blob: 09e053541a9d48ed484a1a64681dd869138ced9d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2006-2008
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*/
#include <common.h>
#include <nand.h>
#include <asm/io.h>
#include <linux/mtd/nand_ecc.h>
static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
static struct mtd_info *mtd;
static struct nand_chip nand_chip;
#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
CONFIG_SYS_NAND_ECCSIZE)
#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
/*
* NAND command for small page NAND devices (512)
*/
static int nand_command(int block, int page, uint32_t offs,
u8 cmd)
{
struct nand_chip *this = mtd_to_nand(mtd);
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
while (!this->dev_ready(mtd))
;
/* Begin command latch cycle */
this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
/* Set ALE and clear CLE to start address cycle */
/* Column address */
this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
NAND_CTRL_ALE); /* A[24:17] */
#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
/* One more address cycle for devices > 32MiB */
this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
NAND_CTRL_ALE); /* A[28:25] */
#endif
/* Latch in address */
this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Wait a while for the data to be ready
*/
while (!this->dev_ready(mtd))
;
return 0;
}
#else
/*
* NAND command for large page NAND devices (2k)
*/
static int nand_command(int block, int page, uint32_t offs,
u8 cmd)
{
struct nand_chip *this = mtd_to_nand(mtd);
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
void (*hwctrl)(struct mtd_info *mtd, int cmd,
unsigned int ctrl) = this->cmd_ctrl;
while (!this->dev_ready(mtd))
;
/* Emulate NAND_CMD_READOOB */
if (cmd == NAND_CMD_READOOB) {
offs += CONFIG_SYS_NAND_PAGE_SIZE;
cmd = NAND_CMD_READ0;
}
/* Shift the offset from byte addressing to word addressing. */
if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
offs >>= 1;
/* Begin command latch cycle */
hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
/* Set ALE and clear CLE to start address cycle */
/* Column address */
hwctrl(mtd, offs & 0xff,
NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
/* Row address */
hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
hwctrl(mtd, ((page_addr >> 8) & 0xff),
NAND_CTRL_ALE); /* A[27:20] */
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
/* One more address cycle for devices > 128MiB */
hwctrl(mtd, (page_addr >> 16) & 0x0f,
NAND_CTRL_ALE); /* A[31:28] */
#endif
/* Latch in address */
hwctrl(mtd, NAND_CMD_READSTART,
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Wait a while for the data to be ready
*/
while (!this->dev_ready(mtd))
;
return 0;
}
#endif
static int nand_is_bad_block(int block)
{
struct nand_chip *this = mtd_to_nand(mtd);
u_char bb_data[2];
nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS,
NAND_CMD_READOOB);
/*
* Read one byte (or two if it's a 16 bit chip).
*/
if (this->options & NAND_BUSWIDTH_16) {
this->read_buf(mtd, bb_data, 2);
if (bb_data[0] != 0xff || bb_data[1] != 0xff)
return 1;
} else {
this->read_buf(mtd, bb_data, 1);
if (bb_data[0] != 0xff)
return 1;
}
return 0;
}
#if defined(CONFIG_SYS_NAND_HW_ECC_OOBFIRST)
static int nand_read_page(int block, int page, uchar *dst)
{
struct nand_chip *this = mtd_to_nand(mtd);
u_char ecc_calc[ECCTOTAL];
u_char ecc_code[ECCTOTAL];
u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
int i;
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
int eccsteps = ECCSTEPS;
uint8_t *p = dst;
nand_command(block, page, 0, NAND_CMD_READOOB);
this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
nand_command(block, page, 0, NAND_CMD_READ0);
/* Pick the ECC bytes out of the oob data */
for (i = 0; i < ECCTOTAL; i++)
ecc_code[i] = oob_data[nand_ecc_pos[i]];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
this->ecc.hwctl(mtd, NAND_ECC_READ);
this->read_buf(mtd, p, eccsize);
this->ecc.calculate(mtd, p, &ecc_calc[i]);
this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
}
return 0;
}
#else
static int nand_read_page(int block, int page, void *dst)
{
struct nand_chip *this = mtd_to_nand(mtd);
u_char ecc_calc[ECCTOTAL];
u_char ecc_code[ECCTOTAL];
u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
int i;
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
int eccsteps = ECCSTEPS;
uint8_t *p = dst;
nand_command(block, page, 0, NAND_CMD_READ0);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
if (this->ecc.mode != NAND_ECC_SOFT)
this->ecc.hwctl(mtd, NAND_ECC_READ);
this->read_buf(mtd, p, eccsize);
this->ecc.calculate(mtd, p, &ecc_calc[i]);
}
this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
/* Pick the ECC bytes out of the oob data */
for (i = 0; i < ECCTOTAL; i++)
ecc_code[i] = oob_data[nand_ecc_pos[i]];
eccsteps = ECCSTEPS;
p = dst;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
/* No chance to do something with the possible error message
* from correct_data(). We just hope that all possible errors
* are corrected by this routine.
*/
this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
}
return 0;
}
#endif
/* nand_init() - initialize data to make nand usable by SPL */
void nand_init(void)
{
/*
* Init board specific nand support
*/
mtd = nand_to_mtd(&nand_chip);
nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W =
(void __iomem *)CONFIG_SYS_NAND_BASE;
board_nand_init(&nand_chip);
#ifdef CONFIG_SPL_NAND_SOFTECC
if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
nand_chip.ecc.calculate = nand_calculate_ecc;
nand_chip.ecc.correct = nand_correct_data;
}
#endif
if (nand_chip.select_chip)
nand_chip.select_chip(mtd, 0);
}
/* Unselect after operation */
void nand_deselect(void)
{
if (nand_chip.select_chip)
nand_chip.select_chip(mtd, -1);
}
#include "nand_spl_loaders.c"