| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2009-2011 Freescale Semiconductor, Inc. |
| * Author: Srikanth Srinivasan <srikanth.srinivasan@freescale.com> |
| */ |
| |
| /* |
| * This file handles the board muxing between the Fman Ethernet MACs and |
| * the RGMII/SGMII/XGMII PHYs on a Freescale P5040 "Super Hydra" reference |
| * board. The RGMII PHYs are the two on-board 1Gb ports. The SGMII PHYs are |
| * provided by the standard Freescale four-port SGMII riser card. The 10Gb |
| * XGMII PHYs are provided via the XAUI riser card. The P5040 has 2 FMans |
| * and 5 1G interfaces and 10G interface per FMan. Based on the options in |
| * the RCW, we could have upto 3 SGMII cards and 1 XAUI card at a time. |
| * |
| * Muxing is handled via the PIXIS BRDCFG1 register. The EMI1 bits control |
| * muxing among the RGMII PHYs and the SGMII PHYs. The value for RGMII is |
| * always the same (0). The value for SGMII depends on which slot the riser is |
| * inserted in. The EMI2 bits control muxing for the the XGMII. Like SGMII, |
| * the value is based on which slot the XAUI is inserted in. |
| * |
| * The SERDES configuration is used to determine where the SGMII and XAUI cards |
| * exist, and also which Fman's MACs are routed to which PHYs. So for a given |
| * Fman MAC, there is one and only PHY it connects to. MACs cannot be routed |
| * to PHYs dynamically. |
| * |
| * |
| * This file also updates the device tree in three ways: |
| * |
| * 1) The status of each virtual MDIO node that is referenced by an Ethernet |
| * node is set to "okay". |
| * |
| * 2) The phy-handle property of each active Ethernet MAC node is set to the |
| * appropriate PHY node. |
| * |
| * 3) The "mux value" for each virtual MDIO node is set to the correct value, |
| * if necessary. Some virtual MDIO nodes do not have configurable mux |
| * values, so those values are hard-coded in the DTS. On the HYDRA board, |
| * the virtual MDIO node for the SGMII card needs to be updated. |
| * |
| * For all this to work, the device tree needs to have the following: |
| * |
| * 1) An alias for each PHY node that an Ethernet node could be routed to. |
| * |
| * 2) An alias for each real and virtual MDIO node that is disabled by default |
| * and might need to be enabled, and also might need to have its mux-value |
| * updated. |
| */ |
| |
| #include <common.h> |
| #include <netdev.h> |
| #include <asm/fsl_serdes.h> |
| #include <fm_eth.h> |
| #include <fsl_mdio.h> |
| #include <malloc.h> |
| #include <fdt_support.h> |
| #include <fsl_dtsec.h> |
| |
| #include "../common/ngpixis.h" |
| #include "../common/fman.h" |
| |
| #ifdef CONFIG_FMAN_ENET |
| |
| #define BRDCFG1_EMI1_SEL_MASK 0x70 |
| #define BRDCFG1_EMI1_SEL_SLOT1 0x10 |
| #define BRDCFG1_EMI1_SEL_SLOT2 0x20 |
| #define BRDCFG1_EMI1_SEL_SLOT5 0x30 |
| #define BRDCFG1_EMI1_SEL_SLOT6 0x40 |
| #define BRDCFG1_EMI1_SEL_SLOT7 0x50 |
| #define BRDCFG1_EMI1_SEL_SLOT3 0x60 |
| #define BRDCFG1_EMI1_SEL_RGMII 0x00 |
| #define BRDCFG1_EMI1_EN 0x08 |
| #define BRDCFG1_EMI2_SEL_MASK 0x06 |
| #define BRDCFG1_EMI2_SEL_SLOT1 0x00 |
| #define BRDCFG1_EMI2_SEL_SLOT2 0x02 |
| |
| #define BRDCFG2_REG_GPIO_SEL 0x20 |
| |
| /* SGMII */ |
| #define PHY_BASE_ADDR 0x00 |
| #define REGNUM 0x00 |
| #define PORT_NUM_FM1 0x04 |
| #define PORT_NUM_FM2 0x02 |
| |
| /* |
| * BRDCFG1 mask and value for each MAC |
| * |
| * This array contains the BRDCFG1 values (in mask/val format) that route the |
| * MDIO bus to a particular RGMII or SGMII PHY. |
| */ |
| static struct { |
| u8 mask; |
| u8 val; |
| } mdio_mux[NUM_FM_PORTS]; |
| |
| /* |
| * Mapping of all 18 SERDES lanes to board slots. A value of '0' here means |
| * that the mapping must be determined dynamically, or that the lane maps to |
| * something other than a board slot |
| */ |
| static u8 lane_to_slot[] = { |
| 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0 |
| }; |
| |
| /* |
| * Set the board muxing for a given MAC |
| * |
| * The MDIO layer calls this function every time it wants to talk to a PHY. |
| */ |
| void super_hydra_mux_mdio(u8 mask, u8 val) |
| { |
| clrsetbits_8(&pixis->brdcfg1, mask, val); |
| } |
| |
| struct super_hydra_mdio { |
| u8 mask; |
| u8 val; |
| struct mii_dev *realbus; |
| }; |
| |
| static int super_hydra_mdio_read(struct mii_dev *bus, int addr, int devad, |
| int regnum) |
| { |
| struct super_hydra_mdio *priv = bus->priv; |
| |
| super_hydra_mux_mdio(priv->mask, priv->val); |
| |
| return priv->realbus->read(priv->realbus, addr, devad, regnum); |
| } |
| |
| static int super_hydra_mdio_write(struct mii_dev *bus, int addr, int devad, |
| int regnum, u16 value) |
| { |
| struct super_hydra_mdio *priv = bus->priv; |
| |
| super_hydra_mux_mdio(priv->mask, priv->val); |
| |
| return priv->realbus->write(priv->realbus, addr, devad, regnum, value); |
| } |
| |
| static int super_hydra_mdio_reset(struct mii_dev *bus) |
| { |
| struct super_hydra_mdio *priv = bus->priv; |
| |
| return priv->realbus->reset(priv->realbus); |
| } |
| |
| static void super_hydra_mdio_set_mux(char *name, u8 mask, u8 val) |
| { |
| struct mii_dev *bus = miiphy_get_dev_by_name(name); |
| struct super_hydra_mdio *priv = bus->priv; |
| |
| priv->mask = mask; |
| priv->val = val; |
| } |
| |
| static int super_hydra_mdio_init(char *realbusname, char *fakebusname) |
| { |
| struct super_hydra_mdio *hmdio; |
| struct mii_dev *bus = mdio_alloc(); |
| |
| if (!bus) { |
| printf("Failed to allocate Hydra MDIO bus\n"); |
| return -1; |
| } |
| |
| hmdio = malloc(sizeof(*hmdio)); |
| if (!hmdio) { |
| printf("Failed to allocate Hydra private data\n"); |
| free(bus); |
| return -1; |
| } |
| |
| bus->read = super_hydra_mdio_read; |
| bus->write = super_hydra_mdio_write; |
| bus->reset = super_hydra_mdio_reset; |
| strcpy(bus->name, fakebusname); |
| |
| hmdio->realbus = miiphy_get_dev_by_name(realbusname); |
| |
| if (!hmdio->realbus) { |
| printf("No bus with name %s\n", realbusname); |
| free(bus); |
| free(hmdio); |
| return -1; |
| } |
| |
| bus->priv = hmdio; |
| |
| return mdio_register(bus); |
| } |
| |
| /* |
| * Given the following ... |
| * |
| * 1) A pointer to an Fman Ethernet node (as identified by the 'compat' |
| * compatible string and 'addr' physical address) |
| * |
| * 2) An Fman port |
| * |
| * ... update the phy-handle property of the Ethernet node to point to the |
| * right PHY. This assumes that we already know the PHY for each port. That |
| * information is stored in mdio_mux[]. |
| * |
| * The offset of the Fman Ethernet node is also passed in for convenience, but |
| * it is not used. |
| * |
| * Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC. |
| * Inside the Fman, "ports" are things that connect to MACs. We only call them |
| * ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs |
| * and ports are the same thing. |
| */ |
| void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr, |
| enum fm_port port, int offset) |
| { |
| enum srds_prtcl device; |
| int lane, slot, phy; |
| char alias[32]; |
| |
| /* RGMII and XGMII are already mapped correctly in the DTS */ |
| |
| if (fm_info_get_enet_if(port) == PHY_INTERFACE_MODE_SGMII) { |
| device = serdes_device_from_fm_port(port); |
| lane = serdes_get_first_lane(device); |
| slot = lane_to_slot[lane]; |
| phy = fm_info_get_phy_address(port); |
| |
| sprintf(alias, "phy_sgmii_slot%u_%x", slot, phy); |
| fdt_set_phy_handle(fdt, compat, addr, alias); |
| } |
| } |
| |
| #define PIXIS_SW2_LANE_23_SEL 0x80 |
| #define PIXIS_SW2_LANE_45_SEL 0x40 |
| #define PIXIS_SW2_LANE_67_SEL_MASK 0x30 |
| #define PIXIS_SW2_LANE_67_SEL_5 0x00 |
| #define PIXIS_SW2_LANE_67_SEL_6 0x20 |
| #define PIXIS_SW2_LANE_67_SEL_7 0x10 |
| #define PIXIS_SW2_LANE_8_SEL 0x08 |
| #define PIXIS_SW2_LANE_1617_SEL 0x04 |
| #define PIXIS_SW11_LANE_9_SEL 0x04 |
| /* |
| * Initialize the lane_to_slot[] array. |
| * |
| * On the P4080DS "Expedition" board, the mapping of SERDES lanes to board |
| * slots is hard-coded. On the Hydra board, however, the mapping is controlled |
| * by board switch SW2, so the lane_to_slot[] array needs to be dynamically |
| * initialized. |
| */ |
| static void initialize_lane_to_slot(void) |
| { |
| u8 sw2 = in_8(&PIXIS_SW(2)); |
| /* SW11 appears in the programming model as SW9 */ |
| u8 sw11 = in_8(&PIXIS_SW(9)); |
| |
| lane_to_slot[2] = (sw2 & PIXIS_SW2_LANE_23_SEL) ? 7 : 4; |
| lane_to_slot[3] = lane_to_slot[2]; |
| |
| lane_to_slot[4] = (sw2 & PIXIS_SW2_LANE_45_SEL) ? 7 : 6; |
| lane_to_slot[5] = lane_to_slot[4]; |
| |
| switch (sw2 & PIXIS_SW2_LANE_67_SEL_MASK) { |
| case PIXIS_SW2_LANE_67_SEL_5: |
| lane_to_slot[6] = 5; |
| break; |
| case PIXIS_SW2_LANE_67_SEL_6: |
| lane_to_slot[6] = 6; |
| break; |
| case PIXIS_SW2_LANE_67_SEL_7: |
| lane_to_slot[6] = 7; |
| break; |
| } |
| lane_to_slot[7] = lane_to_slot[6]; |
| |
| lane_to_slot[8] = (sw2 & PIXIS_SW2_LANE_8_SEL) ? 3 : 0; |
| lane_to_slot[9] = (sw11 & PIXIS_SW11_LANE_9_SEL) ? 0 : 3; |
| |
| lane_to_slot[16] = (sw2 & PIXIS_SW2_LANE_1617_SEL) ? 1 : 0; |
| lane_to_slot[17] = lane_to_slot[16]; |
| } |
| |
| #endif /* #ifdef CONFIG_FMAN_ENET */ |
| |
| /* |
| * Configure the status for the virtual MDIO nodes |
| * |
| * Rather than create the virtual MDIO nodes from scratch for each active |
| * virtual MDIO, we expect the DTS to have the nodes defined already, and we |
| * only enable the ones that are actually active. |
| * |
| * We assume that the DTS already hard-codes the status for all the |
| * virtual MDIO nodes to "disabled", so all we need to do is enable the |
| * active ones. |
| */ |
| void fdt_fixup_board_enet(void *fdt) |
| { |
| #ifdef CONFIG_FMAN_ENET |
| enum fm_port i; |
| int lane, slot; |
| |
| for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) { |
| int idx = i - FM1_DTSEC1; |
| |
| switch (fm_info_get_enet_if(i)) { |
| case PHY_INTERFACE_MODE_SGMII: |
| lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx); |
| if (lane >= 0) { |
| char alias[32]; |
| |
| slot = lane_to_slot[lane]; |
| sprintf(alias, "hydra_sg_slot%u", slot); |
| fdt_status_okay_by_alias(fdt, alias); |
| debug("Enabled MDIO node %s (slot %i)\n", |
| alias, slot); |
| } |
| break; |
| case PHY_INTERFACE_MODE_RGMII: |
| fdt_status_okay_by_alias(fdt, "hydra_rg"); |
| debug("Enabled MDIO node hydra_rg\n"); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| lane = serdes_get_first_lane(XAUI_FM1); |
| if (lane >= 0) { |
| char alias[32]; |
| |
| slot = lane_to_slot[lane]; |
| sprintf(alias, "hydra_xg_slot%u", slot); |
| fdt_status_okay_by_alias(fdt, alias); |
| debug("Enabled MDIO node %s (slot %i)\n", alias, slot); |
| } |
| |
| #if CONFIG_SYS_NUM_FMAN == 2 |
| for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) { |
| int idx = i - FM2_DTSEC1; |
| |
| switch (fm_info_get_enet_if(i)) { |
| case PHY_INTERFACE_MODE_SGMII: |
| lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx); |
| if (lane >= 0) { |
| char alias[32]; |
| |
| slot = lane_to_slot[lane]; |
| sprintf(alias, "hydra_sg_slot%u", slot); |
| fdt_status_okay_by_alias(fdt, alias); |
| debug("Enabled MDIO node %s (slot %i)\n", |
| alias, slot); |
| } |
| break; |
| case PHY_INTERFACE_MODE_RGMII: |
| fdt_status_okay_by_alias(fdt, "hydra_rg"); |
| debug("Enabled MDIO node hydra_rg\n"); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| lane = serdes_get_first_lane(XAUI_FM2); |
| if (lane >= 0) { |
| char alias[32]; |
| |
| slot = lane_to_slot[lane]; |
| sprintf(alias, "hydra_xg_slot%u", slot); |
| fdt_status_okay_by_alias(fdt, alias); |
| debug("Enabled MDIO node %s (slot %i)\n", alias, slot); |
| } |
| #endif /* CONFIG_SYS_NUM_FMAN == 2 */ |
| #endif /* CONFIG_FMAN_ENET */ |
| } |
| |
| /* |
| * Mapping of SerDes Protocol to MDIO MUX value and PHY address. |
| * |
| * Fman 1: |
| * DTSEC1 | DTSEC2 | DTSEC3 | DTSEC4 |
| * Mux Phy | Mux Phy | Mux Phy | Mux Phy |
| * Value Addr | Value Addr | Value Addr | Value Addr |
| * 0x00 2 1c | 2 1d | 2 1e | 2 1f |
| * 0x01 | | 6 1c | |
| * 0x02 | | 3 1c | 3 1d |
| * 0x03 2 1c | 2 1d | 2 1e | 2 1f |
| * 0x04 2 1c | 2 1d | 2 1e | 2 1f |
| * 0x05 | | 3 1c | 3 1d |
| * 0x06 2 1c | 2 1d | 2 1e | 2 1f |
| * 0x07 | | 6 1c | |
| * 0x11 2 1c | 2 1d | 2 1e | 2 1f |
| * 0x2a 2 | | 2 1e | 2 1f |
| * 0x34 6 1c | 6 1d | 4 1e | 4 1f |
| * 0x35 | | 3 1c | 3 1d |
| * 0x36 6 1c | 6 1d | 4 1e | 4 1f |
| * | | | |
| * Fman 2: | | | |
| * DTSEC1 | DTSEC2 | DTSEC3 | DTSEC4 |
| * EMI1 | EMI1 | EMI1 | EMI1 |
| * Mux Phy | Mux Phy | Mux Phy | Mux Phy |
| * Value Addr | Value Addr | Value Addr | Value Addr |
| * 0x00 | | 6 1c | 6 1d |
| * 0x01 | | | |
| * 0x02 | | 6 1c | 6 1d |
| * 0x03 3 1c | 3 1d | 6 1c | 6 1d |
| * 0x04 3 1c | 3 1d | 6 1c | 6 1d |
| * 0x05 | | 6 1c | 6 1d |
| * 0x06 | | 6 1c | 6 1d |
| * 0x07 | | | |
| * 0x11 | | | |
| * 0x2a | | | |
| * 0x34 | | | |
| * 0x35 | | | |
| * 0x36 | | | |
| */ |
| |
| int board_eth_init(bd_t *bis) |
| { |
| #ifdef CONFIG_FMAN_ENET |
| struct fsl_pq_mdio_info dtsec_mdio_info; |
| struct tgec_mdio_info tgec_mdio_info; |
| unsigned int i, slot; |
| int lane; |
| struct mii_dev *bus; |
| int qsgmii; |
| int phy_real_addr; |
| ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); |
| int srds_prtcl = (in_be32(&gur->rcwsr[4]) & |
| FSL_CORENET_RCWSR4_SRDS_PRTCL) >> 26; |
| |
| printf("Initializing Fman\n"); |
| |
| initialize_lane_to_slot(); |
| |
| /* We want to use the PIXIS to configure MUX routing, not GPIOs. */ |
| setbits_8(&pixis->brdcfg2, BRDCFG2_REG_GPIO_SEL); |
| |
| memset(mdio_mux, 0, sizeof(mdio_mux)); |
| |
| dtsec_mdio_info.regs = |
| (struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR; |
| dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME; |
| |
| /* Register the real 1G MDIO bus */ |
| fsl_pq_mdio_init(bis, &dtsec_mdio_info); |
| |
| tgec_mdio_info.regs = |
| (struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR; |
| tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME; |
| |
| /* Register the real 10G MDIO bus */ |
| fm_tgec_mdio_init(bis, &tgec_mdio_info); |
| |
| /* Register the three virtual MDIO front-ends */ |
| super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME, |
| "SUPER_HYDRA_RGMII_MDIO"); |
| super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME, |
| "SUPER_HYDRA_FM1_SGMII_MDIO"); |
| super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME, |
| "SUPER_HYDRA_FM2_SGMII_MDIO"); |
| super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME, |
| "SUPER_HYDRA_FM3_SGMII_MDIO"); |
| super_hydra_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME, |
| "SUPER_HYDRA_FM1_TGEC_MDIO"); |
| super_hydra_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME, |
| "SUPER_HYDRA_FM2_TGEC_MDIO"); |
| |
| /* |
| * Program the DTSEC PHY addresses assuming that they are all SGMII. |
| * For any DTSEC that's RGMII, we'll override its PHY address later. |
| * We assume that DTSEC5 is only used for RGMII. |
| */ |
| fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR); |
| fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR); |
| fm_info_set_phy_address(FM1_10GEC1, CONFIG_SYS_FM2_10GEC1_PHY_ADDR); |
| |
| #if (CONFIG_SYS_NUM_FMAN == 2) |
| fm_info_set_phy_address(FM2_DTSEC1, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR); |
| fm_info_set_phy_address(FM2_DTSEC2, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR); |
| fm_info_set_phy_address(FM2_DTSEC3, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR); |
| fm_info_set_phy_address(FM2_DTSEC4, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR); |
| fm_info_set_phy_address(FM2_10GEC1, CONFIG_SYS_FM1_10GEC1_PHY_ADDR); |
| #endif |
| |
| switch (srds_prtcl) { |
| case 0: |
| case 3: |
| case 4: |
| case 6: |
| case 0x11: |
| case 0x2a: |
| case 0x34: |
| case 0x36: |
| fm_info_set_phy_address(FM1_DTSEC3, |
| CONFIG_SYS_FM1_DTSEC3_PHY_ADDR); |
| fm_info_set_phy_address(FM1_DTSEC4, |
| CONFIG_SYS_FM1_DTSEC4_PHY_ADDR); |
| break; |
| case 1: |
| case 2: |
| case 5: |
| case 7: |
| case 0x35: |
| fm_info_set_phy_address(FM1_DTSEC3, |
| CONFIG_SYS_FM1_DTSEC1_PHY_ADDR); |
| fm_info_set_phy_address(FM1_DTSEC4, |
| CONFIG_SYS_FM1_DTSEC2_PHY_ADDR); |
| break; |
| default: |
| printf("Fman: Unsupport SerDes Protocol 0x%02x\n", srds_prtcl); |
| break; |
| } |
| |
| for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) { |
| int idx = i - FM1_DTSEC1; |
| |
| switch (fm_info_get_enet_if(i)) { |
| case PHY_INTERFACE_MODE_SGMII: |
| lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx); |
| if (lane < 0) |
| break; |
| slot = lane_to_slot[lane]; |
| mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK; |
| debug("FM1@DTSEC%u expects SGMII in slot %u\n", |
| idx + 1, slot); |
| switch (slot) { |
| case 1: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 | |
| BRDCFG1_EMI1_EN; |
| break; |
| case 2: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 | |
| BRDCFG1_EMI1_EN; |
| break; |
| case 3: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT3 | |
| BRDCFG1_EMI1_EN; |
| break; |
| case 5: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 | |
| BRDCFG1_EMI1_EN; |
| break; |
| case 6: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 | |
| BRDCFG1_EMI1_EN; |
| break; |
| case 7: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 | |
| BRDCFG1_EMI1_EN; |
| break; |
| }; |
| |
| super_hydra_mdio_set_mux("SUPER_HYDRA_FM1_SGMII_MDIO", |
| mdio_mux[i].mask, mdio_mux[i].val); |
| fm_info_set_mdio(i, |
| miiphy_get_dev_by_name("SUPER_HYDRA_FM1_SGMII_MDIO")); |
| break; |
| case PHY_INTERFACE_MODE_RGMII: |
| /* |
| * FM1 DTSEC5 is routed via EC1 to the first on-board |
| * RGMII port. FM2 DTSEC5 is routed via EC2 to the |
| * second on-board RGMII port. The other DTSECs cannot |
| * be routed to RGMII. |
| */ |
| debug("FM1@DTSEC%u is RGMII at address %u\n", |
| idx + 1, 0); |
| fm_info_set_phy_address(i, 0); |
| mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK; |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_RGMII | |
| BRDCFG1_EMI1_EN; |
| super_hydra_mdio_set_mux("SUPER_HYDRA_RGMII_MDIO", |
| mdio_mux[i].mask, mdio_mux[i].val); |
| fm_info_set_mdio(i, |
| miiphy_get_dev_by_name("SUPER_HYDRA_RGMII_MDIO")); |
| break; |
| case PHY_INTERFACE_MODE_NONE: |
| fm_info_set_phy_address(i, 0); |
| break; |
| default: |
| printf("Fman1: DTSEC%u set to unknown interface %i\n", |
| idx + 1, fm_info_get_enet_if(i)); |
| fm_info_set_phy_address(i, 0); |
| break; |
| } |
| } |
| |
| bus = miiphy_get_dev_by_name("SUPER_HYDRA_FM1_SGMII_MDIO"); |
| qsgmii = is_qsgmii_riser_card(bus, PHY_BASE_ADDR, PORT_NUM_FM1, REGNUM); |
| |
| if (qsgmii) { |
| for (i = FM1_DTSEC1; i < FM1_DTSEC1 + PORT_NUM_FM1; i++) { |
| if (fm_info_get_enet_if(i) == |
| PHY_INTERFACE_MODE_SGMII) { |
| phy_real_addr = PHY_BASE_ADDR + i - FM1_DTSEC1; |
| fm_info_set_phy_address(i, phy_real_addr); |
| } |
| } |
| switch (srds_prtcl) { |
| case 0x00: |
| case 0x03: |
| case 0x04: |
| case 0x06: |
| case 0x11: |
| case 0x2a: |
| case 0x34: |
| case 0x36: |
| fm_info_set_phy_address(FM1_DTSEC3, PHY_BASE_ADDR + 2); |
| fm_info_set_phy_address(FM1_DTSEC4, PHY_BASE_ADDR + 3); |
| break; |
| case 0x01: |
| case 0x02: |
| case 0x05: |
| case 0x07: |
| case 0x35: |
| fm_info_set_phy_address(FM1_DTSEC3, PHY_BASE_ADDR + 0); |
| fm_info_set_phy_address(FM1_DTSEC4, PHY_BASE_ADDR + 1); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * For 10G, we only support one XAUI card per Fman. If present, then we |
| * force its routing and never touch those bits again, which removes the |
| * need for Linux to do any muxing. This works because of the way |
| * BRDCFG1 is defined, but it's a bit hackish. |
| * |
| * The PHY address for the XAUI card depends on which slot it's in. The |
| * macros we use imply that the PHY address is based on which FM, but |
| * that's not true. On the P4080DS, FM1 could only use XAUI in slot 5, |
| * and FM2 could only use a XAUI in slot 4. On the Hydra board, we |
| * check the actual slot and just use the macros as-is, even though |
| * the P3041 and P5020 only have one Fman. |
| */ |
| lane = serdes_get_first_lane(XAUI_FM1); |
| if (lane >= 0) { |
| debug("FM1@TGEC1 expects XAUI in slot %u\n", lane_to_slot[lane]); |
| mdio_mux[i].mask = BRDCFG1_EMI2_SEL_MASK; |
| mdio_mux[i].val = BRDCFG1_EMI2_SEL_SLOT2; |
| super_hydra_mdio_set_mux("SUPER_HYDRA_FM1_TGEC_MDIO", |
| mdio_mux[i].mask, mdio_mux[i].val); |
| } |
| |
| fm_info_set_mdio(FM1_10GEC1, |
| miiphy_get_dev_by_name("SUPER_HYDRA_FM1_TGEC_MDIO")); |
| |
| #if (CONFIG_SYS_NUM_FMAN == 2) |
| for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) { |
| int idx = i - FM2_DTSEC1; |
| |
| switch (fm_info_get_enet_if(i)) { |
| case PHY_INTERFACE_MODE_SGMII: |
| lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx); |
| if (lane < 0) |
| break; |
| slot = lane_to_slot[lane]; |
| mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK; |
| debug("FM2@DTSEC%u expects SGMII in slot %u\n", |
| idx + 1, slot); |
| switch (slot) { |
| case 1: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 | |
| BRDCFG1_EMI1_EN; |
| break; |
| case 2: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 | |
| BRDCFG1_EMI1_EN; |
| break; |
| case 3: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT3 | |
| BRDCFG1_EMI1_EN; |
| break; |
| case 5: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 | |
| BRDCFG1_EMI1_EN; |
| break; |
| case 6: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 | |
| BRDCFG1_EMI1_EN; |
| break; |
| case 7: |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 | |
| BRDCFG1_EMI1_EN; |
| break; |
| }; |
| |
| if (i == FM2_DTSEC1 || i == FM2_DTSEC2) { |
| super_hydra_mdio_set_mux( |
| "SUPER_HYDRA_FM3_SGMII_MDIO", |
| mdio_mux[i].mask, |
| mdio_mux[i].val); |
| fm_info_set_mdio(i, miiphy_get_dev_by_name( |
| "SUPER_HYDRA_FM3_SGMII_MDIO")); |
| } else { |
| super_hydra_mdio_set_mux( |
| "SUPER_HYDRA_FM2_SGMII_MDIO", |
| mdio_mux[i].mask, |
| mdio_mux[i].val); |
| fm_info_set_mdio(i, miiphy_get_dev_by_name( |
| "SUPER_HYDRA_FM2_SGMII_MDIO")); |
| } |
| |
| break; |
| case PHY_INTERFACE_MODE_RGMII: |
| /* |
| * FM1 DTSEC5 is routed via EC1 to the first on-board |
| * RGMII port. FM2 DTSEC5 is routed via EC2 to the |
| * second on-board RGMII port. The other DTSECs cannot |
| * be routed to RGMII. |
| */ |
| debug("FM2@DTSEC%u is RGMII at address %u\n", |
| idx + 1, 1); |
| fm_info_set_phy_address(i, 1); |
| mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK; |
| mdio_mux[i].val = BRDCFG1_EMI1_SEL_RGMII | |
| BRDCFG1_EMI1_EN; |
| super_hydra_mdio_set_mux("SUPER_HYDRA_RGMII_MDIO", |
| mdio_mux[i].mask, mdio_mux[i].val); |
| fm_info_set_mdio(i, |
| miiphy_get_dev_by_name("SUPER_HYDRA_RGMII_MDIO")); |
| break; |
| case PHY_INTERFACE_MODE_NONE: |
| fm_info_set_phy_address(i, 0); |
| break; |
| default: |
| printf("Fman2: DTSEC%u set to unknown interface %i\n", |
| idx + 1, fm_info_get_enet_if(i)); |
| fm_info_set_phy_address(i, 0); |
| break; |
| } |
| } |
| |
| bus = miiphy_get_dev_by_name("SUPER_HYDRA_FM2_SGMII_MDIO"); |
| set_sgmii_phy(bus, FM2_DTSEC3, PORT_NUM_FM2, PHY_BASE_ADDR); |
| bus = miiphy_get_dev_by_name("SUPER_HYDRA_FM3_SGMII_MDIO"); |
| set_sgmii_phy(bus, FM2_DTSEC1, PORT_NUM_FM2, PHY_BASE_ADDR); |
| |
| /* |
| * For 10G, we only support one XAUI card per Fman. If present, then we |
| * force its routing and never touch those bits again, which removes the |
| * need for Linux to do any muxing. This works because of the way |
| * BRDCFG1 is defined, but it's a bit hackish. |
| * |
| * The PHY address for the XAUI card depends on which slot it's in. The |
| * macros we use imply that the PHY address is based on which FM, but |
| * that's not true. On the P4080DS, FM1 could only use XAUI in slot 5, |
| * and FM2 could only use a XAUI in slot 4. On the Hydra board, we |
| * check the actual slot and just use the macros as-is, even though |
| * the P3041 and P5020 only have one Fman. |
| */ |
| lane = serdes_get_first_lane(XAUI_FM2); |
| if (lane >= 0) { |
| debug("FM2@TGEC1 expects XAUI in slot %u\n", lane_to_slot[lane]); |
| mdio_mux[i].mask = BRDCFG1_EMI2_SEL_MASK; |
| mdio_mux[i].val = BRDCFG1_EMI2_SEL_SLOT1; |
| super_hydra_mdio_set_mux("SUPER_HYDRA_FM2_TGEC_MDIO", |
| mdio_mux[i].mask, mdio_mux[i].val); |
| } |
| |
| fm_info_set_mdio(FM2_10GEC1, |
| miiphy_get_dev_by_name("SUPER_HYDRA_FM2_TGEC_MDIO")); |
| |
| #endif |
| |
| cpu_eth_init(bis); |
| #endif |
| |
| return pci_eth_init(bis); |
| } |