blob: 327a9a1498bf64e89eb40953e8f30926a7ceaf6a [file] [log] [blame]
/*
* Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef GICV3_PRIVATE_H
#define GICV3_PRIVATE_H
#include <assert.h>
#include <stdint.h>
#include <drivers/arm/gic_common.h>
#include <drivers/arm/gicv3.h>
#include <lib/mmio.h>
#include "../common/gic_common_private.h"
/*******************************************************************************
* GICv3 private macro definitions
******************************************************************************/
/* Constants to indicate the status of the RWP bit */
#define RWP_TRUE U(1)
#define RWP_FALSE U(0)
/*
* Macro to convert an mpidr to a value suitable for programming into a
* GICD_IROUTER. Bits[31:24] in the MPIDR are cleared as they are not relevant
* to GICv3.
*/
static inline u_register_t gicd_irouter_val_from_mpidr(u_register_t mpidr,
unsigned int irm)
{
return (mpidr & ~(U(0xff) << 24)) |
((irm & IROUTER_IRM_MASK) << IROUTER_IRM_SHIFT);
}
/*
* Macro to convert a GICR_TYPER affinity value into a MPIDR value. Bits[31:24]
* are zeroes.
*/
#ifdef __aarch64__
static inline u_register_t mpidr_from_gicr_typer(uint64_t typer_val)
{
return (((typer_val >> 56) & MPIDR_AFFLVL_MASK) << MPIDR_AFF3_SHIFT) |
((typer_val >> 32) & U(0xffffff));
}
#else
static inline u_register_t mpidr_from_gicr_typer(uint64_t typer_val)
{
return (((typer_val) >> 32) & U(0xffffff));
}
#endif
/*******************************************************************************
* GICv3 private global variables declarations
******************************************************************************/
extern const gicv3_driver_data_t *gicv3_driver_data;
/*******************************************************************************
* Private GICv3 function prototypes for accessing entire registers.
* Note: The raw register values correspond to multiple interrupt IDs and
* the number of interrupt IDs involved depends on the register accessed.
******************************************************************************/
unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id);
unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id);
void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val);
void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val);
/*******************************************************************************
* Private GICv3 function prototypes for accessing the GIC registers
* corresponding to a single interrupt ID. These functions use bitwise
* operations or appropriate register accesses to modify or return
* the bit-field corresponding the single interrupt ID.
******************************************************************************/
unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id);
unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id);
unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id);
unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id);
void gicd_set_igrpmodr(uintptr_t base, unsigned int id);
void gicr_set_igrpmodr0(uintptr_t base, unsigned int id);
void gicr_set_isenabler0(uintptr_t base, unsigned int id);
void gicr_set_icenabler0(uintptr_t base, unsigned int id);
void gicr_set_ispendr0(uintptr_t base, unsigned int id);
void gicr_set_icpendr0(uintptr_t base, unsigned int id);
void gicr_set_igroupr0(uintptr_t base, unsigned int id);
void gicd_clr_igrpmodr(uintptr_t base, unsigned int id);
void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id);
void gicr_clr_igroupr0(uintptr_t base, unsigned int id);
void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri);
void gicr_set_icfgr0(uintptr_t base, unsigned int id, unsigned int cfg);
void gicr_set_icfgr1(uintptr_t base, unsigned int id, unsigned int cfg);
/*******************************************************************************
* Private GICv3 helper function prototypes
******************************************************************************/
void gicv3_spis_config_defaults(uintptr_t gicd_base);
void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base);
unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
const interrupt_prop_t *interrupt_props,
unsigned int interrupt_props_num);
unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
const interrupt_prop_t *interrupt_props,
unsigned int interrupt_props_num);
void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
unsigned int rdistif_num,
uintptr_t gicr_base,
mpidr_hash_fn mpidr_to_core_pos);
void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base);
void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base);
/*******************************************************************************
* GIC Distributor interface accessors
******************************************************************************/
/*
* Wait for updates to :
* GICD_CTLR[2:0] - the Group Enables
* GICD_CTLR[5:4] - the ARE bits
* GICD_ICENABLERn - the clearing of enable state for SPIs
*/
static inline void gicd_wait_for_pending_write(uintptr_t gicd_base)
{
while ((gicd_read_ctlr(gicd_base) & GICD_CTLR_RWP_BIT) != 0U)
;
}
static inline unsigned int gicd_read_pidr2(uintptr_t base)
{
return mmio_read_32(base + GICD_PIDR2_GICV3);
}
static inline unsigned long long gicd_read_irouter(uintptr_t base, unsigned int id)
{
assert(id >= MIN_SPI_ID);
return mmio_read_64(base + GICD_IROUTER + (id << 3));
}
static inline void gicd_write_irouter(uintptr_t base,
unsigned int id,
unsigned long long affinity)
{
assert(id >= MIN_SPI_ID);
mmio_write_64(base + GICD_IROUTER + (id << 3), affinity);
}
static inline void gicd_clr_ctlr(uintptr_t base,
unsigned int bitmap,
unsigned int rwp)
{
gicd_write_ctlr(base, gicd_read_ctlr(base) & ~bitmap);
if (rwp != 0U)
gicd_wait_for_pending_write(base);
}
static inline void gicd_set_ctlr(uintptr_t base,
unsigned int bitmap,
unsigned int rwp)
{
gicd_write_ctlr(base, gicd_read_ctlr(base) | bitmap);
if (rwp != 0U)
gicd_wait_for_pending_write(base);
}
/*******************************************************************************
* GIC Redistributor interface accessors
******************************************************************************/
static inline uint32_t gicr_read_ctlr(uintptr_t base)
{
return mmio_read_32(base + GICR_CTLR);
}
static inline void gicr_write_ctlr(uintptr_t base, uint32_t val)
{
mmio_write_32(base + GICR_CTLR, val);
}
static inline unsigned long long gicr_read_typer(uintptr_t base)
{
return mmio_read_64(base + GICR_TYPER);
}
static inline unsigned int gicr_read_waker(uintptr_t base)
{
return mmio_read_32(base + GICR_WAKER);
}
static inline void gicr_write_waker(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_WAKER, val);
}
/*
* Wait for updates to :
* GICR_ICENABLER0
* GICR_CTLR.DPG1S
* GICR_CTLR.DPG1NS
* GICR_CTLR.DPG0
*/
static inline void gicr_wait_for_pending_write(uintptr_t gicr_base)
{
while ((gicr_read_ctlr(gicr_base) & GICR_CTLR_RWP_BIT) != 0U)
;
}
static inline void gicr_wait_for_upstream_pending_write(uintptr_t gicr_base)
{
while ((gicr_read_ctlr(gicr_base) & GICR_CTLR_UWP_BIT) != 0U)
;
}
/* Private implementation of Distributor power control hooks */
void arm_gicv3_distif_pre_save(unsigned int rdist_proc_num);
void arm_gicv3_distif_post_restore(unsigned int rdist_proc_num);
/*******************************************************************************
* GIC Re-distributor functions for accessing entire registers.
* Note: The raw register values correspond to multiple interrupt IDs and
* the number of interrupt IDs involved depends on the register accessed.
******************************************************************************/
static inline unsigned int gicr_read_icenabler0(uintptr_t base)
{
return mmio_read_32(base + GICR_ICENABLER0);
}
static inline void gicr_write_icenabler0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ICENABLER0, val);
}
static inline unsigned int gicr_read_isenabler0(uintptr_t base)
{
return mmio_read_32(base + GICR_ISENABLER0);
}
static inline void gicr_write_icpendr0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ICPENDR0, val);
}
static inline void gicr_write_isenabler0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ISENABLER0, val);
}
static inline unsigned int gicr_read_igroupr0(uintptr_t base)
{
return mmio_read_32(base + GICR_IGROUPR0);
}
static inline unsigned int gicr_read_ispendr0(uintptr_t base)
{
return mmio_read_32(base + GICR_ISPENDR0);
}
static inline void gicr_write_ispendr0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ISPENDR0, val);
}
static inline void gicr_write_igroupr0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_IGROUPR0, val);
}
static inline unsigned int gicr_read_igrpmodr0(uintptr_t base)
{
return mmio_read_32(base + GICR_IGRPMODR0);
}
static inline void gicr_write_igrpmodr0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_IGRPMODR0, val);
}
static inline unsigned int gicr_read_nsacr(uintptr_t base)
{
return mmio_read_32(base + GICR_NSACR);
}
static inline void gicr_write_nsacr(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_NSACR, val);
}
static inline unsigned int gicr_read_isactiver0(uintptr_t base)
{
return mmio_read_32(base + GICR_ISACTIVER0);
}
static inline void gicr_write_isactiver0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ISACTIVER0, val);
}
static inline unsigned int gicr_read_icfgr0(uintptr_t base)
{
return mmio_read_32(base + GICR_ICFGR0);
}
static inline unsigned int gicr_read_icfgr1(uintptr_t base)
{
return mmio_read_32(base + GICR_ICFGR1);
}
static inline void gicr_write_icfgr0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ICFGR0, val);
}
static inline void gicr_write_icfgr1(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ICFGR1, val);
}
static inline uint64_t gicr_read_propbaser(uintptr_t base)
{
return mmio_read_64(base + GICR_PROPBASER);
}
static inline void gicr_write_propbaser(uintptr_t base, uint64_t val)
{
mmio_write_64(base + GICR_PROPBASER, val);
}
static inline uint64_t gicr_read_pendbaser(uintptr_t base)
{
return mmio_read_64(base + GICR_PENDBASER);
}
static inline void gicr_write_pendbaser(uintptr_t base, uint64_t val)
{
mmio_write_64(base + GICR_PENDBASER, val);
}
/*******************************************************************************
* GIC ITS functions to read and write entire ITS registers.
******************************************************************************/
static inline uint32_t gits_read_ctlr(uintptr_t base)
{
return mmio_read_32(base + GITS_CTLR);
}
static inline void gits_write_ctlr(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GITS_CTLR, val);
}
static inline uint64_t gits_read_cbaser(uintptr_t base)
{
return mmio_read_64(base + GITS_CBASER);
}
static inline void gits_write_cbaser(uintptr_t base, uint64_t val)
{
mmio_write_64(base + GITS_CBASER, val);
}
static inline uint64_t gits_read_cwriter(uintptr_t base)
{
return mmio_read_64(base + GITS_CWRITER);
}
static inline void gits_write_cwriter(uintptr_t base, uint64_t val)
{
mmio_write_64(base + GITS_CWRITER, val);
}
static inline uint64_t gits_read_baser(uintptr_t base, unsigned int its_table_id)
{
assert(its_table_id < 8U);
return mmio_read_64(base + GITS_BASER + (8U * its_table_id));
}
static inline void gits_write_baser(uintptr_t base, unsigned int its_table_id, uint64_t val)
{
assert(its_table_id < 8U);
mmio_write_64(base + GITS_BASER + (8U * its_table_id), val);
}
/*
* Wait for Quiescent bit when GIC ITS is disabled
*/
static inline void gits_wait_for_quiescent_bit(uintptr_t gits_base)
{
assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
while ((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) == 0U)
;
}
#endif /* GICV3_PRIVATE_H */