blob: 6afb339424bec6e5015995ca1a654360abc3e50b [file] [log] [blame]
/*
* Interplay MVE video encoder (16 bit)
* Copyright (C) 2006 Jens Granseuer <jensgr@gmx.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stdlib.h>
#include <string.h>
#include "gstmvemux.h"
typedef struct _GstMveEncoderData GstMveEncoderData;
typedef struct _GstMveEncoding GstMveEncoding;
typedef struct _GstMveApprox GstMveApprox;
typedef struct _GstMveQuant GstMveQuant;
#define MVE_RMASK 0x7c00
#define MVE_GMASK 0x03e0
#define MVE_BMASK 0x001f
#define MVE_RSHIFT 10
#define MVE_GSHIFT 5
#define MVE_BSHIFT 0
#define MVE_RVAL(p) (((p) & MVE_RMASK) >> MVE_RSHIFT)
#define MVE_GVAL(p) (((p) & MVE_GMASK) >> MVE_GSHIFT)
#define MVE_BVAL(p) (((p) & MVE_BMASK) >> MVE_BSHIFT)
#define MVE_COL(r,g,b) (((r) << MVE_RSHIFT) | ((g) << MVE_GSHIFT) | ((b) << MVE_BSHIFT))
struct _GstMveEncoderData
{
GstMveMux *mve;
/* current position in frame */
guint16 x, y;
/* commonly used quantization results
(2 and 4 colors) for the current block */
guint16 q2block[64];
guint16 q2colors[2];
guint32 q2error;
gboolean q2available;
guint16 q4block[64];
guint16 q4colors[4];
guint32 q4error;
gboolean q4available;
};
struct _GstMveEncoding
{
guint8 opcode;
guint8 size;
guint32 (*approx) (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * res);
};
#define MVE_APPROX_MAX_ERROR G_MAXUINT32
struct _GstMveApprox
{
guint32 error;
guint8 type;
guint8 data[128]; /* max 128 bytes encoded per block */
guint16 block[64]; /* block in final image */
};
struct _GstMveQuant
{
guint16 col;
guint16 r_total, g_total, b_total;
guint8 r, g, b;
guint8 hits, hits_last;
guint32 max_error;
guint16 max_miss;
};
#define mve_median(mve, src) mve_median_sub ((mve), (src), 8, 8, 0)
#define mve_color_dist(c1, c2) \
mve_color_dist_rgb (MVE_RVAL (c1), MVE_GVAL (c1), MVE_BVAL (c1), \
MVE_RVAL (c2), MVE_GVAL (c2), MVE_BVAL (c2));
/* comparison function for qsort() */
static int
mve_comp_solution (const void *a, const void *b)
{
const GArray *aa = *((GArray **) a);
const GArray *bb = *((GArray **) b);
if (aa->len <= 1)
return G_MAXINT;
else if (bb->len <= 1)
return G_MININT;
else
return g_array_index (aa, GstMveApprox, aa->len - 2).error -
g_array_index (bb, GstMveApprox, bb->len - 2).error;
}
static inline guint32
mve_color_dist_rgb (guint8 r1, guint8 g1, guint8 b1,
guint8 r2, guint8 g2, guint8 b2)
{
/* euclidean distance (minus sqrt) */
gint dr = r1 - r2;
gint dg = g1 - g2;
gint db = b1 - b2;
return dr * dr + dg * dg + db * db;
}
/* compute average color in a sub-block */
static guint16
mve_median_sub (const GstMveMux * mve, const guint16 * src, guint w, guint h,
guint n)
{
guint x, y;
const guint max = w * h, max2 = max >> 1;
guint32 r_total = max2, g_total = max2, b_total = max2;
src += ((n * w) % 8) + (((n * (8 - h)) / (12 - w)) * h * mve->width);
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
r_total += MVE_RVAL (src[x]);
g_total += MVE_GVAL (src[x]);
b_total += MVE_BVAL (src[x]);
}
src += mve->width;
}
return MVE_COL (r_total / max, g_total / max, b_total / max);
}
static void
mve_quant_init (const GstMveMux * mve, GstMveQuant * q, guint n_clusters,
const guint16 * data, guint w, guint h)
{
guint i;
guint x, y;
guint16 cols[4];
guint16 val[2];
/* init first cluster with lowest (darkest), second with highest (lightest)
color. if we need 4 clusters, fill in first and last color in the block
and hope they make for a good distribution */
cols[0] = cols[1] = cols[2] = data[0];
cols[3] = data[(h - 1) * mve->width + w - 1];
/* favour red over green and blue */
val[0] = val[1] =
(MVE_RVAL (data[0]) << 1) + MVE_GVAL (data[0]) + MVE_BVAL (data[0]);
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
guint16 c = data[x];
if ((c != cols[0]) && (c != cols[1])) {
guint v = (MVE_RVAL (c) << 1) + MVE_GVAL (c) + MVE_BVAL (c);
if (v < val[0]) {
val[0] = v;
cols[0] = c;
} else if (v > val[1]) {
val[1] = v;
cols[1] = c;
}
}
}
data += mve->width;
}
for (i = 0; i < n_clusters; ++i) {
q[i].col = cols[i];
q[i].r = MVE_RVAL (cols[i]);
q[i].g = MVE_GVAL (cols[i]);
q[i].b = MVE_BVAL (cols[i]);
q[i].r_total = q[i].g_total = q[i].b_total = 0;
q[i].hits = q[i].hits_last = 0;
q[i].max_error = 0;
q[i].max_miss = 0;
}
}
static gboolean
mve_quant_update_clusters (GstMveQuant * q, guint n_clusters)
{
gboolean changed = FALSE;
guint i;
for (i = 0; i < n_clusters; ++i) {
if (q[i].hits > 0) {
guint16 means = MVE_COL ((q[i].r_total + q[i].hits / 2) / q[i].hits,
(q[i].g_total + q[i].hits / 2) / q[i].hits,
(q[i].b_total + q[i].hits / 2) / q[i].hits);
if ((means != q[i].col) || (q[i].hits != q[i].hits_last))
changed = TRUE;
q[i].col = means;
q[i].r_total = q[i].g_total = q[i].b_total = 0;
} else {
guint j;
guint32 max_err = 0;
GstMveQuant *worst = NULL;
/* try to replace unused cluster with a better representative */
for (j = 0; j < n_clusters; ++j) {
if (q[j].max_error > max_err) {
worst = &q[j];
max_err = worst->max_error;
}
}
if (worst) {
q[i].col = worst->max_miss;
worst->max_error = 0;
changed = TRUE;
}
}
q[i].r = MVE_RVAL (q[i].col);
q[i].g = MVE_GVAL (q[i].col);
q[i].b = MVE_BVAL (q[i].col);
q[i].hits_last = q[i].hits;
q[i].hits = 0;
}
for (i = 0; i < n_clusters; ++i) {
q[i].max_error = 0;
}
return changed;
}
/* quantize a sub-block using a k-means algorithm */
static guint32
mve_quantize (const GstMveMux * mve, const guint16 * src,
guint w, guint h, guint n, guint ncols, guint16 * scratch, guint16 * cols)
{
guint x, y, i;
GstMveQuant q[4];
const guint16 *data;
guint16 *dest;
guint32 error;
g_assert (n <= 4 && ncols <= 4);
src += ((n * w) % 8) + (((n * (8 - h)) / (12 - w)) * h * mve->width);
scratch += ((n * w) % 8) + (((n * (8 - h)) / (12 - w)) * h * 8);
mve_quant_init (mve, q, ncols, src, w, h);
do {
data = src;
dest = scratch;
error = 0;
/* for each pixel find the closest cluster */
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
guint16 c = data[x];
guint8 r = MVE_RVAL (c), g = MVE_GVAL (c), b = MVE_BVAL (c);
guint32 minerr = MVE_APPROX_MAX_ERROR, err;
GstMveQuant *best = NULL;
for (i = 0; i < ncols; ++i) {
err = mve_color_dist_rgb (r, g, b, q[i].r, q[i].g, q[i].b);
if (err < minerr) {
minerr = err;
best = &q[i];
}
}
if (G_UNLIKELY (!best))
continue;
++best->hits;
best->r_total += r;
best->g_total += g;
best->b_total += b;
if (minerr > best->max_error) {
best->max_error = minerr;
best->max_miss = c;
}
error += minerr;
dest[x] = best->col;
}
data += mve->width;
dest += 8;
}
} while (mve_quant_update_clusters (q, ncols));
/* fill cols array with result colors */
for (i = 0; i < ncols; ++i)
cols[i] = q[i].col;
return error;
}
static guint32
mve_block_error (const GstMveMux * mve, const guint16 * b1, const guint16 * b2,
guint32 threshold)
{
/* compute error between two blocks in a frame */
guint32 e = 0;
guint x, y;
for (y = 0; y < 8; ++y) {
for (x = 0; x < 8; ++x) {
e += mve_color_dist (*b1, *b2);
/* using a threshold to return early gives a huge performance bonus */
if (e >= threshold)
return MVE_APPROX_MAX_ERROR;
++b1;
++b2;
}
b1 += mve->width - 8;
b2 += mve->width - 8;
}
return e;
}
static guint32
mve_block_error_packed (const GstMveMux * mve, const guint16 * block,
const guint16 * scratch)
{
/* compute error between a block in a frame and a (continuous) scratch pad */
guint32 e = 0;
guint x, y;
for (y = 0; y < 8; ++y) {
for (x = 0; x < 8; ++x) {
e += mve_color_dist (block[x], scratch[x]);
}
block += mve->width;
scratch += 8;
}
return e;
}
static void
mve_store_block (const GstMveMux * mve, const guint16 * block,
guint16 * scratch)
{
/* copy block from frame to a (continuous) scratch pad */
guint y;
for (y = 0; y < 8; ++y) {
memcpy (scratch, block, 16);
block += mve->width;
scratch += 8;
}
}
static void
mve_restore_block (const GstMveMux * mve, guint16 * block,
const guint16 * scratch)
{
/* copy block from scratch pad to frame */
guint y;
for (y = 0; y < 8; ++y) {
memcpy (block, scratch, 16);
block += mve->width;
scratch += 8;
}
}
static guint32
mve_try_vector (GstMveEncoderData * enc, const guint16 * src,
const guint16 * frame, gint pn, GstMveApprox * apx)
{
/* try to locate a similar 8x8 block in the given frame using a motion vector */
guint i;
gint dx, dy;
gint fx, fy;
guint32 err;
apx->error = MVE_APPROX_MAX_ERROR;
for (i = 0; i < 256; ++i) {
if (i < 56) {
dx = 8 + (i % 7);
dy = i / 7;
} else {
dx = -14 + ((i - 56) % 29);
dy = 8 + ((i - 56) / 29);
}
fx = enc->x + dx * pn;
fy = enc->y + dy * pn;
if ((fx >= 0) && (fy >= 0) && (fx + 8 <= enc->mve->width)
&& (fy + 8 <= enc->mve->height)) {
err =
mve_block_error (enc->mve, src, frame + fy * enc->mve->width + fx,
apx->error);
if (err < apx->error) {
apx->data[0] = i;
mve_store_block (enc->mve, frame + fy * enc->mve->width + fx,
apx->block);
apx->error = err;
if (err == 0)
return 0;
}
}
}
return apx->error;
}
static guint32
mve_encode_0x0 (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* copy a block from the last frame (0 bytes) */
if (enc->mve->last_frame == NULL)
return MVE_APPROX_MAX_ERROR;
mve_store_block (enc->mve,
((guint16 *) GST_BUFFER_DATA (enc->mve->last_frame)) +
enc->y * enc->mve->width + enc->x, apx->block);
apx->error = mve_block_error_packed (enc->mve, src, apx->block);
return apx->error;
}
static guint32
mve_encode_0x1 (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* copy a block from the second to last frame (0 bytes) */
if (enc->mve->second_last_frame == NULL)
return MVE_APPROX_MAX_ERROR;
mve_store_block (enc->mve,
((guint16 *) GST_BUFFER_DATA (enc->mve->second_last_frame)) +
enc->y * enc->mve->width + enc->x, apx->block);
apx->error = mve_block_error_packed (enc->mve, src, apx->block);
return apx->error;
}
static guint32
mve_encode_0x2 (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* copy block from 2 frames ago using a motion vector (1 byte) */
if (enc->mve->quick_encoding || enc->mve->second_last_frame == NULL)
return MVE_APPROX_MAX_ERROR;
apx->error = mve_try_vector (enc, src,
(guint16 *) GST_BUFFER_DATA (enc->mve->second_last_frame), 1, apx);
return apx->error;
}
static guint32
mve_encode_0x3 (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* copy 8x8 block from current frame from an up/left block (1 byte) */
if (enc->mve->quick_encoding)
return MVE_APPROX_MAX_ERROR;
apx->error = mve_try_vector (enc, src,
src - enc->mve->width * enc->y - enc->x, -1, apx);
return apx->error;
}
static guint32
mve_encode_0x4 (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* copy a block from previous frame using a motion vector (-8/-8 to +7/+7) (1 byte) */
const GstMveMux *mve = enc->mve;
guint32 err;
const guint16 *frame;
gint x1, x2, xi, y1, y2, yi;
if (mve->last_frame == NULL)
return MVE_APPROX_MAX_ERROR;
frame = (guint16 *) GST_BUFFER_DATA (mve->last_frame);
x1 = enc->x - 8;
x2 = enc->x + 7;
if (x1 < 0)
x1 = 0;
else if (x2 + 8 > mve->width)
x2 = mve->width - 8;
y1 = enc->y - 8;
y2 = enc->y + 7;
if (y1 < 0)
y1 = 0;
else if (y2 + 8 > mve->height)
y2 = mve->height - 8;
apx->error = MVE_APPROX_MAX_ERROR;
for (yi = y1; yi <= y2; ++yi) {
guint yoff = yi * mve->width;
for (xi = x1; xi <= x2; ++xi) {
err = mve_block_error (mve, src, frame + yoff + xi, apx->error);
if (err < apx->error) {
apx->data[0] = ((xi - enc->x + 8) & 0xF) | ((yi - enc->y + 8) << 4);
mve_store_block (mve, frame + yoff + xi, apx->block);
apx->error = err;
if (err == 0)
return 0;
}
}
}
return apx->error;
}
static guint32
mve_encode_0x5 (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* copy a block from previous frame using a motion vector
(-128/-128 to +127/+127) (2 bytes) */
const GstMveMux *mve = enc->mve;
guint32 err;
const guint16 *frame;
gint x1, x2, xi, y1, y2, yi;
if (mve->quick_encoding || mve->last_frame == NULL)
return MVE_APPROX_MAX_ERROR;
frame = (guint16 *) GST_BUFFER_DATA (mve->last_frame);
x1 = enc->x - 128;
x2 = enc->x + 127;
if (x1 < 0)
x1 = 0;
if (x2 + 8 > mve->width)
x2 = mve->width - 8;
y1 = enc->y - 128;
y2 = enc->y + 127;
if (y1 < 0)
y1 = 0;
if (y2 + 8 > mve->height)
y2 = mve->height - 8;
apx->error = MVE_APPROX_MAX_ERROR;
for (yi = y1; yi <= y2; ++yi) {
gint yoff = yi * mve->width;
for (xi = x1; xi <= x2; ++xi) {
err = mve_block_error (mve, src, frame + yoff + xi, apx->error);
if (err < apx->error) {
apx->data[0] = xi - enc->x;
apx->data[1] = yi - enc->y;
mve_store_block (mve, frame + yoff + xi, apx->block);
apx->error = err;
if (err == 0)
return 0;
}
}
}
return apx->error;
}
static guint32
mve_encode_0x7a (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 2-color encoding for 2x2 solid blocks (6 bytes) */
guint16 p[2];
guint16 mean;
guint32 e1, e2;
guint x, y;
guint8 r[2], g[2], b[2], rb, gb, bb;
guint16 *block = apx->block;
guint16 mask = 0x0001;
guint16 flags = 0;
/* calculate mean colors for the entire block */
if (!enc->q2available) {
enc->q2error =
mve_quantize (enc->mve, src, 8, 8, 0, 2, enc->q2block, enc->q2colors);
enc->q2available = TRUE;
}
/* p[0] & 0x8000 */
GST_WRITE_UINT16_LE (&apx->data[0], enc->q2colors[0] | 0x8000);
GST_WRITE_UINT16_LE (&apx->data[2], enc->q2colors[1]);
for (x = 0; x < 2; ++x) {
r[x] = MVE_RVAL (enc->q2colors[x]);
g[x] = MVE_GVAL (enc->q2colors[x]);
b[x] = MVE_BVAL (enc->q2colors[x]);
}
/* calculate mean colors for each 2x2 block and map to global colors */
for (y = 0; y < 4; ++y) {
for (x = 0; x < 4; ++x, mask <<= 1) {
p[0] = src[enc->mve->width];
p[1] = src[enc->mve->width + 1];
rb = (MVE_RVAL (src[0]) + MVE_RVAL (src[1]) + MVE_RVAL (p[0]) +
MVE_RVAL (p[1]) + 2) / 4;
gb = (MVE_GVAL (src[0]) + MVE_GVAL (src[1]) + MVE_GVAL (p[0]) +
MVE_GVAL (p[1]) + 2) / 4;
bb = (MVE_BVAL (src[0]) + MVE_BVAL (src[1]) + MVE_BVAL (p[0]) +
MVE_BVAL (p[1]) + 2) / 4;
e1 = mve_color_dist_rgb (rb, gb, bb, r[0], g[0], b[0]);
e2 = mve_color_dist_rgb (rb, gb, bb, r[1], g[1], b[1]);
if (e1 > e2) {
mean = enc->q2colors[1];
flags |= mask;
} else {
mean = enc->q2colors[0];
}
block[0] = block[1] = block[8] = block[9] = mean;
src += 2;
block += 2;
}
src += (enc->mve->width * 2) - 8;
block += 8;
}
apx->data[4] = flags & 0x00FF;
apx->data[5] = (flags & 0xFF00) >> 8;
apx->error =
mve_block_error_packed (enc->mve, src - enc->mve->width * 8, apx->block);
return apx->error;
}
static guint32
mve_encode_0x7b (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* generic 2-color encoding (12 bytes) */
guint x, y;
guint8 *data = apx->data;
guint16 *block = apx->block;
if (!enc->q2available) {
enc->q2error =
mve_quantize (enc->mve, src, 8, 8, 0, 2, enc->q2block, enc->q2colors);
enc->q2available = TRUE;
}
memcpy (block, enc->q2block, 128);
/* !(p[0] & 0x8000) */
GST_WRITE_UINT16_LE (&data[0], enc->q2colors[0] & ~0x8000);
GST_WRITE_UINT16_LE (&data[2], enc->q2colors[1]);
data += 4;
for (y = 0; y < 8; ++y) {
guint8 flags = 0;
for (x = 0x01; x <= 0x80; x <<= 1) {
if (*block == enc->q2colors[1])
flags |= x;
++block;
}
*data++ = flags;
}
apx->error = enc->q2error;
return apx->error;
}
static guint32
mve_encode_0x8a (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 2-color encoding for top and bottom half (16 bytes) */
guint16 cols[2];
guint32 flags;
guint i, x, y, shifter;
guint16 *block = apx->block;
guint8 *data = apx->data;
apx->error = 0;
for (i = 0; i < 2; ++i) {
apx->error += mve_quantize (enc->mve, src, 8, 4, i, 2, apx->block, cols);
flags = 0;
shifter = 0;
/* p0 & 0x8000 && p2 & 0x8000 */
GST_WRITE_UINT16_LE (&data[0], cols[0] | 0x8000);
GST_WRITE_UINT16_LE (&data[2], cols[1]);
for (y = 0; y < 4; ++y) {
for (x = 0; x < 8; ++x, ++shifter) {
if (block[x] == cols[1])
flags |= 1 << shifter;
}
block += 8;
}
data[4] = flags & 0x000000FF;
data[5] = (flags & 0x0000FF00) >> 8;
data[6] = (flags & 0x00FF0000) >> 16;
data[7] = (flags & 0xFF000000) >> 24;
data += 8;
}
return apx->error;
}
static guint32
mve_encode_0x8b (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 2-color encoding for left and right half (16 bytes) */
guint16 cols[2];
guint32 flags;
guint i, x, y, shifter;
guint16 *block = apx->block;
guint8 *data = apx->data;
apx->error = 0;
for (i = 0; i < 2; ++i) {
apx->error += mve_quantize (enc->mve, src, 4, 8, i, 2, apx->block, cols);
flags = 0;
shifter = 0;
/* p0 & 0x8000 && !(p2 & 0x8000) */
GST_WRITE_UINT16_LE (&data[0], (cols[0] & ~0x8000) | (0x8000 * (i ^ 1)));
GST_WRITE_UINT16_LE (&data[2], cols[1]);
for (y = 0; y < 8; ++y) {
for (x = 0; x < 4; ++x, ++shifter) {
if (block[x] == cols[1])
flags |= 1 << shifter;
}
block += 8;
}
data[4] = flags & 0x000000FF;
data[5] = (flags & 0x0000FF00) >> 8;
data[6] = (flags & 0x00FF0000) >> 16;
data[7] = (flags & 0xFF000000) >> 24;
data += 8;
block = apx->block + 4;
}
return apx->error;
}
static guint32
mve_encode_0x8c (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 2-color encoding for each 4x4 quadrant (24 bytes) */
guint16 cols[2];
guint16 flags;
guint i, x, y, shifter;
guint16 *block;
guint8 *data = apx->data;
apx->error = 0;
for (i = 0; i < 4; ++i) {
apx->error +=
mve_quantize (enc->mve, src, 4, 4, ((i & 1) << 1) | ((i & 2) >> 1), 2,
apx->block, cols);
/* !(p0 & 0x8000) */
GST_WRITE_UINT16_LE (&data[0], cols[0] & ~0x8000);
GST_WRITE_UINT16_LE (&data[2], cols[1]);
block = apx->block + ((i / 2) * 4) + ((i % 2) * 32);
flags = 0;
shifter = 0;
for (y = 0; y < 4; ++y) {
for (x = 0; x < 4; ++x, ++shifter) {
if (block[x] == cols[1])
flags |= 1 << shifter;
}
block += 8;
}
data[4] = flags & 0x00FF;
data[5] = (flags & 0xFF00) >> 8;
data += 6;
}
return apx->error;
}
static guint32
mve_encode_0x9a (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 4-color encoding for 2x2 solid blocks (12 bytes) */
guint16 p[2];
guint32 e, emin;
guint i, x, y, mean = 0;
guint8 r[4], g[4], b[4], rb, gb, bb;
guint16 *block = apx->block;
guint shifter = 0;
guint32 flags = 0;
/* calculate mean colors for the entire block */
if (!enc->q4available) {
enc->q4error =
mve_quantize (enc->mve, src, 8, 8, 0, 4, enc->q4block, enc->q4colors);
enc->q4available = TRUE;
}
/* !(p[0] & 0x8000) && p[2] & 0x8000 */
GST_WRITE_UINT16_LE (&apx->data[0], enc->q4colors[0] & ~0x8000);
GST_WRITE_UINT16_LE (&apx->data[2], enc->q4colors[1]);
GST_WRITE_UINT16_LE (&apx->data[4], enc->q4colors[2] | 0x8000);
GST_WRITE_UINT16_LE (&apx->data[6], enc->q4colors[3]);
for (i = 0; i < 4; ++i) {
r[i] = MVE_RVAL (enc->q4colors[i]);
g[i] = MVE_GVAL (enc->q4colors[i]);
b[i] = MVE_BVAL (enc->q4colors[i]);
}
/* calculate mean colors for each 2x2 block and map to global colors */
for (y = 0; y < 4; ++y) {
for (x = 0; x < 4; ++x, shifter += 2) {
p[0] = src[enc->mve->width];
p[1] = src[enc->mve->width + 1];
rb = (MVE_RVAL (src[0]) + MVE_RVAL (src[1]) + MVE_RVAL (p[0]) +
MVE_RVAL (p[1]) + 2) / 4;
gb = (MVE_GVAL (src[0]) + MVE_GVAL (src[1]) + MVE_GVAL (p[0]) +
MVE_GVAL (p[1]) + 2) / 4;
bb = (MVE_BVAL (src[0]) + MVE_BVAL (src[1]) + MVE_BVAL (p[0]) +
MVE_BVAL (p[1]) + 2) / 4;
emin = MVE_APPROX_MAX_ERROR;
for (i = 0; i < 4; ++i) {
e = mve_color_dist_rgb (rb, gb, bb, r[i], g[i], b[i]);
if (e < emin) {
emin = e;
mean = i;
}
}
flags |= mean << shifter;
block[0] = block[1] = block[8] = block[9] = enc->q4colors[mean];
src += 2;
block += 2;
}
src += (enc->mve->width * 2) - 8;
block += 8;
}
apx->data[8] = flags & 0x000000FF;
apx->data[9] = (flags & 0x0000FF00) >> 8;
apx->data[10] = (flags & 0x00FF0000) >> 16;
apx->data[11] = (flags & 0xFF000000) >> 24;
apx->error =
mve_block_error_packed (enc->mve, src - 8 * enc->mve->width, apx->block);
return apx->error;
}
static guint32
mve_encode_0x9b (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 4-color encoding for 2x1 solid blocks (16 bytes) */
guint32 e, emin;
guint i, x, y, mean = 0;
guint8 r[4], g[4], b[4], rb, gb, bb;
guint8 *data = apx->data;
guint16 *block = apx->block;
guint shifter = 0;
guint32 flags = 0;
/* calculate mean colors for the entire block */
if (!enc->q4available) {
enc->q4error =
mve_quantize (enc->mve, src, 8, 8, 0, 4, enc->q4block, enc->q4colors);
enc->q4available = TRUE;
}
/* p[0] & 0x8000 && !(p[2] & 0x8000) */
GST_WRITE_UINT16_LE (&data[0], enc->q4colors[0] | 0x8000);
GST_WRITE_UINT16_LE (&data[2], enc->q4colors[1]);
GST_WRITE_UINT16_LE (&data[4], enc->q4colors[2] & ~0x8000);
GST_WRITE_UINT16_LE (&data[6], enc->q4colors[3]);
data += 8;
for (i = 0; i < 4; ++i) {
r[i] = MVE_RVAL (enc->q4colors[i]);
g[i] = MVE_GVAL (enc->q4colors[i]);
b[i] = MVE_BVAL (enc->q4colors[i]);
}
/* calculate mean colors for each 2x1 block and map to global colors */
for (y = 0; y < 8; ++y) {
for (x = 0; x < 4; ++x, shifter += 2) {
rb = (MVE_RVAL (src[0]) + MVE_RVAL (src[1]) + 1) / 2;
gb = (MVE_GVAL (src[0]) + MVE_GVAL (src[1]) + 1) / 2;
bb = (MVE_BVAL (src[0]) + MVE_BVAL (src[1]) + 1) / 2;
emin = MVE_APPROX_MAX_ERROR;
for (i = 0; i < 4; ++i) {
e = mve_color_dist_rgb (rb, gb, bb, r[i], g[i], b[i]);
if (e < emin) {
emin = e;
mean = i;
}
}
flags |= mean << shifter;
block[0] = block[1] = enc->q4colors[mean];
src += 2;
block += 2;
}
if ((y == 3) || (y == 7)) {
data[0] = flags & 0x000000FF;
data[1] = (flags & 0x0000FF00) >> 8;
data[2] = (flags & 0x00FF0000) >> 16;
data[3] = (flags & 0xFF000000) >> 24;
data += 4;
flags = 0;
shifter = 0;
}
src += enc->mve->width - 8;
}
apx->error =
mve_block_error_packed (enc->mve, src - 8 * enc->mve->width, apx->block);
return apx->error;
}
static guint32
mve_encode_0x9c (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 4-color encoding for 1x2 solid blocks (16 bytes) */
guint16 p2;
guint32 e, emin;
guint i, x, y, mean = 0;
guint8 r[4], g[4], b[4], rb, gb, bb;
guint8 *data = apx->data;
guint16 *block = apx->block;
guint shifter = 0;
guint32 flags = 0;
/* calculate mean colors for the entire block */
if (!enc->q4available) {
enc->q4error =
mve_quantize (enc->mve, src, 8, 8, 0, 4, enc->q4block, enc->q4colors);
enc->q4available = TRUE;
}
/* p[0] & 0x8000 && p[2] & 0x8000 */
GST_WRITE_UINT16_LE (&data[0], enc->q4colors[0] | 0x8000);
GST_WRITE_UINT16_LE (&data[2], enc->q4colors[1]);
GST_WRITE_UINT16_LE (&data[4], enc->q4colors[2] | 0x8000);
GST_WRITE_UINT16_LE (&data[6], enc->q4colors[3]);
data += 8;
for (i = 0; i < 4; ++i) {
r[i] = MVE_RVAL (enc->q4colors[i]);
g[i] = MVE_GVAL (enc->q4colors[i]);
b[i] = MVE_BVAL (enc->q4colors[i]);
}
/* calculate mean colors for each 1x2 block and map to global colors */
for (y = 0; y < 4; ++y) {
for (x = 0; x < 8; ++x, shifter += 2) {
p2 = src[enc->mve->width];
rb = (MVE_RVAL (src[0]) + MVE_RVAL (p2) + 1) / 2;
gb = (MVE_GVAL (src[0]) + MVE_GVAL (p2) + 1) / 2;
bb = (MVE_BVAL (src[0]) + MVE_BVAL (p2) + 1) / 2;
emin = MVE_APPROX_MAX_ERROR;
for (i = 0; i < 4; ++i) {
e = mve_color_dist_rgb (rb, gb, bb, r[i], g[i], b[i]);
if (e < emin) {
emin = e;
mean = i;
}
}
flags |= mean << shifter;
block[0] = block[8] = enc->q4colors[mean];
++src;
++block;
}
if ((y == 1) || (y == 3)) {
data[0] = flags & 0x000000FF;
data[1] = (flags & 0x0000FF00) >> 8;
data[2] = (flags & 0x00FF0000) >> 16;
data[3] = (flags & 0xFF000000) >> 24;
data += 4;
flags = 0;
shifter = 0;
}
src += (enc->mve->width * 2) - 8;
block += 8;
}
apx->error =
mve_block_error_packed (enc->mve, src - 8 * enc->mve->width, apx->block);
return apx->error;
}
static guint32
mve_encode_0x9d (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* generic 4-color encoding (24 bytes) */
guint32 flags = 0;
guint shifter = 0;
guint i, x, y;
guint8 *data = apx->data;
guint16 *block = apx->block;
if (!enc->q4available) {
enc->q4error =
mve_quantize (enc->mve, src, 8, 8, 0, 4, enc->q4block, enc->q4colors);
enc->q4available = TRUE;
}
memcpy (block, enc->q4block, 128);
/* !(p[0] & 0x8000) && !(p[2] & 0x8000) */
GST_WRITE_UINT16_LE (&data[0], enc->q4colors[0] & ~0x8000);
GST_WRITE_UINT16_LE (&data[2], enc->q4colors[1]);
GST_WRITE_UINT16_LE (&data[4], enc->q4colors[2] & ~0x8000);
GST_WRITE_UINT16_LE (&data[6], enc->q4colors[3]);
data += 8;
for (y = 0; y < 8; ++y) {
for (x = 0; x < 8; ++x, shifter += 2) {
for (i = 0; i < 3; ++i) {
if (*block == enc->q4colors[i])
break;
}
flags |= i << shifter;
++block;
}
data[0] = flags & 0x000000FF;
data[1] = (flags & 0x0000FF00) >> 8;
data += 2;
shifter = 0;
flags = 0;
}
apx->error = enc->q4error;
return apx->error;
}
static guint32
mve_encode_0xaa (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 4-color encoding for top and bottom half (32 bytes) */
guint16 cols[4];
guint32 flags;
guint i, j, x, y, shifter;
guint16 *block = apx->block;
guint8 *data = apx->data;
apx->error = 0;
for (i = 0; i < 2; ++i) {
apx->error += mve_quantize (enc->mve, src, 8, 4, i, 4, apx->block, cols);
flags = 0;
shifter = 0;
/* p0 & 0x8000 && p4 & 0x8000 */
GST_WRITE_UINT16_LE (&data[0], cols[0] | 0x8000);
GST_WRITE_UINT16_LE (&data[2], cols[1]);
GST_WRITE_UINT16_LE (&data[4], cols[2]);
GST_WRITE_UINT16_LE (&data[6], cols[3]);
data += 8;
for (y = 0; y < 4; ++y) {
for (x = 0; x < 8; ++x, shifter += 2) {
for (j = 0; j < 3; ++j) {
if (block[x] == cols[j])
break;
}
flags |= j << shifter;
}
block += 8;
if ((y == 1) || (y == 3)) {
data[0] = flags & 0x000000FF;
data[1] = (flags & 0x0000FF00) >> 8;
data[2] = (flags & 0x00FF0000) >> 16;
data[3] = (flags & 0xFF000000) >> 24;
data += 4;
flags = 0;
shifter = 0;
}
}
}
return apx->error;
}
static guint32
mve_encode_0xab (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 4-color encoding for left and right half (32 bytes) */
guint16 cols[4];
guint32 flags;
guint i, j, x, y, shifter;
guint16 *block = apx->block;
guint8 *data = apx->data;
apx->error = 0;
for (i = 0; i < 2; ++i) {
apx->error += mve_quantize (enc->mve, src, 4, 8, i, 4, apx->block, cols);
flags = 0;
shifter = 0;
/* p0 & 0x8000 && !(p4 & 0x8000) */
GST_WRITE_UINT16_LE (&data[0], (cols[0] & ~0x8000) | (0x8000 * (i ^ 1)));
GST_WRITE_UINT16_LE (&data[2], cols[1]);
GST_WRITE_UINT16_LE (&data[4], cols[2]);
GST_WRITE_UINT16_LE (&data[6], cols[3]);
data += 8;
for (y = 0; y < 8; ++y) {
for (x = 0; x < 4; ++x, shifter += 2) {
for (j = 0; j < 3; ++j) {
if (block[x] == cols[j])
break;
}
flags |= j << shifter;
}
block += 8;
if ((y == 3) || (y == 7)) {
data[0] = flags & 0x000000FF;
data[1] = (flags & 0x0000FF00) >> 8;
data[2] = (flags & 0x00FF0000) >> 16;
data[3] = (flags & 0xFF000000) >> 24;
data += 4;
flags = 0;
shifter = 0;
}
}
block = apx->block + 4;
}
return apx->error;
}
static guint32
mve_encode_0xac (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 4-color encoding for each 4x4 quadrant (48 bytes) */
guint16 cols[4];
guint32 flags;
guint i, j, x, y, shifter;
guint16 *block;
guint8 *data = apx->data;
apx->error = 0;
for (i = 0; i < 4; ++i) {
apx->error +=
mve_quantize (enc->mve, src, 4, 4, ((i & 1) << 1) | ((i & 2) >> 1), 4,
apx->block, cols);
/* !(p0 & 0x8000) */
GST_WRITE_UINT16_LE (&data[0], cols[0] & ~0x8000);
GST_WRITE_UINT16_LE (&data[2], cols[1]);
GST_WRITE_UINT16_LE (&data[4], cols[2]);
GST_WRITE_UINT16_LE (&data[6], cols[3]);
block = apx->block + ((i / 2) * 4) + ((i % 2) * 32);
flags = 0;
shifter = 0;
for (y = 0; y < 4; ++y) {
for (x = 0; x < 4; ++x, shifter += 2) {
for (j = 0; j < 3; ++j) {
if (block[x] == cols[j])
break;
}
flags |= j << shifter;
}
block += 8;
}
data[8] = flags & 0x000000FF;
data[9] = (flags & 0x0000FF00) >> 8;
data[10] = (flags & 0x00FF0000) >> 16;
data[11] = (flags & 0xFF000000) >> 24;
data += 12;
}
return apx->error;
}
static guint32
mve_encode_0xb (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 64-color encoding (each pixel in block is a different color) (128 bytes) */
guint i;
apx->error = 0;
mve_store_block (enc->mve, src, apx->block);
for (i = 0; i < 64; ++i)
GST_WRITE_UINT16_LE (&apx->data[i << 1], apx->block[i]);
return 0;
}
static guint32
mve_encode_0xc (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 16-color block encoding: each 2x2 block is a different color (32 bytes) */
guint i = 0, x, y;
const guint w = enc->mve->width;
guint16 r, g, b;
/* calculate median color for each 2x2 block */
for (y = 0; y < 4; ++y) {
for (x = 0; x < 4; ++x) {
r = MVE_RVAL (src[0]) + MVE_RVAL (src[1]) +
MVE_RVAL (src[w]) + MVE_RVAL (src[w + 1]) + 2;
g = MVE_GVAL (src[0]) + MVE_GVAL (src[1]) +
MVE_GVAL (src[w]) + MVE_GVAL (src[w + 1]) + 2;
b = MVE_BVAL (src[0]) + MVE_BVAL (src[1]) +
MVE_BVAL (src[w]) + MVE_BVAL (src[w + 1]) + 2;
apx->block[i] = apx->block[i + 1] = apx->block[i + 2] =
apx->block[i + 3] = MVE_COL (r >> 2, g >> 2, b >> 2);
GST_WRITE_UINT16_LE (&apx->data[i >> 1], apx->block[i]);
i += 4;
src += 2;
}
src += (w * 2) - 8;
}
apx->error = mve_block_error_packed (enc->mve, src - (8 * w), apx->block);
return apx->error;
}
static guint32
mve_encode_0xd (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 4-color block encoding: each 4x4 block is a different color (8 bytes) */
guint i, x, y;
guint16 *block;
/* calculate median color for each 4x4 block */
for (i = 0; i < 4; ++i) {
guint16 median =
mve_median_sub (enc->mve, src, 4, 4, ((i & 1) << 1) | ((i & 2) >> 1));
block = apx->block + ((i / 2) * 4) + ((i % 2) * 32);
for (y = 0; y < 4; ++y) {
for (x = 0; x < 4; ++x) {
block[x] = median;
}
block += 8;
}
GST_WRITE_UINT16_LE (&apx->data[i << 1], median);
}
apx->error = mve_block_error_packed (enc->mve, src, apx->block);
return apx->error;
}
static guint32
mve_encode_0xe (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 1-color encoding: the whole block is 1 solid color (2 bytes) */
guint i;
guint16 median = mve_median (enc->mve, src);
for (i = 0; i < 64; ++i)
apx->block[i] = median;
apx->error = mve_block_error_packed (enc->mve, src, apx->block);
GST_WRITE_UINT16_LE (apx->data, median);
return apx->error;
}
static guint32
mve_encode_0xf (GstMveEncoderData * enc, const guint16 * src,
GstMveApprox * apx)
{
/* 2 colors dithered encoding (4 bytes) */
guint i, x, y;
guint32 r[2] = { 0 }, g[2] = {
0}, b[2] = {
0};
guint16 col[2];
/* find medians for both colors */
for (y = 0; y < 8; ++y) {
for (x = 0; x < 8; x += 2) {
guint16 p = src[x];
r[y & 1] += MVE_RVAL (p);
g[y & 1] += MVE_GVAL (p);
b[y & 1] += MVE_BVAL (p);
p = src[x + 1];
r[(y & 1) ^ 1] += MVE_RVAL (p);
g[(y & 1) ^ 1] += MVE_GVAL (p);
b[(y & 1) ^ 1] += MVE_BVAL (p);
}
src += enc->mve->width;
}
col[0] = MVE_COL ((r[0] + 16) / 32, (g[0] + 16) / 32, (b[0] + 16) / 32);
col[1] = MVE_COL ((r[1] + 16) / 32, (g[1] + 16) / 32, (b[1] + 16) / 32);
/* store block after encoding */
for (i = 0, y = 0; y < 8; ++y) {
for (x = 0; x < 4; ++x) {
apx->block[i++] = col[y & 1];
apx->block[i++] = col[(y & 1) ^ 1];
}
}
GST_WRITE_UINT16_LE (&apx->data[0], col[0]);
GST_WRITE_UINT16_LE (&apx->data[2], col[1]);
apx->error = mve_block_error_packed (enc->mve,
src - (8 * enc->mve->width), apx->block);
return apx->error;
}
/* all available encodings in the preferred order,
i.e. in ascending encoded size */
static const GstMveEncoding mve_encodings[] = {
{0x1, 0, mve_encode_0x1},
{0x0, 0, mve_encode_0x0},
{0x3, 1, mve_encode_0x3},
{0x4, 1, mve_encode_0x4},
{0x2, 1, mve_encode_0x2},
{0xe, 2, mve_encode_0xe},
{0x5, 2, mve_encode_0x5},
{0xf, 4, mve_encode_0xf},
{0x7, 6, mve_encode_0x7a},
{0xd, 8, mve_encode_0xd},
{0x7, 12, mve_encode_0x7b},
{0x9, 12, mve_encode_0x9a},
{0x9, 16, mve_encode_0x9b},
{0x9, 16, mve_encode_0x9c},
{0x8, 16, mve_encode_0x8a},
{0x8, 16, mve_encode_0x8b},
{0x8, 24, mve_encode_0x8c},
{0x9, 24, mve_encode_0x9d},
{0xc, 32, mve_encode_0xc},
{0xa, 32, mve_encode_0xaa},
{0xa, 32, mve_encode_0xab},
{0xa, 48, mve_encode_0xac},
{0xb, 128, mve_encode_0xb}
};
static gboolean
mve_reorder_solution (GArray ** solution, guint16 n)
{
/* do a binary search to find the position to reinsert the modified element */
/* the block we need to reconsider is always at position 0 */
/* return TRUE if this block only has 1 encoding left and can be dropped */
if (mve_comp_solution (&solution[0], &solution[1]) <= 0)
return FALSE; /* already sorted */
else if (solution[0]->len <= 1)
/* drop this element from further calculations since we cannot improve here */
return TRUE;
else {
/* we know the error value can only get worse, so we can actually start at 1 */
guint lower = 1;
guint upper = n - 1;
gint cmp;
guint idx = 0;
while (upper > lower) {
idx = lower + ((upper - lower) / 2);
cmp = mve_comp_solution (&solution[0], &solution[idx]);
if (cmp < 0) {
upper = idx;
} else if (cmp > 0) {
lower = ++idx;
} else {
upper = lower = idx;
}
}
if (idx > 0) {
/* rearrange array members in new order */
GArray *a = solution[0];
memcpy (&solution[0], &solution[1], sizeof (GArray *) * idx);
solution[idx] = a;
}
}
return FALSE;
}
static guint32
gst_mve_find_solution (GArray ** approx, guint16 n, guint32 size, guint16 max)
{
/* build an array of approximations we can shuffle around */
GstMveApprox *sol_apx;
GArray **solution = g_malloc (sizeof (GArray *) * n);
GArray **current = solution;
memcpy (solution, approx, sizeof (GArray *) * n);
qsort (solution, n, sizeof (GArray *), mve_comp_solution);
do {
/* array is now sorted by error of the next to optimal approximation;
drop optimal approximation for the best block */
/* unable to reduce size further */
if (current[0]->len <= 1)
break;
sol_apx = &g_array_index (current[0], GstMveApprox, current[0]->len - 1);
size -= mve_encodings[sol_apx->type].size;
g_array_remove_index_fast (current[0], current[0]->len - 1);
sol_apx = &g_array_index (current[0], GstMveApprox, current[0]->len - 1);
size += mve_encodings[sol_apx->type].size;
if (mve_reorder_solution (current, n)) {
++current;
--n;
}
} while (size > max);
g_free (solution);
return size;
}
GstFlowReturn
mve_encode_frame16 (GstMveMux * mve, GstBuffer * frame, guint16 max_data)
{
guint16 *src;
GstFlowReturn ret = GST_FLOW_ERROR;
guint8 *cm = mve->chunk_code_map;
GByteArray *pstream;
GArray **approx;
GstMveApprox apx;
GstMveEncoderData enc;
const guint16 blocks = (mve->width * mve->height) / 64;
guint32 encoded_size = 2; /* two initial bytes for the offset */
guint i = 0, x, y;
src = (guint16 *) GST_BUFFER_DATA (frame);
approx = g_malloc (sizeof (GArray *) * blocks);
enc.mve = mve;
for (enc.y = 0; enc.y < mve->height; enc.y += 8) {
for (enc.x = 0; enc.x < mve->width; enc.x += 8) {
guint32 err, last_err = MVE_APPROX_MAX_ERROR;
guint type = 0;
guint best = 0;
enc.q2available = enc.q4available = FALSE;
approx[i] = g_array_new (FALSE, FALSE, sizeof (GstMveApprox));
do {
err = mve_encodings[type].approx (&enc, src, &apx);
if (err < last_err) {
apx.type = best = type;
g_array_append_val (approx[i], apx);
last_err = err;
}
++type;
} while (last_err != 0);
encoded_size += mve_encodings[best].size;
++i;
src += 8;
}
src += 7 * mve->width;
}
/* find best solution with size constraints */
GST_DEBUG_OBJECT (mve, "encoded frame %u in %u bytes (lossless)",
mve->video_frames + 1, encoded_size);
#if 0
/* FIXME */
src = (guint16 *) GST_BUFFER_DATA (frame);
for (i = 0, y = 0; y < mve->height; y += 8) {
for (x = 0; x < mve->width; x += 8, ++i) {
GstMveApprox *sol =
&g_array_index (approx[i], GstMveApprox, approx[i]->len - 1);
guint opcode = mve_encodings[sol->type].opcode;
guint j, k;
if (sol->error > 0)
GST_WARNING_OBJECT (mve, "error is %lu for %d/%d (0x%x)", sol->error, x,
y, opcode);
for (j = 0; j < 8; ++j) {
guint16 *o = src + j * mve->width;
guint16 *c = sol->block + j * 8;
if (memcmp (o, c, 16)) {
GST_WARNING_OBJECT (mve, "opcode 0x%x (type %d) at %d/%d, line %d:",
opcode, sol->type, x, y, j + 1);
for (k = 0; k < 8; ++k) {
o = src + k * mve->width;
c = sol->block + k * 8;
GST_WARNING_OBJECT (mve,
"%d should be: %4d %4d %4d %4d %4d %4d %4d %4d", k, o[0],
o[1], o[2], o[3], o[4], o[5], o[6], o[7]);
GST_WARNING_OBJECT (mve,
"%d but is : %4d %4d %4d %4d %4d %4d %4d %4d", k, c[0],
c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
}
}
}
src += 8;
}
src += 7 * mve->width;
}
#endif
if (encoded_size > max_data) {
encoded_size =
gst_mve_find_solution (approx, blocks, encoded_size, max_data);
if (encoded_size > max_data) {
GST_ERROR_OBJECT (mve, "unable to compress frame to less than %d bytes",
encoded_size);
for (i = 0; i < blocks; ++i)
g_array_free (approx[i], TRUE);
goto done;
}
GST_DEBUG_OBJECT (mve, "compressed frame %u to %u bytes (lossy)",
mve->video_frames + 1, encoded_size);
}
mve->chunk_video = g_byte_array_sized_new (encoded_size);
/* reserve two bytes for the offset pointer we'll fill in later */
g_byte_array_set_size (mve->chunk_video, 2);
pstream = g_byte_array_new ();
/* encode */
src = (guint16 *) GST_BUFFER_DATA (frame);
for (i = 0, y = 0; y < mve->height; y += 8) {
for (x = 0; x < mve->width; x += 8, ++i) {
GstMveApprox *sol =
&g_array_index (approx[i], GstMveApprox, approx[i]->len - 1);
guint opcode = mve_encodings[sol->type].opcode;
GByteArray *dest;
if (opcode >= 0x2 && opcode <= 0x4)
dest = pstream;
else
dest = mve->chunk_video;
g_byte_array_append (dest, sol->data, mve_encodings[sol->type].size);
if (i & 1) {
*cm |= opcode << 4;
++cm;
} else
*cm = opcode;
/* modify the frame to match the image we actually encoded */
if (sol->error > 0)
mve_restore_block (mve, src, sol->block);
src += 8;
g_array_free (approx[i], TRUE);
}
src += 7 * mve->width;
}
/* now update the offset */
GST_WRITE_UINT16_LE (mve->chunk_video->data, mve->chunk_video->len);
g_byte_array_append (mve->chunk_video, pstream->data, pstream->len);
g_byte_array_free (pstream, TRUE);
ret = GST_FLOW_OK;
done:
g_free (approx);
return ret;
}