blob: 7c40e415c74f02f7fe61edab1666db44de834241 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 1994, 1995 Waldorf GmbH
* Copyright (C) 1994 - 2000, 06 Ralf Baechle
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
* Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
* Author: Maciej W. Rozycki <macro@mips.com>
*/
#ifndef _ASM_IO_H
#define _ASM_IO_H
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/types.h>
#include <asm/addrspace.h>
#include <asm/byteorder.h>
#include <asm/cpu-features.h>
#include <asm/pgtable-bits.h>
#include <asm/processor.h>
#include <asm/string.h>
#include <ioremap.h>
#include <mangle-port.h>
#include <spaces.h>
/*
* Raw operations are never swapped in software. OTOH values that raw
* operations are working on may or may not have been swapped by the bus
* hardware. An example use would be for flash memory that's used for
* execute in place.
*/
# define __raw_ioswabb(a, x) (x)
# define __raw_ioswabw(a, x) (x)
# define __raw_ioswabl(a, x) (x)
# define __raw_ioswabq(a, x) (x)
# define ____raw_ioswabq(a, x) (x)
/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
#define IO_SPACE_LIMIT 0xffff
#ifdef CONFIG_DYNAMIC_IO_PORT_BASE
static inline ulong mips_io_port_base(void)
{
DECLARE_GLOBAL_DATA_PTR;
return gd->arch.io_port_base;
}
static inline void set_io_port_base(unsigned long base)
{
DECLARE_GLOBAL_DATA_PTR;
gd->arch.io_port_base = base;
barrier();
}
#else /* !CONFIG_DYNAMIC_IO_PORT_BASE */
static inline ulong mips_io_port_base(void)
{
return 0;
}
static inline void set_io_port_base(unsigned long base)
{
BUG_ON(base);
}
#endif /* !CONFIG_DYNAMIC_IO_PORT_BASE */
/*
* virt_to_phys - map virtual addresses to physical
* @address: address to remap
*
* The returned physical address is the physical (CPU) mapping for
* the memory address given. It is only valid to use this function on
* addresses directly mapped or allocated via kmalloc.
*
* This function does not give bus mappings for DMA transfers. In
* almost all conceivable cases a device driver should not be using
* this function
*/
static inline unsigned long virt_to_phys(volatile const void *address)
{
unsigned long addr = (unsigned long)address;
/* this corresponds to kernel implementation of __pa() */
#ifdef CONFIG_64BIT
if (addr < CKSEG0)
return XPHYSADDR(addr);
#endif
return CPHYSADDR(addr);
}
#define virt_to_phys virt_to_phys
/*
* phys_to_virt - map physical address to virtual
* @address: address to remap
*
* The returned virtual address is a current CPU mapping for
* the memory address given. It is only valid to use this function on
* addresses that have a kernel mapping
*
* This function does not handle bus mappings for DMA transfers. In
* almost all conceivable cases a device driver should not be using
* this function
*/
static inline void *phys_to_virt(unsigned long address)
{
return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
}
#define phys_to_virt phys_to_virt
/*
* ISA I/O bus memory addresses are 1:1 with the physical address.
*/
static inline unsigned long isa_virt_to_bus(volatile void *address)
{
return (unsigned long)address - PAGE_OFFSET;
}
static inline void *isa_bus_to_virt(unsigned long address)
{
return (void *)(address + PAGE_OFFSET);
}
#define isa_page_to_bus page_to_phys
/*
* However PCI ones are not necessarily 1:1 and therefore these interfaces
* are forbidden in portable PCI drivers.
*
* Allow them for x86 for legacy drivers, though.
*/
#define virt_to_bus virt_to_phys
#define bus_to_virt phys_to_virt
static inline void __iomem *__ioremap_mode(phys_addr_t offset, unsigned long size,
unsigned long flags)
{
void __iomem *addr;
phys_addr_t phys_addr;
addr = plat_ioremap(offset, size, flags);
if (addr)
return addr;
phys_addr = fixup_bigphys_addr(offset, size);
return (void __iomem *)(unsigned long)CKSEG1ADDR(phys_addr);
}
/*
* ioremap - map bus memory into CPU space
* @offset: bus address of the memory
* @size: size of the resource to map
*
* ioremap performs a platform specific sequence of operations to
* make bus memory CPU accessible via the readb/readw/readl/writeb/
* writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual
* address.
*/
#define ioremap(offset, size) \
__ioremap_mode((offset), (size), _CACHE_UNCACHED)
/*
* ioremap_nocache - map bus memory into CPU space
* @offset: bus address of the memory
* @size: size of the resource to map
*
* ioremap_nocache performs a platform specific sequence of operations to
* make bus memory CPU accessible via the readb/readw/readl/writeb/
* writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual
* address.
*
* This version of ioremap ensures that the memory is marked uncachable
* on the CPU as well as honouring existing caching rules from things like
* the PCI bus. Note that there are other caches and buffers on many
* busses. In particular driver authors should read up on PCI writes
*
* It's useful if some control registers are in such an area and
* write combining or read caching is not desirable:
*/
#define ioremap_nocache(offset, size) \
__ioremap_mode((offset), (size), _CACHE_UNCACHED)
#define ioremap_uc ioremap_nocache
/*
* ioremap_cachable - map bus memory into CPU space
* @offset: bus address of the memory
* @size: size of the resource to map
*
* ioremap_nocache performs a platform specific sequence of operations to
* make bus memory CPU accessible via the readb/readw/readl/writeb/
* writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual
* address.
*
* This version of ioremap ensures that the memory is marked cachable by
* the CPU. Also enables full write-combining. Useful for some
* memory-like regions on I/O busses.
*/
#define ioremap_cachable(offset, size) \
__ioremap_mode((offset), (size), _page_cachable_default)
/*
* These two are MIPS specific ioremap variant. ioremap_cacheable_cow
* requests a cachable mapping, ioremap_uncached_accelerated requests a
* mapping using the uncached accelerated mode which isn't supported on
* all processors.
*/
#define ioremap_cacheable_cow(offset, size) \
__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
#define ioremap_uncached_accelerated(offset, size) \
__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
static inline void iounmap(const volatile void __iomem *addr)
{
plat_iounmap(addr);
}
#ifdef CONFIG_CPU_CAVIUM_OCTEON
#define war_octeon_io_reorder_wmb() wmb()
#else
#define war_octeon_io_reorder_wmb() do { } while (0)
#endif
#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
\
static inline void pfx##write##bwlq(type val, \
volatile void __iomem *mem) \
{ \
volatile type *__mem; \
type __val; \
\
war_octeon_io_reorder_wmb(); \
\
__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
\
__val = pfx##ioswab##bwlq(__mem, val); \
\
if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
*__mem = __val; \
else if (cpu_has_64bits) { \
type __tmp; \
\
__asm__ __volatile__( \
".set arch=r4000" "\t\t# __writeq""\n\t" \
"dsll32 %L0, %L0, 0" "\n\t" \
"dsrl32 %L0, %L0, 0" "\n\t" \
"dsll32 %M0, %M0, 0" "\n\t" \
"or %L0, %L0, %M0" "\n\t" \
"sd %L0, %2" "\n\t" \
".set mips0" "\n" \
: "=r" (__tmp) \
: "0" (__val), "m" (*__mem)); \
} else \
BUG(); \
} \
\
static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
{ \
volatile type *__mem; \
type __val; \
\
__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
\
if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
__val = *__mem; \
else if (cpu_has_64bits) { \
__asm__ __volatile__( \
".set arch=r4000" "\t\t# __readq" "\n\t" \
"ld %L0, %1" "\n\t" \
"dsra32 %M0, %L0, 0" "\n\t" \
"sll %L0, %L0, 0" "\n\t" \
".set mips0" "\n" \
: "=r" (__val) \
: "m" (*__mem)); \
} else { \
__val = 0; \
BUG(); \
} \
\
return pfx##ioswab##bwlq(__mem, __val); \
}
#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p) \
\
static inline void pfx##out##bwlq##p(type val, unsigned long port) \
{ \
volatile type *__addr; \
type __val; \
\
war_octeon_io_reorder_wmb(); \
\
__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base() + port); \
\
__val = pfx##ioswab##bwlq(__addr, val); \
\
/* Really, we want this to be atomic */ \
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
\
*__addr = __val; \
} \
\
static inline type pfx##in##bwlq##p(unsigned long port) \
{ \
volatile type *__addr; \
type __val; \
\
__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base() + port); \
\
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
\
__val = *__addr; \
\
return pfx##ioswab##bwlq(__addr, __val); \
}
#define __BUILD_MEMORY_PFX(bus, bwlq, type) \
\
__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
#define BUILDIO_MEM(bwlq, type) \
\
__BUILD_MEMORY_PFX(__raw_, bwlq, type) \
__BUILD_MEMORY_PFX(, bwlq, type) \
__BUILD_MEMORY_PFX(__mem_, bwlq, type) \
BUILDIO_MEM(b, u8)
BUILDIO_MEM(w, u16)
BUILDIO_MEM(l, u32)
BUILDIO_MEM(q, u64)
#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
__BUILD_IOPORT_SINGLE(bus, bwlq, type, ) \
__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p)
#define BUILDIO_IOPORT(bwlq, type) \
__BUILD_IOPORT_PFX(, bwlq, type) \
__BUILD_IOPORT_PFX(__mem_, bwlq, type)
BUILDIO_IOPORT(b, u8)
BUILDIO_IOPORT(w, u16)
BUILDIO_IOPORT(l, u32)
#ifdef CONFIG_64BIT
BUILDIO_IOPORT(q, u64)
#endif
#define __BUILDIO(bwlq, type) \
\
__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
__BUILDIO(q, u64)
#define readb_relaxed readb
#define readw_relaxed readw
#define readl_relaxed readl
#define readq_relaxed readq
#define writeb_relaxed writeb
#define writew_relaxed writew
#define writel_relaxed writel
#define writeq_relaxed writeq
#define readb_be(addr) \
__raw_readb((__force unsigned *)(addr))
#define readw_be(addr) \
be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
#define readl_be(addr) \
be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
#define readq_be(addr) \
be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
#define writeb_be(val, addr) \
__raw_writeb((val), (__force unsigned *)(addr))
#define writew_be(val, addr) \
__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
#define writel_be(val, addr) \
__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
#define writeq_be(val, addr) \
__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
/*
* Some code tests for these symbols
*/
#define readq readq
#define writeq writeq
#define __BUILD_MEMORY_STRING(bwlq, type) \
\
static inline void writes##bwlq(volatile void __iomem *mem, \
const void *addr, unsigned int count) \
{ \
const volatile type *__addr = addr; \
\
while (count--) { \
__mem_write##bwlq(*__addr, mem); \
__addr++; \
} \
} \
\
static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
unsigned int count) \
{ \
volatile type *__addr = addr; \
\
while (count--) { \
*__addr = __mem_read##bwlq(mem); \
__addr++; \
} \
}
#define __BUILD_IOPORT_STRING(bwlq, type) \
\
static inline void outs##bwlq(unsigned long port, const void *addr, \
unsigned int count) \
{ \
const volatile type *__addr = addr; \
\
while (count--) { \
__mem_out##bwlq(*__addr, port); \
__addr++; \
} \
} \
\
static inline void ins##bwlq(unsigned long port, void *addr, \
unsigned int count) \
{ \
volatile type *__addr = addr; \
\
while (count--) { \
*__addr = __mem_in##bwlq(port); \
__addr++; \
} \
}
#define BUILDSTRING(bwlq, type) \
\
__BUILD_MEMORY_STRING(bwlq, type) \
__BUILD_IOPORT_STRING(bwlq, type)
BUILDSTRING(b, u8)
BUILDSTRING(w, u16)
BUILDSTRING(l, u32)
#ifdef CONFIG_64BIT
BUILDSTRING(q, u64)
#endif
#ifdef CONFIG_CPU_CAVIUM_OCTEON
#define mmiowb() wmb()
#else
/* Depends on MIPS II instruction set */
#define mmiowb() asm volatile ("sync" ::: "memory")
#endif
static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
{
memset((void __force *)addr, val, count);
}
static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
{
memcpy(dst, (void __force *)src, count);
}
static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
{
memcpy((void __force *)dst, src, count);
}
/*
* Read a 32-bit register that requires a 64-bit read cycle on the bus.
* Avoid interrupt mucking, just adjust the address for 4-byte access.
* Assume the addresses are 8-byte aligned.
*/
#ifdef __MIPSEB__
#define __CSR_32_ADJUST 4
#else
#define __CSR_32_ADJUST 0
#endif
#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
/*
* U-Boot specific
*/
#define sync() mmiowb()
#define MAP_NOCACHE 1
static inline void *
map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags)
{
if (flags == MAP_NOCACHE)
return ioremap(paddr, len);
return (void *)CKSEG0ADDR(paddr);
}
#define map_physmem map_physmem
#define __BUILD_CLRBITS(bwlq, sfx, end, type) \
\
static inline void clrbits_##sfx(volatile void __iomem *mem, type clr) \
{ \
type __val = __raw_read##bwlq(mem); \
__val = end##_to_cpu(__val); \
__val &= ~clr; \
__val = cpu_to_##end(__val); \
__raw_write##bwlq(__val, mem); \
}
#define __BUILD_SETBITS(bwlq, sfx, end, type) \
\
static inline void setbits_##sfx(volatile void __iomem *mem, type set) \
{ \
type __val = __raw_read##bwlq(mem); \
__val = end##_to_cpu(__val); \
__val |= set; \
__val = cpu_to_##end(__val); \
__raw_write##bwlq(__val, mem); \
}
#define __BUILD_CLRSETBITS(bwlq, sfx, end, type) \
\
static inline void clrsetbits_##sfx(volatile void __iomem *mem, \
type clr, type set) \
{ \
type __val = __raw_read##bwlq(mem); \
__val = end##_to_cpu(__val); \
__val &= ~clr; \
__val |= set; \
__val = cpu_to_##end(__val); \
__raw_write##bwlq(__val, mem); \
}
#define BUILD_CLRSETBITS(bwlq, sfx, end, type) \
\
__BUILD_CLRBITS(bwlq, sfx, end, type) \
__BUILD_SETBITS(bwlq, sfx, end, type) \
__BUILD_CLRSETBITS(bwlq, sfx, end, type)
#define __to_cpu(v) (v)
#define cpu_to__(v) (v)
#define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v),a)
#define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a))
#define out_le64(a, v) out_arch(q, le64, a, v)
#define out_le32(a, v) out_arch(l, le32, a, v)
#define out_le16(a, v) out_arch(w, le16, a, v)
#define in_le64(a) in_arch(q, le64, a)
#define in_le32(a) in_arch(l, le32, a)
#define in_le16(a) in_arch(w, le16, a)
#define out_be64(a, v) out_arch(q, be64, a, v)
#define out_be32(a, v) out_arch(l, be32, a, v)
#define out_be16(a, v) out_arch(w, be16, a, v)
#define in_be64(a) in_arch(q, be64, a)
#define in_be32(a) in_arch(l, be32, a)
#define in_be16(a) in_arch(w, be16, a)
#define out_8(a, v) __raw_writeb(v, a)
#define in_8(a) __raw_readb(a)
BUILD_CLRSETBITS(b, 8, _, u8)
BUILD_CLRSETBITS(w, le16, le16, u16)
BUILD_CLRSETBITS(w, be16, be16, u16)
BUILD_CLRSETBITS(w, 16, _, u16)
BUILD_CLRSETBITS(l, le32, le32, u32)
BUILD_CLRSETBITS(l, be32, be32, u32)
BUILD_CLRSETBITS(l, 32, _, u32)
BUILD_CLRSETBITS(q, le64, le64, u64)
BUILD_CLRSETBITS(q, be64, be64, u64)
BUILD_CLRSETBITS(q, 64, _, u64)
#include <asm-generic/io.h>
#endif /* _ASM_IO_H */