blob: 38ebcef64c0d1a6b16ca470c320115bab79ff969 [file] [log] [blame]
/*
* Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <libfdt.h>
#include <platform_def.h>
#include <drivers/st/stm32_iwdg.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
/* Internal layout of the 32bit OTP word board_id */
#define BOARD_ID_BOARD_NB_MASK GENMASK(31, 16)
#define BOARD_ID_BOARD_NB_SHIFT 16
#define BOARD_ID_VARIANT_MASK GENMASK(15, 12)
#define BOARD_ID_VARIANT_SHIFT 12
#define BOARD_ID_REVISION_MASK GENMASK(11, 8)
#define BOARD_ID_REVISION_SHIFT 8
#define BOARD_ID_BOM_MASK GENMASK(3, 0)
#define BOARD_ID2NB(_id) (((_id) & BOARD_ID_BOARD_NB_MASK) >> \
BOARD_ID_BOARD_NB_SHIFT)
#define BOARD_ID2VAR(_id) (((_id) & BOARD_ID_VARIANT_MASK) >> \
BOARD_ID_VARIANT_SHIFT)
#define BOARD_ID2REV(_id) (((_id) & BOARD_ID_REVISION_MASK) >> \
BOARD_ID_REVISION_SHIFT)
#define BOARD_ID2BOM(_id) ((_id) & BOARD_ID_BOM_MASK)
#define MAP_SRAM MAP_REGION_FLAT(STM32MP_SYSRAM_BASE, \
STM32MP_SYSRAM_SIZE, \
MT_MEMORY | \
MT_RW | \
MT_SECURE | \
MT_EXECUTE_NEVER)
#define MAP_DEVICE1 MAP_REGION_FLAT(STM32MP1_DEVICE1_BASE, \
STM32MP1_DEVICE1_SIZE, \
MT_DEVICE | \
MT_RW | \
MT_SECURE | \
MT_EXECUTE_NEVER)
#define MAP_DEVICE2 MAP_REGION_FLAT(STM32MP1_DEVICE2_BASE, \
STM32MP1_DEVICE2_SIZE, \
MT_DEVICE | \
MT_RW | \
MT_SECURE | \
MT_EXECUTE_NEVER)
#if defined(IMAGE_BL2)
static const mmap_region_t stm32mp1_mmap[] = {
MAP_SRAM,
MAP_DEVICE1,
MAP_DEVICE2,
{0}
};
#endif
#if defined(IMAGE_BL32)
static const mmap_region_t stm32mp1_mmap[] = {
MAP_SRAM,
MAP_DEVICE1,
MAP_DEVICE2,
{0}
};
#endif
void configure_mmu(void)
{
mmap_add(stm32mp1_mmap);
init_xlat_tables();
enable_mmu_svc_mon(0);
}
unsigned long stm32_get_gpio_bank_clock(unsigned int bank)
{
if (bank == GPIO_BANK_Z) {
return GPIOZ;
}
assert(GPIO_BANK_A == 0 && bank <= GPIO_BANK_K);
return GPIOA + (bank - GPIO_BANK_A);
}
static int get_part_number(uint32_t *part_nb)
{
uint32_t part_number;
uint32_t dev_id;
if (stm32mp1_dbgmcu_get_chip_dev_id(&dev_id) < 0) {
return -1;
}
if (bsec_shadow_read_otp(&part_number, PART_NUMBER_OTP) != BSEC_OK) {
ERROR("BSEC: PART_NUMBER_OTP Error\n");
return -1;
}
part_number = (part_number & PART_NUMBER_OTP_PART_MASK) >>
PART_NUMBER_OTP_PART_SHIFT;
*part_nb = part_number | (dev_id << 16);
return 0;
}
static int get_cpu_package(uint32_t *cpu_package)
{
uint32_t package;
if (bsec_shadow_read_otp(&package, PACKAGE_OTP) != BSEC_OK) {
ERROR("BSEC: PACKAGE_OTP Error\n");
return -1;
}
*cpu_package = (package & PACKAGE_OTP_PKG_MASK) >>
PACKAGE_OTP_PKG_SHIFT;
return 0;
}
void stm32mp_print_cpuinfo(void)
{
const char *cpu_s, *cpu_r, *pkg;
uint32_t part_number;
uint32_t cpu_package;
uint32_t chip_dev_id;
int ret;
/* MPUs Part Numbers */
ret = get_part_number(&part_number);
if (ret < 0) {
WARN("Cannot get part number\n");
return;
}
switch (part_number) {
case STM32MP157C_PART_NB:
cpu_s = "157C";
break;
case STM32MP157A_PART_NB:
cpu_s = "157A";
break;
case STM32MP153C_PART_NB:
cpu_s = "153C";
break;
case STM32MP153A_PART_NB:
cpu_s = "153A";
break;
case STM32MP151C_PART_NB:
cpu_s = "151C";
break;
case STM32MP151A_PART_NB:
cpu_s = "151A";
break;
default:
cpu_s = "????";
break;
}
/* Package */
ret = get_cpu_package(&cpu_package);
if (ret < 0) {
WARN("Cannot get CPU package\n");
return;
}
switch (cpu_package) {
case PKG_AA_LFBGA448:
pkg = "AA";
break;
case PKG_AB_LFBGA354:
pkg = "AB";
break;
case PKG_AC_TFBGA361:
pkg = "AC";
break;
case PKG_AD_TFBGA257:
pkg = "AD";
break;
default:
pkg = "??";
break;
}
/* REVISION */
ret = stm32mp1_dbgmcu_get_chip_version(&chip_dev_id);
if (ret < 0) {
WARN("Cannot get CPU version\n");
return;
}
switch (chip_dev_id) {
case STM32MP1_REV_B:
cpu_r = "B";
break;
default:
cpu_r = "?";
break;
}
NOTICE("CPU: STM32MP%s%s Rev.%s\n", cpu_s, pkg, cpu_r);
}
void stm32mp_print_boardinfo(void)
{
uint32_t board_id;
uint32_t board_otp;
int bsec_node, bsec_board_id_node;
void *fdt;
const fdt32_t *cuint;
if (fdt_get_address(&fdt) == 0) {
panic();
}
bsec_node = fdt_node_offset_by_compatible(fdt, -1, DT_BSEC_COMPAT);
if (bsec_node < 0) {
return;
}
bsec_board_id_node = fdt_subnode_offset(fdt, bsec_node, "board_id");
if (bsec_board_id_node <= 0) {
return;
}
cuint = fdt_getprop(fdt, bsec_board_id_node, "reg", NULL);
if (cuint == NULL) {
panic();
}
board_otp = fdt32_to_cpu(*cuint) / sizeof(uint32_t);
if (bsec_shadow_read_otp(&board_id, board_otp) != BSEC_OK) {
ERROR("BSEC: PART_NUMBER_OTP Error\n");
return;
}
if (board_id != 0U) {
char rev[2];
rev[0] = BOARD_ID2REV(board_id) - 1 + 'A';
rev[1] = '\0';
NOTICE("Board: MB%04x Var%d Rev.%s-%02d\n",
BOARD_ID2NB(board_id),
BOARD_ID2VAR(board_id),
rev,
BOARD_ID2BOM(board_id));
}
}
/* Return true when SoC provides a single Cortex-A7 core, and false otherwise */
bool stm32mp_is_single_core(void)
{
uint32_t part_number;
bool ret = false;
if (get_part_number(&part_number) < 0) {
ERROR("Invalid part number, assume single core chip");
return true;
}
switch (part_number) {
case STM32MP151A_PART_NB:
case STM32MP151C_PART_NB:
ret = true;
break;
default:
break;
}
return ret;
}
uint32_t stm32_iwdg_get_instance(uintptr_t base)
{
switch (base) {
case IWDG1_BASE:
return IWDG1_INST;
case IWDG2_BASE:
return IWDG2_INST;
default:
panic();
}
}
uint32_t stm32_iwdg_get_otp_config(uint32_t iwdg_inst)
{
uint32_t iwdg_cfg = 0U;
uint32_t otp_value;
#if defined(IMAGE_BL2)
if (bsec_shadow_register(HW2_OTP) != BSEC_OK) {
panic();
}
#endif
if (bsec_read_otp(&otp_value, HW2_OTP) != BSEC_OK) {
panic();
}
if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_HW_POS)) != 0U) {
iwdg_cfg |= IWDG_HW_ENABLED;
}
if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS)) != 0U) {
iwdg_cfg |= IWDG_DISABLE_ON_STOP;
}
if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS)) != 0U) {
iwdg_cfg |= IWDG_DISABLE_ON_STANDBY;
}
return iwdg_cfg;
}
#if defined(IMAGE_BL2)
uint32_t stm32_iwdg_shadow_update(uint32_t iwdg_inst, uint32_t flags)
{
uint32_t otp;
uint32_t result;
if (bsec_shadow_read_otp(&otp, HW2_OTP) != BSEC_OK) {
panic();
}
if ((flags & IWDG_DISABLE_ON_STOP) != 0U) {
otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS);
}
if ((flags & IWDG_DISABLE_ON_STANDBY) != 0U) {
otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS);
}
result = bsec_write_otp(otp, HW2_OTP);
if (result != BSEC_OK) {
return result;
}
/* Sticky lock OTP_IWDG (read and write) */
if (!bsec_write_sr_lock(HW2_OTP, 1U) ||
!bsec_write_sw_lock(HW2_OTP, 1U)) {
return BSEC_LOCK_FAIL;
}
return BSEC_OK;
}
#endif