blob: 3a63f1c69f3a4b0f8a981ed28fcdbf939ae86b88 [file] [log] [blame]
/*
* Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <bl31/ehf.h>
#include <bl31/interrupt_mgmt.h>
#include <common/debug.h>
#include <common/runtime_svc.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/smccc.h>
#include <lib/spinlock.h>
#include <lib/utils.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <plat/common/platform.h>
#include <services/spm_svc.h>
#include <services/sprt_svc.h>
#include <smccc_helpers.h>
#include "spm_private.h"
/*******************************************************************************
* Secure Partition context information.
******************************************************************************/
sp_context_t sp_ctx_array[PLAT_SPM_MAX_PARTITIONS];
/* Last Secure Partition last used by the CPU */
sp_context_t *cpu_sp_ctx[PLATFORM_CORE_COUNT];
void spm_cpu_set_sp_ctx(unsigned int linear_id, sp_context_t *sp_ctx)
{
assert(linear_id < PLATFORM_CORE_COUNT);
cpu_sp_ctx[linear_id] = sp_ctx;
}
sp_context_t *spm_cpu_get_sp_ctx(unsigned int linear_id)
{
assert(linear_id < PLATFORM_CORE_COUNT);
return cpu_sp_ctx[linear_id];
}
/*******************************************************************************
* Functions to keep track of how many requests a Secure Partition has received
* and hasn't finished.
******************************************************************************/
void spm_sp_request_increase(sp_context_t *sp_ctx)
{
spin_lock(&(sp_ctx->request_count_lock));
sp_ctx->request_count++;
spin_unlock(&(sp_ctx->request_count_lock));
}
void spm_sp_request_decrease(sp_context_t *sp_ctx)
{
spin_lock(&(sp_ctx->request_count_lock));
sp_ctx->request_count--;
spin_unlock(&(sp_ctx->request_count_lock));
}
/* Returns 0 if it was originally 0, -1 otherwise. */
int spm_sp_request_increase_if_zero(sp_context_t *sp_ctx)
{
int ret = -1;
spin_lock(&(sp_ctx->request_count_lock));
if (sp_ctx->request_count == 0U) {
sp_ctx->request_count++;
ret = 0U;
}
spin_unlock(&(sp_ctx->request_count_lock));
return ret;
}
/*******************************************************************************
* This function returns a pointer to the context of the Secure Partition that
* handles the service specified by an UUID. It returns NULL if the UUID wasn't
* found.
******************************************************************************/
sp_context_t *spm_sp_get_by_uuid(const uint32_t (*svc_uuid)[4])
{
unsigned int i;
for (i = 0U; i < PLAT_SPM_MAX_PARTITIONS; i++) {
sp_context_t *sp_ctx = &sp_ctx_array[i];
if (sp_ctx->is_present == 0) {
continue;
}
struct sp_rd_sect_service *rdsvc;
for (rdsvc = sp_ctx->rd.service; rdsvc != NULL;
rdsvc = rdsvc->next) {
uint32_t *rd_uuid = (uint32_t *)(rdsvc->uuid);
if (memcmp(rd_uuid, svc_uuid, sizeof(*svc_uuid)) == 0) {
return sp_ctx;
}
}
}
return NULL;
}
/*******************************************************************************
* Set state of a Secure Partition context.
******************************************************************************/
void sp_state_set(sp_context_t *sp_ptr, sp_state_t state)
{
spin_lock(&(sp_ptr->state_lock));
sp_ptr->state = state;
spin_unlock(&(sp_ptr->state_lock));
}
/*******************************************************************************
* Wait until the state of a Secure Partition is the specified one and change it
* to the desired state.
******************************************************************************/
void sp_state_wait_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
{
int success = 0;
while (success == 0) {
spin_lock(&(sp_ptr->state_lock));
if (sp_ptr->state == from) {
sp_ptr->state = to;
success = 1;
}
spin_unlock(&(sp_ptr->state_lock));
}
}
/*******************************************************************************
* Check if the state of a Secure Partition is the specified one and, if so,
* change it to the desired state. Returns 0 on success, -1 on error.
******************************************************************************/
int sp_state_try_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
{
int ret = -1;
spin_lock(&(sp_ptr->state_lock));
if (sp_ptr->state == from) {
sp_ptr->state = to;
ret = 0;
}
spin_unlock(&(sp_ptr->state_lock));
return ret;
}
/*******************************************************************************
* This function takes an SP context pointer and performs a synchronous entry
* into it.
******************************************************************************/
uint64_t spm_sp_synchronous_entry(sp_context_t *sp_ctx, int can_preempt)
{
uint64_t rc;
unsigned int linear_id = plat_my_core_pos();
assert(sp_ctx != NULL);
/* Assign the context of the SP to this CPU */
spm_cpu_set_sp_ctx(linear_id, sp_ctx);
cm_set_context(&(sp_ctx->cpu_ctx), SECURE);
/* Restore the context assigned above */
cm_el1_sysregs_context_restore(SECURE);
cm_set_next_eret_context(SECURE);
/* Invalidate TLBs at EL1. */
tlbivmalle1();
dsbish();
if (can_preempt == 1) {
enable_intr_rm_local(INTR_TYPE_NS, SECURE);
} else {
disable_intr_rm_local(INTR_TYPE_NS, SECURE);
}
/* Enter Secure Partition */
rc = spm_secure_partition_enter(&sp_ctx->c_rt_ctx);
/* Save secure state */
cm_el1_sysregs_context_save(SECURE);
return rc;
}
/*******************************************************************************
* This function returns to the place where spm_sp_synchronous_entry() was
* called originally.
******************************************************************************/
__dead2 void spm_sp_synchronous_exit(uint64_t rc)
{
/* Get context of the SP in use by this CPU. */
unsigned int linear_id = plat_my_core_pos();
sp_context_t *ctx = spm_cpu_get_sp_ctx(linear_id);
/*
* The SPM must have initiated the original request through a
* synchronous entry into the secure partition. Jump back to the
* original C runtime context with the value of rc in x0;
*/
spm_secure_partition_exit(ctx->c_rt_ctx, rc);
panic();
}
/*******************************************************************************
* This function is the handler registered for Non secure interrupts by the SPM.
* It validates the interrupt and upon success arranges entry into the normal
* world for handling the interrupt.
******************************************************************************/
static uint64_t spm_ns_interrupt_handler(uint32_t id, uint32_t flags,
void *handle, void *cookie)
{
/* Check the security state when the exception was generated */
assert(get_interrupt_src_ss(flags) == SECURE);
spm_sp_synchronous_exit(SPM_SECURE_PARTITION_PREEMPTED);
}
/*******************************************************************************
* Jump to each Secure Partition for the first time.
******************************************************************************/
static int32_t spm_init(void)
{
uint64_t rc = 0;
sp_context_t *ctx;
for (unsigned int i = 0U; i < PLAT_SPM_MAX_PARTITIONS; i++) {
ctx = &sp_ctx_array[i];
if (ctx->is_present == 0) {
continue;
}
INFO("Secure Partition %u init...\n", i);
ctx->state = SP_STATE_RESET;
rc = spm_sp_synchronous_entry(ctx, 0);
if (rc != SPRT_YIELD_AARCH64) {
ERROR("Unexpected return value 0x%llx\n", rc);
panic();
}
ctx->state = SP_STATE_IDLE;
INFO("Secure Partition %u initialized.\n", i);
}
return rc;
}
/*******************************************************************************
* Initialize contexts of all Secure Partitions.
******************************************************************************/
int32_t spm_setup(void)
{
int rc;
sp_context_t *ctx;
void *sp_base, *rd_base;
size_t sp_size, rd_size;
uint64_t flags = 0U;
/* Disable MMU at EL1 (initialized by BL2) */
disable_mmu_icache_el1();
/*
* Non-blocking services can be interrupted by Non-secure interrupts.
* Register an interrupt handler for NS interrupts when generated while
* the CPU is in secure state. They are routed to EL3.
*/
set_interrupt_rm_flag(flags, SECURE);
uint64_t rc_int = register_interrupt_type_handler(INTR_TYPE_NS,
spm_ns_interrupt_handler, flags);
if (rc_int) {
ERROR("SPM: Failed to register NS interrupt handler with rc = %llx\n",
rc_int);
panic();
}
/* Setup shim layer */
spm_exceptions_xlat_init_context();
/*
* Setup all Secure Partitions.
*/
unsigned int i = 0U;
while (1) {
rc = plat_spm_sp_get_next_address(&sp_base, &sp_size,
&rd_base, &rd_size);
if (rc < 0) {
/* Reached the end of the package. */
break;
}
if (i >= PLAT_SPM_MAX_PARTITIONS) {
ERROR("Too many partitions in the package.\n");
panic();
}
ctx = &sp_ctx_array[i];
assert(ctx->is_present == 0);
/* Initialize context of the SP */
INFO("Secure Partition %u context setup start...\n", i);
/* Save location of the image in physical memory */
ctx->image_base = (uintptr_t)sp_base;
ctx->image_size = sp_size;
rc = plat_spm_sp_rd_load(&ctx->rd, rd_base, rd_size);
if (rc < 0) {
ERROR("Error while loading RD blob.\n");
panic();
}
spm_sp_setup(ctx);
ctx->is_present = 1;
INFO("Secure Partition %u setup done.\n", i);
i++;
}
if (i == 0U) {
ERROR("No present partitions in the package.\n");
panic();
}
/* Register init function for deferred init. */
bl31_register_bl32_init(&spm_init);
return 0;
}