blob: 8eeeea1dd5aefc04a91d9b37d01b62fb40b884a1 [file] [log] [blame]
/*
* Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <arch.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <lib/cassert.h>
#include <lib/utils_def.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include "../xlat_tables_private.h"
/*
* Returns true if the provided granule size is supported, false otherwise.
*/
bool xlat_arch_is_granule_size_supported(size_t size)
{
u_register_t id_aa64mmfr0_el1 = read_id_aa64mmfr0_el1();
if (size == PAGE_SIZE_4KB) {
return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN4_SHIFT) &
ID_AA64MMFR0_EL1_TGRAN4_MASK) ==
ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED;
} else if (size == PAGE_SIZE_16KB) {
return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN16_SHIFT) &
ID_AA64MMFR0_EL1_TGRAN16_MASK) ==
ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED;
} else if (size == PAGE_SIZE_64KB) {
return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN64_SHIFT) &
ID_AA64MMFR0_EL1_TGRAN64_MASK) ==
ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED;
} else {
return 0;
}
}
size_t xlat_arch_get_max_supported_granule_size(void)
{
if (xlat_arch_is_granule_size_supported(PAGE_SIZE_64KB)) {
return PAGE_SIZE_64KB;
} else if (xlat_arch_is_granule_size_supported(PAGE_SIZE_16KB)) {
return PAGE_SIZE_16KB;
} else {
assert(xlat_arch_is_granule_size_supported(PAGE_SIZE_4KB));
return PAGE_SIZE_4KB;
}
}
unsigned long long tcr_physical_addr_size_bits(unsigned long long max_addr)
{
/* Physical address can't exceed 48 bits */
assert((max_addr & ADDR_MASK_48_TO_63) == 0U);
/* 48 bits address */
if ((max_addr & ADDR_MASK_44_TO_47) != 0U)
return TCR_PS_BITS_256TB;
/* 44 bits address */
if ((max_addr & ADDR_MASK_42_TO_43) != 0U)
return TCR_PS_BITS_16TB;
/* 42 bits address */
if ((max_addr & ADDR_MASK_40_TO_41) != 0U)
return TCR_PS_BITS_4TB;
/* 40 bits address */
if ((max_addr & ADDR_MASK_36_TO_39) != 0U)
return TCR_PS_BITS_1TB;
/* 36 bits address */
if ((max_addr & ADDR_MASK_32_TO_35) != 0U)
return TCR_PS_BITS_64GB;
return TCR_PS_BITS_4GB;
}
#if ENABLE_ASSERTIONS
/*
* Physical Address ranges supported in the AArch64 Memory Model. Value 0b110 is
* supported in ARMv8.2 onwards.
*/
static const unsigned int pa_range_bits_arr[] = {
PARANGE_0000, PARANGE_0001, PARANGE_0010, PARANGE_0011, PARANGE_0100,
PARANGE_0101, PARANGE_0110
};
unsigned long long xlat_arch_get_max_supported_pa(void)
{
u_register_t pa_range = read_id_aa64mmfr0_el1() &
ID_AA64MMFR0_EL1_PARANGE_MASK;
/* All other values are reserved */
assert(pa_range < ARRAY_SIZE(pa_range_bits_arr));
return (1ULL << pa_range_bits_arr[pa_range]) - 1ULL;
}
/*
* Return minimum virtual address space size supported by the architecture
*/
uintptr_t xlat_get_min_virt_addr_space_size(void)
{
uintptr_t ret;
if (is_armv8_4_ttst_present())
ret = MIN_VIRT_ADDR_SPACE_SIZE_TTST;
else
ret = MIN_VIRT_ADDR_SPACE_SIZE;
return ret;
}
#endif /* ENABLE_ASSERTIONS*/
bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
{
if (ctx->xlat_regime == EL1_EL0_REGIME) {
assert(xlat_arch_current_el() >= 1U);
return (read_sctlr_el1() & SCTLR_M_BIT) != 0U;
} else if (ctx->xlat_regime == EL2_REGIME) {
assert(xlat_arch_current_el() >= 2U);
return (read_sctlr_el2() & SCTLR_M_BIT) != 0U;
} else {
assert(ctx->xlat_regime == EL3_REGIME);
assert(xlat_arch_current_el() >= 3U);
return (read_sctlr_el3() & SCTLR_M_BIT) != 0U;
}
}
bool is_dcache_enabled(void)
{
unsigned int el = (unsigned int)GET_EL(read_CurrentEl());
if (el == 1U) {
return (read_sctlr_el1() & SCTLR_C_BIT) != 0U;
} else if (el == 2U) {
return (read_sctlr_el2() & SCTLR_C_BIT) != 0U;
} else {
return (read_sctlr_el3() & SCTLR_C_BIT) != 0U;
}
}
uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime)
{
if (xlat_regime == EL1_EL0_REGIME) {
return UPPER_ATTRS(UXN) | UPPER_ATTRS(PXN);
} else {
assert((xlat_regime == EL2_REGIME) ||
(xlat_regime == EL3_REGIME));
return UPPER_ATTRS(XN);
}
}
void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime)
{
/*
* Ensure the translation table write has drained into memory before
* invalidating the TLB entry.
*/
dsbishst();
/*
* This function only supports invalidation of TLB entries for the EL3
* and EL1&0 translation regimes.
*
* Also, it is architecturally UNDEFINED to invalidate TLBs of a higher
* exception level (see section D4.9.2 of the ARM ARM rev B.a).
*/
if (xlat_regime == EL1_EL0_REGIME) {
assert(xlat_arch_current_el() >= 1U);
tlbivaae1is(TLBI_ADDR(va));
} else if (xlat_regime == EL2_REGIME) {
assert(xlat_arch_current_el() >= 2U);
tlbivae2is(TLBI_ADDR(va));
} else {
assert(xlat_regime == EL3_REGIME);
assert(xlat_arch_current_el() >= 3U);
tlbivae3is(TLBI_ADDR(va));
}
}
void xlat_arch_tlbi_va_sync(void)
{
/*
* A TLB maintenance instruction can complete at any time after
* it is issued, but is only guaranteed to be complete after the
* execution of DSB by the PE that executed the TLB maintenance
* instruction. After the TLB invalidate instruction is
* complete, no new memory accesses using the invalidated TLB
* entries will be observed by any observer of the system
* domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
* "Ordering and completion of TLB maintenance instructions".
*/
dsbish();
/*
* The effects of a completed TLB maintenance instruction are
* only guaranteed to be visible on the PE that executed the
* instruction after the execution of an ISB instruction by the
* PE that executed the TLB maintenance instruction.
*/
isb();
}
unsigned int xlat_arch_current_el(void)
{
unsigned int el = (unsigned int)GET_EL(read_CurrentEl());
assert(el > 0U);
return el;
}
void setup_mmu_cfg(uint64_t *params, unsigned int flags,
const uint64_t *base_table, unsigned long long max_pa,
uintptr_t max_va, int xlat_regime)
{
uint64_t mair, ttbr0, tcr;
uintptr_t virtual_addr_space_size;
/* Set attributes in the right indices of the MAIR. */
mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX);
mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);
/*
* Limit the input address ranges and memory region sizes translated
* using TTBR0 to the given virtual address space size.
*/
assert(max_va < ((uint64_t)UINTPTR_MAX));
virtual_addr_space_size = (uintptr_t)max_va + 1U;
assert(virtual_addr_space_size >=
xlat_get_min_virt_addr_space_size());
assert(virtual_addr_space_size <= MAX_VIRT_ADDR_SPACE_SIZE);
assert(IS_POWER_OF_TWO(virtual_addr_space_size));
/*
* __builtin_ctzll(0) is undefined but here we are guaranteed that
* virtual_addr_space_size is in the range [1,UINTPTR_MAX].
*/
int t0sz = 64 - __builtin_ctzll(virtual_addr_space_size);
tcr = (uint64_t)t0sz << TCR_T0SZ_SHIFT;
/*
* Set the cacheability and shareability attributes for memory
* associated with translation table walks.
*/
if ((flags & XLAT_TABLE_NC) != 0U) {
/* Inner & outer non-cacheable non-shareable. */
tcr |= TCR_SH_NON_SHAREABLE |
TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC;
} else {
/* Inner & outer WBWA & shareable. */
tcr |= TCR_SH_INNER_SHAREABLE |
TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA;
}
/*
* It is safer to restrict the max physical address accessible by the
* hardware as much as possible.
*/
unsigned long long tcr_ps_bits = tcr_physical_addr_size_bits(max_pa);
if (xlat_regime == EL1_EL0_REGIME) {
/*
* TCR_EL1.EPD1: Disable translation table walk for addresses
* that are translated using TTBR1_EL1.
*/
tcr |= TCR_EPD1_BIT | (tcr_ps_bits << TCR_EL1_IPS_SHIFT);
} else if (xlat_regime == EL2_REGIME) {
tcr |= TCR_EL2_RES1 | (tcr_ps_bits << TCR_EL2_PS_SHIFT);
} else {
assert(xlat_regime == EL3_REGIME);
tcr |= TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT);
}
/* Set TTBR bits as well */
ttbr0 = (uint64_t) base_table;
if (is_armv8_2_ttcnp_present()) {
/* Enable CnP bit so as to share page tables with all PEs. */
ttbr0 |= TTBR_CNP_BIT;
}
params[MMU_CFG_MAIR] = mair;
params[MMU_CFG_TCR] = tcr;
params[MMU_CFG_TTBR0] = ttbr0;
}