blob: fa8c799a462e0c3f0c513bc5b7598973f8b5e6ab [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2009
* Marvell Semiconductor <www.marvell.com>
* Written-by: Prafulla Wadaskar <prafulla@marvell.com>
*/
#include <config.h>
#include <common.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#if defined(CONFIG_ARCH_MVEBU)
/* Use common XOR definitions for A3x and AXP */
#include "../../../drivers/ddr/marvell/axp/xor.h"
#include "../../../drivers/ddr/marvell/axp/xor_regs.h"
#endif
DECLARE_GLOBAL_DATA_PTR;
struct sdram_bank {
u32 win_bar;
u32 win_sz;
};
struct sdram_addr_dec {
struct sdram_bank sdram_bank[4];
};
#define REG_CPUCS_WIN_ENABLE (1 << 0)
#define REG_CPUCS_WIN_WR_PROTECT (1 << 1)
#define REG_CPUCS_WIN_WIN0_CS(x) (((x) & 0x3) << 2)
#define REG_CPUCS_WIN_SIZE(x) (((x) & 0xff) << 24)
#ifndef MVEBU_SDRAM_SIZE_MAX
#define MVEBU_SDRAM_SIZE_MAX 0xc0000000
#endif
#define SCRUB_MAGIC 0xbeefdead
#define SCRB_XOR_UNIT 0
#define SCRB_XOR_CHAN 1
#define SCRB_XOR_WIN 0
#define XEBARX_BASE_OFFS 16
/*
* mvebu_sdram_bar - reads SDRAM Base Address Register
*/
u32 mvebu_sdram_bar(enum memory_bank bank)
{
struct sdram_addr_dec *base =
(struct sdram_addr_dec *)MVEBU_SDRAM_BASE;
u32 result = 0;
u32 enable = 0x01 & readl(&base->sdram_bank[bank].win_sz);
if ((!enable) || (bank > BANK3))
return 0;
result = readl(&base->sdram_bank[bank].win_bar);
return result;
}
/*
* mvebu_sdram_bs_set - writes SDRAM Bank size
*/
static void mvebu_sdram_bs_set(enum memory_bank bank, u32 size)
{
struct sdram_addr_dec *base =
(struct sdram_addr_dec *)MVEBU_SDRAM_BASE;
/* Read current register value */
u32 reg = readl(&base->sdram_bank[bank].win_sz);
/* Clear window size */
reg &= ~REG_CPUCS_WIN_SIZE(0xFF);
/* Set new window size */
reg |= REG_CPUCS_WIN_SIZE((size - 1) >> 24);
writel(reg, &base->sdram_bank[bank].win_sz);
}
/*
* mvebu_sdram_bs - reads SDRAM Bank size
*/
u32 mvebu_sdram_bs(enum memory_bank bank)
{
struct sdram_addr_dec *base =
(struct sdram_addr_dec *)MVEBU_SDRAM_BASE;
u32 result = 0;
u32 enable = 0x01 & readl(&base->sdram_bank[bank].win_sz);
if ((!enable) || (bank > BANK3))
return 0;
result = 0xff000000 & readl(&base->sdram_bank[bank].win_sz);
result += 0x01000000;
return result;
}
void mvebu_sdram_size_adjust(enum memory_bank bank)
{
u32 size;
/* probe currently equipped RAM size */
size = get_ram_size((void *)mvebu_sdram_bar(bank),
mvebu_sdram_bs(bank));
/* adjust SDRAM window size accordingly */
mvebu_sdram_bs_set(bank, size);
}
#if defined(CONFIG_ARCH_MVEBU)
static u32 xor_ctrl_save;
static u32 xor_base_save;
static u32 xor_mask_save;
static void mv_xor_init2(u32 cs)
{
u32 reg, base, size, base2;
u32 bank_attr[4] = { 0xe00, 0xd00, 0xb00, 0x700 };
xor_ctrl_save = reg_read(XOR_WINDOW_CTRL_REG(SCRB_XOR_UNIT,
SCRB_XOR_CHAN));
xor_base_save = reg_read(XOR_BASE_ADDR_REG(SCRB_XOR_UNIT,
SCRB_XOR_WIN));
xor_mask_save = reg_read(XOR_SIZE_MASK_REG(SCRB_XOR_UNIT,
SCRB_XOR_WIN));
/* Enable Window x for each CS */
reg = 0x1;
reg |= (0x3 << 16);
reg_write(XOR_WINDOW_CTRL_REG(SCRB_XOR_UNIT, SCRB_XOR_CHAN), reg);
base = 0;
size = mvebu_sdram_bs(cs) - 1;
if (size) {
base2 = ((base / (64 << 10)) << XEBARX_BASE_OFFS) |
bank_attr[cs];
reg_write(XOR_BASE_ADDR_REG(SCRB_XOR_UNIT, SCRB_XOR_WIN),
base2);
base += size + 1;
size = (size / (64 << 10)) << 16;
/* Window x - size - 256 MB */
reg_write(XOR_SIZE_MASK_REG(SCRB_XOR_UNIT, SCRB_XOR_WIN), size);
}
mv_xor_hal_init(0);
return;
}
static void mv_xor_finish2(void)
{
reg_write(XOR_WINDOW_CTRL_REG(SCRB_XOR_UNIT, SCRB_XOR_CHAN),
xor_ctrl_save);
reg_write(XOR_BASE_ADDR_REG(SCRB_XOR_UNIT, SCRB_XOR_WIN),
xor_base_save);
reg_write(XOR_SIZE_MASK_REG(SCRB_XOR_UNIT, SCRB_XOR_WIN),
xor_mask_save);
}
static void dram_ecc_scrubbing(void)
{
int cs;
u32 size, temp;
u32 total_mem = 0;
u64 total;
u32 start_addr;
/*
* The DDR training code from the bin_hdr / SPL already
* scrubbed the DDR till 0x1000000. And the main U-Boot
* is loaded to an address < 0x1000000. So we need to
* skip this range to not re-scrub this area again.
*/
temp = reg_read(REG_SDRAM_CONFIG_ADDR);
temp |= (1 << REG_SDRAM_CONFIG_IERR_OFFS);
reg_write(REG_SDRAM_CONFIG_ADDR, temp);
for (cs = 0; cs < CONFIG_NR_DRAM_BANKS; cs++) {
size = mvebu_sdram_bs(cs);
if (size == 0)
continue;
total = (u64)size;
total_mem += (u32)(total / (1 << 30));
start_addr = 0;
mv_xor_init2(cs);
/* Skip first 16 MiB */
if (0 == cs) {
start_addr = 0x1000000;
size -= start_addr;
}
mv_xor_mem_init(SCRB_XOR_CHAN, start_addr, size - 1,
SCRUB_MAGIC, SCRUB_MAGIC);
/* Wait for previous transfer completion */
while (mv_xor_state_get(SCRB_XOR_CHAN) != MV_IDLE)
;
mv_xor_finish2();
}
temp = reg_read(REG_SDRAM_CONFIG_ADDR);
temp &= ~(1 << REG_SDRAM_CONFIG_IERR_OFFS);
reg_write(REG_SDRAM_CONFIG_ADDR, temp);
}
static int ecc_enabled(void)
{
if (reg_read(REG_SDRAM_CONFIG_ADDR) & (1 << REG_SDRAM_CONFIG_ECC_OFFS))
return 1;
return 0;
}
/* Return the width of the DRAM bus, or 0 for unknown. */
static int bus_width(void)
{
int full_width = 0;
if (reg_read(REG_SDRAM_CONFIG_ADDR) & (1 << REG_SDRAM_CONFIG_WIDTH_OFFS))
full_width = 1;
switch (mvebu_soc_family()) {
case MVEBU_SOC_AXP:
return full_width ? 64 : 32;
break;
case MVEBU_SOC_A375:
case MVEBU_SOC_A38X:
case MVEBU_SOC_MSYS:
return full_width ? 32 : 16;
default:
return 0;
}
}
static int cycle_mode(void)
{
int val = reg_read(REG_DUNIT_CTRL_LOW_ADDR);
return (val >> REG_DUNIT_CTRL_LOW_2T_OFFS) & REG_DUNIT_CTRL_LOW_2T_MASK;
}
#else
static void dram_ecc_scrubbing(void)
{
}
static int ecc_enabled(void)
{
return 0;
}
#endif
int dram_init(void)
{
u64 size = 0;
int i;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
/*
* It is assumed that all memory banks are consecutive
* and without gaps.
* If the gap is found, ram_size will be reported for
* consecutive memory only
*/
if (mvebu_sdram_bar(i) != size)
break;
/*
* Don't report more than 3GiB of SDRAM, otherwise there is no
* address space left for the internal registers etc.
*/
size += mvebu_sdram_bs(i);
if (size > MVEBU_SDRAM_SIZE_MAX)
size = MVEBU_SDRAM_SIZE_MAX;
}
for (; i < CONFIG_NR_DRAM_BANKS; i++) {
/* If above loop terminated prematurely, we need to set
* remaining banks' start address & size as 0. Otherwise other
* u-boot functions and Linux kernel gets wrong values which
* could result in crash */
gd->bd->bi_dram[i].start = 0;
gd->bd->bi_dram[i].size = 0;
}
if (ecc_enabled())
dram_ecc_scrubbing();
gd->ram_size = size;
return 0;
}
/*
* If this function is not defined here,
* board.c alters dram bank zero configuration defined above.
*/
int dram_init_banksize(void)
{
u64 size = 0;
int i;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
gd->bd->bi_dram[i].start = mvebu_sdram_bar(i);
gd->bd->bi_dram[i].size = mvebu_sdram_bs(i);
/* Clip the banksize to 1GiB if it exceeds the max size */
size += gd->bd->bi_dram[i].size;
if (size > MVEBU_SDRAM_SIZE_MAX)
mvebu_sdram_bs_set(i, 0x40000000);
}
return 0;
}
#if defined(CONFIG_ARCH_MVEBU)
void board_add_ram_info(int use_default)
{
struct sar_freq_modes sar_freq;
int mode;
int width;
get_sar_freq(&sar_freq);
printf(" (%d MHz, ", sar_freq.d_clk);
width = bus_width();
if (width)
printf("%d-bit, ", width);
mode = cycle_mode();
/* Mode 0 = Single cycle
* Mode 1 = Two cycles (2T)
* Mode 2 = Three cycles (3T)
*/
if (mode == 1)
printf("2T, ");
if (mode == 2)
printf("3T, ");
if (ecc_enabled())
printf("ECC");
else
printf("ECC not");
printf(" enabled)");
}
#endif