blob: d298f2b6674933ac64bd62625a3b8df86b0e7283 [file] [log] [blame]
/*
* Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <assert_macros.S>
#include <common/bl_common.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
.globl smc
.globl zero_normalmem
.globl zeromem
.globl memcpy16
.globl disable_mmu_el1
.globl disable_mmu_el3
.globl disable_mmu_icache_el1
.globl disable_mmu_icache_el3
.globl fixup_gdt_reloc
#if SUPPORT_VFP
.globl enable_vfp
#endif
func smc
smc #0
endfunc smc
/* -----------------------------------------------------------------------
* void zero_normalmem(void *mem, unsigned int length);
*
* Initialise a region in normal memory to 0. This functions complies with the
* AAPCS and can be called from C code.
*
* NOTE: MMU must be enabled when using this function as it can only operate on
* normal memory. It is intended to be mainly used from C code when MMU
* is usually enabled.
* -----------------------------------------------------------------------
*/
.equ zero_normalmem, zeromem_dczva
/* -----------------------------------------------------------------------
* void zeromem(void *mem, unsigned int length);
*
* Initialise a region of device memory to 0. This functions complies with the
* AAPCS and can be called from C code.
*
* NOTE: When data caches and MMU are enabled, zero_normalmem can usually be
* used instead for faster zeroing.
*
* -----------------------------------------------------------------------
*/
func zeromem
/* x2 is the address past the last zeroed address */
add x2, x0, x1
/*
* Uses the fallback path that does not use DC ZVA instruction and
* therefore does not need enabled MMU
*/
b .Lzeromem_dczva_fallback_entry
endfunc zeromem
/* -----------------------------------------------------------------------
* void zeromem_dczva(void *mem, unsigned int length);
*
* Fill a region of normal memory of size "length" in bytes with null bytes.
* MMU must be enabled and the memory be of
* normal type. This is because this function internally uses the DC ZVA
* instruction, which generates an Alignment fault if used on any type of
* Device memory (see section D3.4.9 of the ARMv8 ARM, issue k). When the MMU
* is disabled, all memory behaves like Device-nGnRnE memory (see section
* D4.2.8), hence the requirement on the MMU being enabled.
* NOTE: The code assumes that the block size as defined in DCZID_EL0
* register is at least 16 bytes.
*
* -----------------------------------------------------------------------
*/
func zeromem_dczva
/*
* The function consists of a series of loops that zero memory one byte
* at a time, 16 bytes at a time or using the DC ZVA instruction to
* zero aligned block of bytes, which is assumed to be more than 16.
* In the case where the DC ZVA instruction cannot be used or if the
* first 16 bytes loop would overflow, there is fallback path that does
* not use DC ZVA.
* Note: The fallback path is also used by the zeromem function that
* branches to it directly.
*
* +---------+ zeromem_dczva
* | entry |
* +----+----+
* |
* v
* +---------+
* | checks |>o-------+ (If any check fails, fallback)
* +----+----+ |
* | |---------------+
* v | Fallback path |
* +------+------+ |---------------+
* | 1 byte loop | |
* +------+------+ .Lzeromem_dczva_initial_1byte_aligned_end
* | |
* v |
* +-------+-------+ |
* | 16 bytes loop | |
* +-------+-------+ |
* | |
* v |
* +------+------+ .Lzeromem_dczva_blocksize_aligned
* | DC ZVA loop | |
* +------+------+ |
* +--------+ | |
* | | | |
* | v v |
* | +-------+-------+ .Lzeromem_dczva_final_16bytes_aligned
* | | 16 bytes loop | |
* | +-------+-------+ |
* | | |
* | v |
* | +------+------+ .Lzeromem_dczva_final_1byte_aligned
* | | 1 byte loop | |
* | +-------------+ |
* | | |
* | v |
* | +---+--+ |
* | | exit | |
* | +------+ |
* | |
* | +--------------+ +------------------+ zeromem
* | | +----------------| zeromem function |
* | | | +------------------+
* | v v
* | +-------------+ .Lzeromem_dczva_fallback_entry
* | | 1 byte loop |
* | +------+------+
* | |
* +-----------+
*/
/*
* Readable names for registers
*
* Registers x0, x1 and x2 are also set by zeromem which
* branches into the fallback path directly, so cursor, length and
* stop_address should not be retargeted to other registers.
*/
cursor .req x0 /* Start address and then current address */
length .req x1 /* Length in bytes of the region to zero out */
/* Reusing x1 as length is never used after block_mask is set */
block_mask .req x1 /* Bitmask of the block size read in DCZID_EL0 */
stop_address .req x2 /* Address past the last zeroed byte */
block_size .req x3 /* Size of a block in bytes as read in DCZID_EL0 */
tmp1 .req x4
tmp2 .req x5
#if ENABLE_ASSERTIONS
/*
* Check for M bit (MMU enabled) of the current SCTLR_EL(1|3)
* register value and panic if the MMU is disabled.
*/
#if defined(IMAGE_BL1) || defined(IMAGE_BL31) || (defined(IMAGE_BL2) && BL2_AT_EL3)
mrs tmp1, sctlr_el3
#else
mrs tmp1, sctlr_el1
#endif
tst tmp1, #SCTLR_M_BIT
ASM_ASSERT(ne)
#endif /* ENABLE_ASSERTIONS */
/* stop_address is the address past the last to zero */
add stop_address, cursor, length
/*
* Get block_size = (log2(<block size>) >> 2) (see encoding of
* dczid_el0 reg)
*/
mrs block_size, dczid_el0
/*
* Select the 4 lowest bits and convert the extracted log2(<block size
* in words>) to <block size in bytes>
*/
ubfx block_size, block_size, #0, #4
mov tmp2, #(1 << 2)
lsl block_size, tmp2, block_size
#if ENABLE_ASSERTIONS
/*
* Assumes block size is at least 16 bytes to avoid manual realignment
* of the cursor at the end of the DCZVA loop.
*/
cmp block_size, #16
ASM_ASSERT(hs)
#endif
/*
* Not worth doing all the setup for a region less than a block and
* protects against zeroing a whole block when the area to zero is
* smaller than that. Also, as it is assumed that the block size is at
* least 16 bytes, this also protects the initial aligning loops from
* trying to zero 16 bytes when length is less than 16.
*/
cmp length, block_size
b.lo .Lzeromem_dczva_fallback_entry
/*
* Calculate the bitmask of the block alignment. It will never
* underflow as the block size is between 4 bytes and 2kB.
* block_mask = block_size - 1
*/
sub block_mask, block_size, #1
/*
* length alias should not be used after this point unless it is
* defined as a register other than block_mask's.
*/
.unreq length
/*
* If the start address is already aligned to zero block size, go
* straight to the cache zeroing loop. This is safe because at this
* point, the length cannot be smaller than a block size.
*/
tst cursor, block_mask
b.eq .Lzeromem_dczva_blocksize_aligned
/*
* Calculate the first block-size-aligned address. It is assumed that
* the zero block size is at least 16 bytes. This address is the last
* address of this initial loop.
*/
orr tmp1, cursor, block_mask
add tmp1, tmp1, #1
/*
* If the addition overflows, skip the cache zeroing loops. This is
* quite unlikely however.
*/
cbz tmp1, .Lzeromem_dczva_fallback_entry
/*
* If the first block-size-aligned address is past the last address,
* fallback to the simpler code.
*/
cmp tmp1, stop_address
b.hi .Lzeromem_dczva_fallback_entry
/*
* If the start address is already aligned to 16 bytes, skip this loop.
* It is safe to do this because tmp1 (the stop address of the initial
* 16 bytes loop) will never be greater than the final stop address.
*/
tst cursor, #0xf
b.eq .Lzeromem_dczva_initial_1byte_aligned_end
/* Calculate the next address aligned to 16 bytes */
orr tmp2, cursor, #0xf
add tmp2, tmp2, #1
/* If it overflows, fallback to the simple path (unlikely) */
cbz tmp2, .Lzeromem_dczva_fallback_entry
/*
* Next aligned address cannot be after the stop address because the
* length cannot be smaller than 16 at this point.
*/
/* First loop: zero byte per byte */
1:
strb wzr, [cursor], #1
cmp cursor, tmp2
b.ne 1b
.Lzeromem_dczva_initial_1byte_aligned_end:
/*
* Second loop: we need to zero 16 bytes at a time from cursor to tmp1
* before being able to use the code that deals with block-size-aligned
* addresses.
*/
cmp cursor, tmp1
b.hs 2f
1:
stp xzr, xzr, [cursor], #16
cmp cursor, tmp1
b.lo 1b
2:
/*
* Third loop: zero a block at a time using DC ZVA cache block zeroing
* instruction.
*/
.Lzeromem_dczva_blocksize_aligned:
/*
* Calculate the last block-size-aligned address. If the result equals
* to the start address, the loop will exit immediately.
*/
bic tmp1, stop_address, block_mask
cmp cursor, tmp1
b.hs 2f
1:
/* Zero the block containing the cursor */
dc zva, cursor
/* Increment the cursor by the size of a block */
add cursor, cursor, block_size
cmp cursor, tmp1
b.lo 1b
2:
/*
* Fourth loop: zero 16 bytes at a time and then byte per byte the
* remaining area
*/
.Lzeromem_dczva_final_16bytes_aligned:
/*
* Calculate the last 16 bytes aligned address. It is assumed that the
* block size will never be smaller than 16 bytes so that the current
* cursor is aligned to at least 16 bytes boundary.
*/
bic tmp1, stop_address, #15
cmp cursor, tmp1
b.hs 2f
1:
stp xzr, xzr, [cursor], #16
cmp cursor, tmp1
b.lo 1b
2:
/* Fifth and final loop: zero byte per byte */
.Lzeromem_dczva_final_1byte_aligned:
cmp cursor, stop_address
b.eq 2f
1:
strb wzr, [cursor], #1
cmp cursor, stop_address
b.ne 1b
2:
ret
/* Fallback for unaligned start addresses */
.Lzeromem_dczva_fallback_entry:
/*
* If the start address is already aligned to 16 bytes, skip this loop.
*/
tst cursor, #0xf
b.eq .Lzeromem_dczva_final_16bytes_aligned
/* Calculate the next address aligned to 16 bytes */
orr tmp1, cursor, #15
add tmp1, tmp1, #1
/* If it overflows, fallback to byte per byte zeroing */
cbz tmp1, .Lzeromem_dczva_final_1byte_aligned
/* If the next aligned address is after the stop address, fall back */
cmp tmp1, stop_address
b.hs .Lzeromem_dczva_final_1byte_aligned
/* Fallback entry loop: zero byte per byte */
1:
strb wzr, [cursor], #1
cmp cursor, tmp1
b.ne 1b
b .Lzeromem_dczva_final_16bytes_aligned
.unreq cursor
/*
* length is already unreq'ed to reuse the register for another
* variable.
*/
.unreq stop_address
.unreq block_size
.unreq block_mask
.unreq tmp1
.unreq tmp2
endfunc zeromem_dczva
/* --------------------------------------------------------------------------
* void memcpy16(void *dest, const void *src, unsigned int length)
*
* Copy length bytes from memory area src to memory area dest.
* The memory areas should not overlap.
* Destination and source addresses must be 16-byte aligned.
* --------------------------------------------------------------------------
*/
func memcpy16
#if ENABLE_ASSERTIONS
orr x3, x0, x1
tst x3, #0xf
ASM_ASSERT(eq)
#endif
/* copy 16 bytes at a time */
m_loop16:
cmp x2, #16
b.lo m_loop1
ldp x3, x4, [x1], #16
stp x3, x4, [x0], #16
sub x2, x2, #16
b m_loop16
/* copy byte per byte */
m_loop1:
cbz x2, m_end
ldrb w3, [x1], #1
strb w3, [x0], #1
subs x2, x2, #1
b.ne m_loop1
m_end:
ret
endfunc memcpy16
/* ---------------------------------------------------------------------------
* Disable the MMU at EL3
* ---------------------------------------------------------------------------
*/
func disable_mmu_el3
mov x1, #(SCTLR_M_BIT | SCTLR_C_BIT)
do_disable_mmu_el3:
mrs x0, sctlr_el3
bic x0, x0, x1
msr sctlr_el3, x0
isb /* ensure MMU is off */
dsb sy
ret
endfunc disable_mmu_el3
func disable_mmu_icache_el3
mov x1, #(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_I_BIT)
b do_disable_mmu_el3
endfunc disable_mmu_icache_el3
/* ---------------------------------------------------------------------------
* Disable the MMU at EL1
* ---------------------------------------------------------------------------
*/
func disable_mmu_el1
mov x1, #(SCTLR_M_BIT | SCTLR_C_BIT)
do_disable_mmu_el1:
mrs x0, sctlr_el1
bic x0, x0, x1
msr sctlr_el1, x0
isb /* ensure MMU is off */
dsb sy
ret
endfunc disable_mmu_el1
func disable_mmu_icache_el1
mov x1, #(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_I_BIT)
b do_disable_mmu_el1
endfunc disable_mmu_icache_el1
/* ---------------------------------------------------------------------------
* Enable the use of VFP at EL3
* ---------------------------------------------------------------------------
*/
#if SUPPORT_VFP
func enable_vfp
mrs x0, cpacr_el1
orr x0, x0, #CPACR_VFP_BITS
msr cpacr_el1, x0
mrs x0, cptr_el3
mov x1, #AARCH64_CPTR_TFP
bic x0, x0, x1
msr cptr_el3, x0
isb
ret
endfunc enable_vfp
#endif
/* ---------------------------------------------------------------------------
* Helper to fixup Global Descriptor table (GDT) and dynamic relocations
* (.rela.dyn) at runtime.
*
* This function is meant to be used when the firmware is compiled with -fpie
* and linked with -pie options. We rely on the linker script exporting
* appropriate markers for start and end of the section. For GOT, we
* expect __GOT_START__ and __GOT_END__. Similarly for .rela.dyn, we expect
* __RELA_START__ and __RELA_END__.
*
* The function takes the limits of the memory to apply fixups to as
* arguments (which is usually the limits of the relocable BL image).
* x0 - the start of the fixup region
* x1 - the limit of the fixup region
* These addresses have to be page (4KB aligned).
* ---------------------------------------------------------------------------
*/
func fixup_gdt_reloc
mov x6, x0
mov x7, x1
/* Test if the limits are 4K aligned */
#if ENABLE_ASSERTIONS
orr x0, x0, x1
tst x0, #(PAGE_SIZE - 1)
ASM_ASSERT(eq)
#endif
/*
* Calculate the offset based on return address in x30.
* Assume that this function is called within a page at the start of
* fixup region.
*/
and x2, x30, #~(PAGE_SIZE - 1)
sub x0, x2, x6 /* Diff(S) = Current Address - Compiled Address */
adrp x1, __GOT_START__
add x1, x1, :lo12:__GOT_START__
adrp x2, __GOT_END__
add x2, x2, :lo12:__GOT_END__
/*
* GOT is an array of 64_bit addresses which must be fixed up as
* new_addr = old_addr + Diff(S).
* The new_addr is the address currently the binary is executing from
* and old_addr is the address at compile time.
*/
1:
ldr x3, [x1]
/* Skip adding offset if address is < lower limit */
cmp x3, x6
b.lo 2f
/* Skip adding offset if address is >= upper limit */
cmp x3, x7
b.ge 2f
add x3, x3, x0
str x3, [x1]
2:
add x1, x1, #8
cmp x1, x2
b.lo 1b
/* Starting dynamic relocations. Use adrp/adr to get RELA_START and END */
adrp x1, __RELA_START__
add x1, x1, :lo12:__RELA_START__
adrp x2, __RELA_END__
add x2, x2, :lo12:__RELA_END__
/*
* According to ELF-64 specification, the RELA data structure is as
* follows:
* typedef struct
* {
* Elf64_Addr r_offset;
* Elf64_Xword r_info;
* Elf64_Sxword r_addend;
* } Elf64_Rela;
*
* r_offset is address of reference
* r_info is symbol index and type of relocation (in this case
* 0x403 which corresponds to R_AARCH64_RELATIVE).
* r_addend is constant part of expression.
*
* Size of Elf64_Rela structure is 24 bytes.
*/
1:
/* Assert that the relocation type is R_AARCH64_RELATIVE */
#if ENABLE_ASSERTIONS
ldr x3, [x1, #8]
cmp x3, #0x403
ASM_ASSERT(eq)
#endif
ldr x3, [x1] /* r_offset */
add x3, x0, x3
ldr x4, [x1, #16] /* r_addend */
/* Skip adding offset if r_addend is < lower limit */
cmp x4, x6
b.lo 2f
/* Skip adding offset if r_addend entry is >= upper limit */
cmp x4, x7
b.ge 2f
add x4, x0, x4 /* Diff(S) + r_addend */
str x4, [x3]
2: add x1, x1, #24
cmp x1, x2
b.lo 1b
ret
endfunc fixup_gdt_reloc