr_ack) {
u32 tmp;
at91_udp_write(udc, AT91_UDP_FADDR,
AT91_UDP_FEN | udc->addr);
tmp = at91_udp_read(udc, AT91_UDP_GLB_STAT);
tmp &= ~AT91_UDP_FADDEN;
if (udc->addr)
tmp |= AT91_UDP_FADDEN;
at91_udp_write(udc, AT91_UDP_GLB_STAT, tmp);
udc->wait_for_addr_ack = 0;
VDBG("address %d\n", udc->addr);
}
}
}
/* OUT packet arrived ... */
else if (csr & AT91_UDP_RX_DATA_BK0) {
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_RX_DATA_BK0);
/* OUT DATA stage */
if (!ep0->is_in) {
if (req) {
if (handle_ep(ep0)) {
/* send IN/STATUS */
PACKET("ep0 in/status\n");
csr = __raw_readl(creg);
csr &= ~SET_FX;
csr |= CLR_FX | AT91_UDP_TXPKTRDY;
__raw_writel(csr, creg);
udc->req_pending = 0;
}
} else if (udc->req_pending) {
/*
* AT91 hardware has a hard time with this
* "deferred response" mode for control-OUT
* transfers. (For control-IN it's fine.)
*
* The normal solution leaves OUT data in the
* fifo until the gadget driver is ready.
* We couldn't do that here without disabling
* the IRQ that tells about SETUP packets,
* e.g. when the host gets impatient...
*
* Working around it by copying into a buffer
* would almost be a non-deferred response,
* except that it wouldn't permit reliable
* stalling of the request. Instead, demand
* that gadget drivers not use this mode.
*/
DBG("no control-OUT deferred responses!\n");
__raw_writel(csr | AT91_UDP_FORCESTALL, creg);
udc->req_pending = 0;
}
/* STATUS stage for control-IN; ack. */
} else {
PACKET("ep0 out/status ACK\n");
__raw_writel(csr, creg);
/* "early" status stage */
if (req)
done(ep0, req, 0);
}
}
}
static irqreturn_t at91_udc_irq(struct at91_udc *udc)
{
u32 rescans = 5;
int disable_clock = 0;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
if (!udc->clocked) {
clk_on(udc);
disable_clock = 1;
}
while (rescans--) {
u32 status;
status = at91_udp_read(udc, AT91_UDP_ISR)
& at91_udp_read(udc, AT91_UDP_IMR);
if (!status)
break;
/* USB reset irq: not maskable */
if (status & AT91_UDP_ENDBUSRES) {
at91_udp_write(udc, AT91_UDP_IDR, ~MINIMUS_INTERRUPTUS);
at91_udp_write(udc, AT91_UDP_IER, MINIMUS_INTERRUPTUS);
/* Atmel code clears this irq twice */
at91_udp_write(udc, AT91_UDP_ICR, AT91_UDP_ENDBUSRES);
at91_udp_write(udc, AT91_UDP_ICR, AT91_UDP_ENDBUSRES);
VDBG("end bus reset\n");
udc->addr = 0;
reset_gadget(udc);
/* enable ep0 */
at91_udp_write(udc, AT91_UDP_CSR(0),
AT91_UDP_EPEDS | AT91_UDP_EPTYPE_CTRL);
udc->gadget.speed = USB_SPEED_FULL;
udc->suspended = 0;
at91_udp_write(udc, AT91_UDP_IER, AT91_UDP_EP(0));
/*
* NOTE: this driver keeps clocks off unless the
* USB host is present. That saves power, but for
* boards that don't support VBUS detection, both
* clocks need to be active most of the time.
*/
/* host initiated suspend (3+ms bus idle) */
} else if (status & AT91_UDP_RXSUSP) {
at91_udp_write(udc, AT91_UDP_IDR, AT91_UDP_RXSUSP);
at91_udp_write(udc, AT91_UDP_IER, AT91_UDP_RXRSM);
at91_udp_write(udc, AT91_UDP_ICR, AT91_UDP_RXSUSP);
/* VDBG("bus suspend\n"); */
if (udc->suspended)
continue;
udc->suspended = 1;
/*
* NOTE: when suspending a VBUS-powered device, the
* gadget driver should switch into slow clock mode
* and then into standby to avoid drawing more than
* 500uA power (2500uA for some high-power configs).
*/
if (udc->driver && udc->driver->suspend) {
spin_unlock(&udc->lock);
udc->driver->suspend(&udc->gadget);
spin_lock(&udc->lock);
}
/* host initiated resume */
} else if (status & AT91_UDP_RXRSM) {
at91_udp_write(udc, AT91_UDP_IDR, AT91_UDP_RXRSM);
at91_udp_write(udc, AT91_UDP_IER, AT91_UDP_RXSUSP);
at91_udp_write(udc, AT91_UDP_ICR, AT91_UDP_RXRSM);
/* VDBG("bus resume\n"); */
if (!udc->suspended)
continue;
udc->suspended = 0;
/*
* NOTE: for a VBUS-powered device, the gadget driver
* would normally want to switch out of slow clock
* mode into normal mode.
*/
if (udc->driver && udc->driver->resume) {
spin_unlock(&udc->lock);
udc->driver->resume(&udc->gadget);
spin_lock(&udc->lock);
}
/* endpoint IRQs are cleared by handling them */
} else {
int i;
unsigned mask = 1;
struct at91_ep *ep = &udc->ep[1];
if (status & mask)
handle_ep0(udc);
for (i = 1; i < NUM_ENDPOINTS; i++) {
mask <<= 1;
if (status & mask)
handle_ep(ep);
ep++;
}
}
}
if (disable_clock)
clk_off(udc);
spin_unlock_irqrestore(&udc->lock, flags);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
static int at91_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct at91_udc *udc = controller;
udc->driver = driver;
udc->enabled = 1;
udc->selfpowered = 1;
return 0;
}
static int at91_stop(struct usb_gadget *gadget)
{
struct at91_udc *udc = controller;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
udc->enabled = 0;
at91_udp_write(udc, AT91_UDP_IDR, ~0);
spin_unlock_irqrestore(&udc->lock, flags);
udc->driver = NULL;
return 0;
}
/*-------------------------------------------------------------------------*/
#if defined(CONFIG_AT91SAM9260) || defined(CONFIG_AT91SAM9G20)
static int at91sam9260_udc_init(struct at91_udc *udc)
{
struct at91_ep *ep;
int i;
for (i = 0; i < NUM_ENDPOINTS; i++) {
ep = &udc->ep[i];
switch (i) {
case 0 ... 3:
ep->maxpacket = 64;
break;
case 4 ... 5:
ep->maxpacket = 512;
break;
}
}
return 0;
}
static void at91sam9260_udc_pullup(struct at91_udc *udc, int is_on)
{
u32 txvc = at91_udp_read(udc, AT91_UDP_TXVC);
if (is_on)
txvc |= AT91_UDP_TXVC_PUON;
else
txvc &= ~AT91_UDP_TXVC_PUON;
at91_udp_write(udc, AT91_UDP_TXVC, txvc);
}
static const struct at91_udc_caps at91sam9260_udc_caps = {
.init = at91sam9260_udc_init,
.pullup = at91sam9260_udc_pullup,
};
#endif
#if defined(CONFIG_AT91SAM9261)
static int at91sam9261_udc_init(struct at91_udc *udc)
{
struct at91_ep *ep;
int i;
for (i = 0; i < NUM_ENDPOINTS; i++) {
ep = &udc->ep[i];
switch (i) {
case 0:
ep->maxpacket = 8;
break;
case 1 ... 3:
ep->maxpacket = 64;
break;
case 4 ... 5:
ep->maxpacket = 256;
break;
}
}
udc->matrix = (struct at91_matrix *)ATMEL_BASE_MATRIX;
if (IS_ERR(udc->matrix))
return PTR_ERR(udc->matrix);
return 0;
}
static void at91sam9261_udc_pullup(struct at91_udc *udc, int is_on)
{
u32 usbpucr = 0;
usbpucr = readl(&udc->matrix->pucr);
if (is_on)
usbpucr |= AT91_MATRIX_USBPUCR_PUON;
writel(usbpucr, &udc->matrix->pucr);
}
static const struct at91_udc_caps at91sam9261_udc_caps = {
.init = at91sam9261_udc_init,
.pullup = at91sam9261_udc_pullup,
};
#endif
int usb_gadget_handle_interrupts(int index)
{
struct at91_udc *udc = controller;
return at91_udc_irq(udc);
}
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct at91_udc *udc = controller;
int ret;
if (!driver || !driver->bind || !driver->setup) {
printf("bad paramter\n");
return -EINVAL;
}
if (udc->driver) {
printf("UDC already has a gadget driver\n");
return -EBUSY;
}
at91_start(&udc->gadget, driver);
udc->driver = driver;
ret = driver->bind(&udc->gadget);
if (ret) {
pr_err("driver->bind() returned %d\n", ret);
udc->driver = NULL;
}
return ret;
}
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct at91_udc *udc = controller;
if (!driver || !driver->unbind || !driver->disconnect) {
pr_err("bad paramter\n");
return -EINVAL;
}
driver->disconnect(&udc->gadget);
driver->unbind(&udc->gadget);
udc->driver = NULL;
at91_stop(&udc->gadget);
return 0;
}
int at91_udc_probe(struct at91_udc_data *pdata)
{
struct at91_udc *udc;
int retval;
struct at91_ep *ep;
int i;
udc = kzalloc(sizeof(*udc), GFP_KERNEL);
if (!udc)
return -ENOMEM;
controller = udc;
memcpy(&udc->board, pdata, sizeof(struct at91_udc_data));
if (udc->board.vbus_pin) {
printf("%s: gpio vbus pin not supported yet.\n", __func__);
return -ENXIO;
} else {
DBG("no VBUS detection, assuming always-on\n");
udc->vbus = 1;
}
#if defined(CONFIG_AT91SAM9260) || defined(CONFIG_AT91SAM9G20)
udc->caps = &at91sam9260_udc_caps;
#endif
udc->enabled = 0;
spin_lock_init(&udc->lock);
udc->gadget.ops = &at91_udc_ops;
udc->gadget.ep0 = &udc->ep[0].ep;
udc->gadget.name = driver_name;
for (i = 0; i < NUM_ENDPOINTS; i++) {
ep = &udc->ep[i];
ep->ep.name = ep_names[i];
ep->ep.ops = &at91_ep_ops;
ep->udc = udc;
ep->int_mask = (1 << i);
if (i != 0 && i != 3)
ep->is_pingpong = 1;
}
udc->udp_baseaddr = (void *)udc->board.baseaddr;
if (IS_ERR(udc->udp_baseaddr))
return PTR_ERR(udc->udp_baseaddr);
if (udc->caps && udc->caps->init) {
retval = udc->caps->init(udc);
if (retval)
return retval;
}
udc_reinit(udc);
at91_udp_write(udc, AT91_UDP_TXVC, AT91_UDP_TXVC_TXVDIS);
at91_udp_write(udc, AT91_UDP_IDR, 0xffffffff);
/* Clear all pending interrupts - UDP may be used by bootloader. */
at91_udp_write(udc, AT91_UDP_ICR, 0xffffffff);
INFO("%s version %s\n", driver_name, DRIVER_VERSION);
return 0;
}