Merge branches 'doc.2017.04.12a', 'fixes.2017.04.19a' and 'srcu.2017.04.21a' into HEAD

doc.2017.04.12a: Documentation updates
fixes.2017.04.19a: Miscellaneous fixes
srcu.2017.04.21a: Parallelize SRCU callback handling
diff --git a/Documentation/RCU/00-INDEX b/Documentation/RCU/00-INDEX
index f773a26..1672573 100644
--- a/Documentation/RCU/00-INDEX
+++ b/Documentation/RCU/00-INDEX
@@ -17,7 +17,7 @@
 rcubarrier.txt
 	- RCU and Unloadable Modules
 rculist_nulls.txt
-	- RCU list primitives for use with SLAB_DESTROY_BY_RCU
+	- RCU list primitives for use with SLAB_TYPESAFE_BY_RCU
 rcuref.txt
 	- Reference-count design for elements of lists/arrays protected by RCU
 rcu.txt
diff --git a/Documentation/RCU/Design/Data-Structures/Data-Structures.html b/Documentation/RCU/Design/Data-Structures/Data-Structures.html
index 4dec890..38d6d80 100644
--- a/Documentation/RCU/Design/Data-Structures/Data-Structures.html
+++ b/Documentation/RCU/Design/Data-Structures/Data-Structures.html
@@ -19,6 +19,8 @@
 	The <tt>rcu_state</tt> Structure</a>
 <li>	<a href="#The rcu_node Structure">
 	The <tt>rcu_node</tt> Structure</a>
+<li>	<a href="#The rcu_segcblist Structure">
+	The <tt>rcu_segcblist</tt> Structure</a>
 <li>	<a href="#The rcu_data Structure">
 	The <tt>rcu_data</tt> Structure</a>
 <li>	<a href="#The rcu_dynticks Structure">
@@ -841,6 +843,134 @@
 Finally, lines&nbsp;64-66 produce an error if the maximum number of
 CPUs is too large for the specified fanout.
 
+<h3><a name="The rcu_segcblist Structure">
+The <tt>rcu_segcblist</tt> Structure</a></h3>
+
+The <tt>rcu_segcblist</tt> structure maintains a segmented list of
+callbacks as follows:
+
+<pre>
+ 1 #define RCU_DONE_TAIL        0
+ 2 #define RCU_WAIT_TAIL        1
+ 3 #define RCU_NEXT_READY_TAIL  2
+ 4 #define RCU_NEXT_TAIL        3
+ 5 #define RCU_CBLIST_NSEGS     4
+ 6
+ 7 struct rcu_segcblist {
+ 8   struct rcu_head *head;
+ 9   struct rcu_head **tails[RCU_CBLIST_NSEGS];
+10   unsigned long gp_seq[RCU_CBLIST_NSEGS];
+11   long len;
+12   long len_lazy;
+13 };
+</pre>
+
+<p>
+The segments are as follows:
+
+<ol>
+<li>	<tt>RCU_DONE_TAIL</tt>: Callbacks whose grace periods have elapsed.
+	These callbacks are ready to be invoked.
+<li>	<tt>RCU_WAIT_TAIL</tt>: Callbacks that are waiting for the
+	current grace period.
+	Note that different CPUs can have different ideas about which
+	grace period is current, hence the <tt>-&gt;gp_seq</tt> field.
+<li>	<tt>RCU_NEXT_READY_TAIL</tt>: Callbacks waiting for the next
+	grace period to start.
+<li>	<tt>RCU_NEXT_TAIL</tt>: Callbacks that have not yet been
+	associated with a grace period.
+</ol>
+
+<p>
+The <tt>-&gt;head</tt> pointer references the first callback or
+is <tt>NULL</tt> if the list contains no callbacks (which is
+<i>not</i> the same as being empty).
+Each element of the <tt>-&gt;tails[]</tt> array references the
+<tt>-&gt;next</tt> pointer of the last callback in the corresponding
+segment of the list, or the list's <tt>-&gt;head</tt> pointer if
+that segment and all previous segments are empty.
+If the corresponding segment is empty but some previous segment is
+not empty, then the array element is identical to its predecessor.
+Older callbacks are closer to the head of the list, and new callbacks
+are added at the tail.
+This relationship between the <tt>-&gt;head</tt> pointer, the
+<tt>-&gt;tails[]</tt> array, and the callbacks is shown in this
+diagram:
+
+</p><p><img src="nxtlist.svg" alt="nxtlist.svg" width="40%">
+
+</p><p>In this figure, the <tt>-&gt;head</tt> pointer references the
+first
+RCU callback in the list.
+The <tt>-&gt;tails[RCU_DONE_TAIL]</tt> array element references
+the <tt>-&gt;head</tt> pointer itself, indicating that none
+of the callbacks is ready to invoke.
+The <tt>-&gt;tails[RCU_WAIT_TAIL]</tt> array element references callback
+CB&nbsp;2's <tt>-&gt;next</tt> pointer, which indicates that
+CB&nbsp;1 and CB&nbsp;2 are both waiting on the current grace period,
+give or take possible disagreements about exactly which grace period
+is the current one.
+The <tt>-&gt;tails[RCU_NEXT_READY_TAIL]</tt> array element
+references the same RCU callback that <tt>-&gt;tails[RCU_WAIT_TAIL]</tt>
+does, which indicates that there are no callbacks waiting on the next
+RCU grace period.
+The <tt>-&gt;tails[RCU_NEXT_TAIL]</tt> array element references
+CB&nbsp;4's <tt>-&gt;next</tt> pointer, indicating that all the
+remaining RCU callbacks have not yet been assigned to an RCU grace
+period.
+Note that the <tt>-&gt;tails[RCU_NEXT_TAIL]</tt> array element
+always references the last RCU callback's <tt>-&gt;next</tt> pointer
+unless the callback list is empty, in which case it references
+the <tt>-&gt;head</tt> pointer.
+
+<p>
+There is one additional important special case for the
+<tt>-&gt;tails[RCU_NEXT_TAIL]</tt> array element: It can be <tt>NULL</tt>
+when this list is <i>disabled</i>.
+Lists are disabled when the corresponding CPU is offline or when
+the corresponding CPU's callbacks are offloaded to a kthread,
+both of which are described elsewhere.
+
+</p><p>CPUs advance their callbacks from the
+<tt>RCU_NEXT_TAIL</tt> to the <tt>RCU_NEXT_READY_TAIL</tt> to the
+<tt>RCU_WAIT_TAIL</tt> to the <tt>RCU_DONE_TAIL</tt> list segments
+as grace periods advance.
+
+</p><p>The <tt>-&gt;gp_seq[]</tt> array records grace-period
+numbers corresponding to the list segments.
+This is what allows different CPUs to have different ideas as to
+which is the current grace period while still avoiding premature
+invocation of their callbacks.
+In particular, this allows CPUs that go idle for extended periods
+to determine which of their callbacks are ready to be invoked after
+reawakening.
+
+</p><p>The <tt>-&gt;len</tt> counter contains the number of
+callbacks in <tt>-&gt;head</tt>, and the
+<tt>-&gt;len_lazy</tt> contains the number of those callbacks that
+are known to only free memory, and whose invocation can therefore
+be safely deferred.
+
+<p><b>Important note</b>: It is the <tt>-&gt;len</tt> field that
+determines whether or not there are callbacks associated with
+this <tt>rcu_segcblist</tt> structure, <i>not</i> the <tt>-&gt;head</tt>
+pointer.
+The reason for this is that all the ready-to-invoke callbacks
+(that is, those in the <tt>RCU_DONE_TAIL</tt> segment) are extracted
+all at once at callback-invocation time.
+If callback invocation must be postponed, for example, because a
+high-priority process just woke up on this CPU, then the remaining
+callbacks are placed back on the <tt>RCU_DONE_TAIL</tt> segment.
+Either way, the <tt>-&gt;len</tt> and <tt>-&gt;len_lazy</tt> counts
+are adjusted after the corresponding callbacks have been invoked, and so
+again it is the <tt>-&gt;len</tt> count that accurately reflects whether
+or not there are callbacks associated with this <tt>rcu_segcblist</tt>
+structure.
+Of course, off-CPU sampling of the <tt>-&gt;len</tt> count requires
+the use of appropriate synchronization, for example, memory barriers.
+This synchronization can be a bit subtle, particularly in the case
+of <tt>rcu_barrier()</tt>.
+
 <h3><a name="The rcu_data Structure">
 The <tt>rcu_data</tt> Structure</a></h3>
 
@@ -983,62 +1113,18 @@
 as follows:
 
 <pre>
- 1 struct rcu_head *nxtlist;
- 2 struct rcu_head **nxttail[RCU_NEXT_SIZE];
- 3 unsigned long nxtcompleted[RCU_NEXT_SIZE];
- 4 long qlen_lazy;
- 5 long qlen;
- 6 long qlen_last_fqs_check;
+ 1 struct rcu_segcblist cblist;
+ 2 long qlen_last_fqs_check;
+ 3 unsigned long n_cbs_invoked;
+ 4 unsigned long n_nocbs_invoked;
+ 5 unsigned long n_cbs_orphaned;
+ 6 unsigned long n_cbs_adopted;
  7 unsigned long n_force_qs_snap;
- 8 unsigned long n_cbs_invoked;
- 9 unsigned long n_cbs_orphaned;
-10 unsigned long n_cbs_adopted;
-11 long blimit;
+ 8 long blimit;
 </pre>
 
-<p>The <tt>-&gt;nxtlist</tt> pointer and the
-<tt>-&gt;nxttail[]</tt> array form a four-segment list with
-older callbacks near the head and newer ones near the tail.
-Each segment contains callbacks with the corresponding relationship
-to the current grace period.
-The pointer out of the end of each of the four segments is referenced
-by the element of the <tt>-&gt;nxttail[]</tt> array indexed by
-<tt>RCU_DONE_TAIL</tt> (for callbacks handled by a prior grace period),
-<tt>RCU_WAIT_TAIL</tt> (for callbacks waiting on the current grace period),
-<tt>RCU_NEXT_READY_TAIL</tt> (for callbacks that will wait on the next
-grace period), and
-<tt>RCU_NEXT_TAIL</tt> (for callbacks that are not yet associated
-with a specific grace period)
-respectively, as shown in the following figure.
-
-</p><p><img src="nxtlist.svg" alt="nxtlist.svg" width="40%">
-
-</p><p>In this figure, the <tt>-&gt;nxtlist</tt> pointer references the
-first
-RCU callback in the list.
-The <tt>-&gt;nxttail[RCU_DONE_TAIL]</tt> array element references
-the <tt>-&gt;nxtlist</tt> pointer itself, indicating that none
-of the callbacks is ready to invoke.
-The <tt>-&gt;nxttail[RCU_WAIT_TAIL]</tt> array element references callback
-CB&nbsp;2's <tt>-&gt;next</tt> pointer, which indicates that
-CB&nbsp;1 and CB&nbsp;2 are both waiting on the current grace period.
-The <tt>-&gt;nxttail[RCU_NEXT_READY_TAIL]</tt> array element
-references the same RCU callback that <tt>-&gt;nxttail[RCU_WAIT_TAIL]</tt>
-does, which indicates that there are no callbacks waiting on the next
-RCU grace period.
-The <tt>-&gt;nxttail[RCU_NEXT_TAIL]</tt> array element references
-CB&nbsp;4's <tt>-&gt;next</tt> pointer, indicating that all the
-remaining RCU callbacks have not yet been assigned to an RCU grace
-period.
-Note that the <tt>-&gt;nxttail[RCU_NEXT_TAIL]</tt> array element
-always references the last RCU callback's <tt>-&gt;next</tt> pointer
-unless the callback list is empty, in which case it references
-the <tt>-&gt;nxtlist</tt> pointer.
-
-</p><p>CPUs advance their callbacks from the
-<tt>RCU_NEXT_TAIL</tt> to the <tt>RCU_NEXT_READY_TAIL</tt> to the
-<tt>RCU_WAIT_TAIL</tt> to the <tt>RCU_DONE_TAIL</tt> list segments
-as grace periods advance.
+<p>The <tt>-&gt;cblist</tt> structure is the segmented callback list
+described earlier.
 The CPU advances the callbacks in its <tt>rcu_data</tt> structure
 whenever it notices that another RCU grace period has completed.
 The CPU detects the completion of an RCU grace period by noticing
@@ -1049,16 +1135,7 @@
 <tt>-&gt;completed</tt> field is updated at the end of each
 grace period.
 
-</p><p>The <tt>-&gt;nxtcompleted[]</tt> array records grace-period
-numbers corresponding to the list segments.
-This allows CPUs that go idle for extended periods to determine
-which of their callbacks are ready to be invoked after reawakening.
-
-</p><p>The <tt>-&gt;qlen</tt> counter contains the number of
-callbacks in <tt>-&gt;nxtlist</tt>, and the
-<tt>-&gt;qlen_lazy</tt> contains the number of those callbacks that
-are known to only free memory, and whose invocation can therefore
-be safely deferred.
+<p>
 The <tt>-&gt;qlen_last_fqs_check</tt> and
 <tt>-&gt;n_force_qs_snap</tt> coordinate the forcing of quiescent
 states from <tt>call_rcu()</tt> and friends when callback
@@ -1069,6 +1146,10 @@
 fields count the number of callbacks invoked,
 sent to other CPUs when this CPU goes offline,
 and received from other CPUs when those other CPUs go offline.
+The <tt>-&gt;n_nocbs_invoked</tt> is used when the CPU's callbacks
+are offloaded to a kthread.
+
+<p>
 Finally, the <tt>-&gt;blimit</tt> counter is the maximum number of
 RCU callbacks that may be invoked at a given time.
 
diff --git a/Documentation/RCU/Design/Data-Structures/nxtlist.svg b/Documentation/RCU/Design/Data-Structures/nxtlist.svg
index abc4cc7..0223e79 100644
--- a/Documentation/RCU/Design/Data-Structures/nxtlist.svg
+++ b/Documentation/RCU/Design/Data-Structures/nxtlist.svg
@@ -19,7 +19,7 @@
    id="svg2"
    version="1.1"
    inkscape:version="0.48.4 r9939"
-   sodipodi:docname="nxtlist.fig">
+   sodipodi:docname="segcblist.svg">
   <metadata
      id="metadata94">
     <rdf:RDF>
@@ -28,7 +28,7 @@
         <dc:format>image/svg+xml</dc:format>
         <dc:type
            rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
-        <dc:title></dc:title>
+        <dc:title />
       </cc:Work>
     </rdf:RDF>
   </metadata>
@@ -241,61 +241,51 @@
        xml:space="preserve"
        x="225"
        y="675"
-       fill="#000000"
-       font-family="Courier"
        font-style="normal"
        font-weight="bold"
        font-size="324"
-       text-anchor="start"
-       id="text64">nxtlist</text>
+       id="text64"
+       style="font-size:324px;font-style:normal;font-weight:bold;text-anchor:start;fill:#000000;font-family:Courier">-&gt;head</text>
     <!-- Text -->
     <text
        xml:space="preserve"
        x="225"
        y="1800"
-       fill="#000000"
-       font-family="Courier"
        font-style="normal"
        font-weight="bold"
        font-size="324"
-       text-anchor="start"
-       id="text66">nxttail[RCU_DONE_TAIL]</text>
+       id="text66"
+       style="font-size:324px;font-style:normal;font-weight:bold;text-anchor:start;fill:#000000;font-family:Courier">-&gt;tails[RCU_DONE_TAIL]</text>
     <!-- Text -->
     <text
        xml:space="preserve"
        x="225"
        y="2925"
-       fill="#000000"
-       font-family="Courier"
        font-style="normal"
        font-weight="bold"
        font-size="324"
-       text-anchor="start"
-       id="text68">nxttail[RCU_WAIT_TAIL]</text>
+       id="text68"
+       style="font-size:324px;font-style:normal;font-weight:bold;text-anchor:start;fill:#000000;font-family:Courier">-&gt;tails[RCU_WAIT_TAIL]</text>
     <!-- Text -->
     <text
        xml:space="preserve"
        x="225"
        y="4050"
-       fill="#000000"
-       font-family="Courier"
        font-style="normal"
        font-weight="bold"
        font-size="324"
-       text-anchor="start"
-       id="text70">nxttail[RCU_NEXT_READY_TAIL]</text>
+       id="text70"
+       style="font-size:324px;font-style:normal;font-weight:bold;text-anchor:start;fill:#000000;font-family:Courier">-&gt;tails[RCU_NEXT_READY_TAIL]</text>
     <!-- Text -->
     <text
        xml:space="preserve"
        x="225"
        y="5175"
-       fill="#000000"
-       font-family="Courier"
        font-style="normal"
        font-weight="bold"
        font-size="324"
-       text-anchor="start"
-       id="text72">nxttail[RCU_NEXT_TAIL]</text>
+       id="text72"
+       style="font-size:324px;font-style:normal;font-weight:bold;text-anchor:start;fill:#000000;font-family:Courier">-&gt;tails[RCU_NEXT_TAIL]</text>
     <!-- Text -->
     <text
        xml:space="preserve"
diff --git a/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.html b/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.html
index 7a3194c..e5d0bbd 100644
--- a/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.html
+++ b/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.html
@@ -284,6 +284,7 @@
 	Funnel locking and wait/wakeup</a>.
 <li>	<a href="#Use of Workqueues">Use of Workqueues</a>.
 <li>	<a href="#Stall Warnings">Stall warnings</a>.
+<li>	<a href="#Mid-Boot Operation">Mid-boot operation</a>.
 </ol>
 
 <h3><a name="Idle-CPU Checks">Idle-CPU Checks</a></h3>
@@ -524,7 +525,7 @@
 In earlier implementations, the task requesting the expedited
 grace period also drove it to completion.
 This straightforward approach had the disadvantage of needing to
-account for signals sent to user tasks,
+account for POSIX signals sent to user tasks,
 so more recent implemementations use the Linux kernel's
 <a href="https://www.kernel.org/doc/Documentation/workqueue.txt">workqueues</a>.
 
@@ -533,8 +534,8 @@
 processing, but the task reaching the top of the funnel lock
 does a <tt>schedule_work()</tt> (from <tt>_synchronize_rcu_expedited()</tt>
 so that a workqueue kthread does the actual grace-period processing.
-Because workqueue kthreads do not accept signals, grace-period-wait
-processing need not allow for signals.
+Because workqueue kthreads do not accept POSIX signals, grace-period-wait
+processing need not allow for POSIX signals.
 
 In addition, this approach allows wakeups for the previous expedited
 grace period to be overlapped with processing for the next expedited
@@ -586,6 +587,46 @@
 Each stall warning results in another pass through the loop, but the
 second and subsequent passes use longer stall times.
 
+<h3><a name="Mid-Boot Operation">Mid-boot operation</a></h3>
+
+<p>
+The use of workqueues has the advantage that the expedited
+grace-period code need not worry about POSIX signals.
+Unfortunately, it has the
+corresponding disadvantage that workqueues cannot be used until
+they are initialized, which does not happen until some time after
+the scheduler spawns the first task.
+Given that there are parts of the kernel that really do want to
+execute grace periods during this mid-boot &ldquo;dead zone&rdquo;,
+expedited grace periods must do something else during thie time.
+
+<p>
+What they do is to fall back to the old practice of requiring that the
+requesting task drive the expedited grace period, as was the case
+before the use of workqueues.
+However, the requesting task is only required to drive the grace period
+during the mid-boot dead zone.
+Before mid-boot, a synchronous grace period is a no-op.
+Some time after mid-boot, workqueues are used.
+
+<p>
+Non-expedited non-SRCU synchronous grace periods must also operate
+normally during mid-boot.
+This is handled by causing non-expedited grace periods to take the
+expedited code path during mid-boot.
+
+<p>
+The current code assumes that there are no POSIX signals during
+the mid-boot dead zone.
+However, if an overwhelming need for POSIX signals somehow arises,
+appropriate adjustments can be made to the expedited stall-warning code.
+One such adjustment would reinstate the pre-workqueue stall-warning
+checks, but only during the mid-boot dead zone.
+
+<p>
+With this refinement, synchronous grace periods can now be used from
+task context pretty much any time during the life of the kernel.
+
 <h3><a name="Summary">
 Summary</a></h3>
 
diff --git a/Documentation/RCU/Design/Requirements/Requirements.html b/Documentation/RCU/Design/Requirements/Requirements.html
index 2159349..f60adf1 100644
--- a/Documentation/RCU/Design/Requirements/Requirements.html
+++ b/Documentation/RCU/Design/Requirements/Requirements.html
@@ -659,8 +659,9 @@
 	In other words, a given instance of <tt>synchronize_rcu()</tt>
 	can avoid waiting on a given RCU read-side critical section only
 	if it can prove that <tt>synchronize_rcu()</tt> started first.
+	</font>
 
-	<p>
+	<p><font color="ffffff">
 	A related question is &ldquo;When <tt>rcu_read_lock()</tt>
 	doesn't generate any code, why does it matter how it relates
 	to a grace period?&rdquo;
@@ -675,8 +676,9 @@
 	within the critical section, in which case none of the accesses
 	within the critical section may observe the effects of any
 	access following the grace period.
+	</font>
 
-	<p>
+	<p><font color="ffffff">
 	As of late 2016, mathematical models of RCU take this
 	viewpoint, for example, see slides&nbsp;62 and&nbsp;63
 	of the
@@ -1616,8 +1618,8 @@
 In return for its shorter latencies, <tt>synchronize_rcu_expedited()</tt>
 is permitted to impose modest degradation of real-time latency
 on non-idle online CPUs.
-That said, it will likely be necessary to take further steps to reduce this
-degradation, hopefully to roughly that of a scheduling-clock interrupt.
+Here, &ldquo;modest&rdquo; means roughly the same latency
+degradation as a scheduling-clock interrupt.
 
 <p>
 There are a number of situations where even
@@ -1913,12 +1915,9 @@
 but it is also the driving force behind the checks for large numbers
 of queued RCU callbacks in the <tt>call_rcu()</tt> code path.
 Finally, high update rates should not delay RCU read-side critical
-sections, although some read-side delays can occur when using
+sections, although some small read-side delays can occur when using
 <tt>synchronize_rcu_expedited()</tt>, courtesy of this function's use
-of <tt>try_stop_cpus()</tt>.
-(In the future, <tt>synchronize_rcu_expedited()</tt> will be
-converted to use lighter-weight inter-processor interrupts (IPIs),
-but this will still disturb readers, though to a much smaller degree.)
+of <tt>smp_call_function_single()</tt>.
 
 <p>
 Although all three of these corner cases were understood in the early
@@ -2154,7 +2153,8 @@
 <p>
 Although <tt>call_rcu()</tt> may be invoked at any
 time during boot, callbacks are not guaranteed to be invoked until after
-the scheduler is fully up and running.
+all of RCU's kthreads have been spawned, which occurs at
+<tt>early_initcall()</tt> time.
 This delay in callback invocation is due to the fact that RCU does not
 invoke callbacks until it is fully initialized, and this full initialization
 cannot occur until after the scheduler has initialized itself to the
@@ -2167,8 +2167,10 @@
 Perhaps surprisingly, <tt>synchronize_rcu()</tt>,
 <a href="#Bottom-Half Flavor"><tt>synchronize_rcu_bh()</tt></a>
 (<a href="#Bottom-Half Flavor">discussed below</a>),
-and
-<a href="#Sched Flavor"><tt>synchronize_sched()</tt></a>
+<a href="#Sched Flavor"><tt>synchronize_sched()</tt></a>,
+<tt>synchronize_rcu_expedited()</tt>,
+<tt>synchronize_rcu_bh_expedited()</tt>, and
+<tt>synchronize_sched_expedited()</tt>
 will all operate normally
 during very early boot, the reason being that there is only one CPU
 and preemption is disabled.
@@ -2178,45 +2180,59 @@
 be a no-op.
 
 <p>
-Both <tt>synchronize_rcu_bh()</tt> and <tt>synchronize_sched()</tt>
-continue to operate normally through the remainder of boot, courtesy
-of the fact that preemption is disabled across their RCU read-side
-critical sections and also courtesy of the fact that there is still
-only one CPU.
-However, once the scheduler starts initializing, preemption is enabled.
-There is still only a single CPU, but the fact that preemption is enabled
-means that the no-op implementation of <tt>synchronize_rcu()</tt> no
-longer works in <tt>CONFIG_PREEMPT=y</tt> kernels.
-Therefore, as soon as the scheduler starts initializing, the early-boot
-fastpath is disabled.
-This means that <tt>synchronize_rcu()</tt> switches to its runtime
-mode of operation where it posts callbacks, which in turn means that
-any call to <tt>synchronize_rcu()</tt> will block until the corresponding
-callback is invoked.
-Unfortunately, the callback cannot be invoked until RCU's runtime
-grace-period machinery is up and running, which cannot happen until
-the scheduler has initialized itself sufficiently to allow RCU's
-kthreads to be spawned.
-Therefore, invoking <tt>synchronize_rcu()</tt> during scheduler
-initialization can result in deadlock.
+However, once the scheduler has spawned its first kthread, this early
+boot trick fails for <tt>synchronize_rcu()</tt> (as well as for
+<tt>synchronize_rcu_expedited()</tt>) in <tt>CONFIG_PREEMPT=y</tt>
+kernels.
+The reason is that an RCU read-side critical section might be preempted,
+which means that a subsequent <tt>synchronize_rcu()</tt> really does have
+to wait for something, as opposed to simply returning immediately.
+Unfortunately, <tt>synchronize_rcu()</tt> can't do this until all of
+its kthreads are spawned, which doesn't happen until some time during
+<tt>early_initcalls()</tt> time.
+But this is no excuse:  RCU is nevertheless required to correctly handle
+synchronous grace periods during this time period.
+Once all of its kthreads are up and running, RCU starts running
+normally.
 
 <table>
 <tr><th>&nbsp;</th></tr>
 <tr><th align="left">Quick Quiz:</th></tr>
 <tr><td>
-	So what happens with <tt>synchronize_rcu()</tt> during
-	scheduler initialization for <tt>CONFIG_PREEMPT=n</tt>
-	kernels?
+	How can RCU possibly handle grace periods before all of its
+	kthreads have been spawned???
 </td></tr>
 <tr><th align="left">Answer:</th></tr>
 <tr><td bgcolor="#ffffff"><font color="ffffff">
-	In <tt>CONFIG_PREEMPT=n</tt> kernel, <tt>synchronize_rcu()</tt>
-	maps directly to <tt>synchronize_sched()</tt>.
-	Therefore, <tt>synchronize_rcu()</tt> works normally throughout
-	boot in <tt>CONFIG_PREEMPT=n</tt> kernels.
-	However, your code must also work in <tt>CONFIG_PREEMPT=y</tt> kernels,
-	so it is still necessary to avoid invoking <tt>synchronize_rcu()</tt>
-	during scheduler initialization.
+	Very carefully!
+	</font>
+
+	<p><font color="ffffff">
+	During the &ldquo;dead zone&rdquo; between the time that the
+	scheduler spawns the first task and the time that all of RCU's
+	kthreads have been spawned, all synchronous grace periods are
+	handled by the expedited grace-period mechanism.
+	At runtime, this expedited mechanism relies on workqueues, but
+	during the dead zone the requesting task itself drives the
+	desired expedited grace period.
+	Because dead-zone execution takes place within task context,
+	everything works.
+	Once the dead zone ends, expedited grace periods go back to
+	using workqueues, as is required to avoid problems that would
+	otherwise occur when a user task received a POSIX signal while
+	driving an expedited grace period.
+	</font>
+
+	<p><font color="ffffff">
+	And yes, this does mean that it is unhelpful to send POSIX
+	signals to random tasks between the time that the scheduler
+	spawns its first kthread and the time that RCU's kthreads
+	have all been spawned.
+	If there ever turns out to be a good reason for sending POSIX
+	signals during that time, appropriate adjustments will be made.
+	(If it turns out that POSIX signals are sent during this time for
+	no good reason, other adjustments will be made, appropriate
+	or otherwise.)
 </font></td></tr>
 <tr><td>&nbsp;</td></tr>
 </table>
@@ -2295,12 +2311,61 @@
 The need for <tt>rcu_barrier()</tt> for module unloading became
 apparent later.
 
+<p>
+<b>Important note</b>: The <tt>rcu_barrier()</tt> function is not,
+repeat, <i>not</i>, obligated to wait for a grace period.
+It is instead only required to wait for RCU callbacks that have
+already been posted.
+Therefore, if there are no RCU callbacks posted anywhere in the system,
+<tt>rcu_barrier()</tt> is within its rights to return immediately.
+Even if there are callbacks posted, <tt>rcu_barrier()</tt> does not
+necessarily need to wait for a grace period.
+
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+	Wait a minute!
+	Each RCU callbacks must wait for a grace period to complete,
+	and <tt>rcu_barrier()</tt> must wait for each pre-existing
+	callback to be invoked.
+	Doesn't <tt>rcu_barrier()</tt> therefore need to wait for
+	a full grace period if there is even one callback posted anywhere
+	in the system?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+	Absolutely not!!!
+	</font>
+
+	<p><font color="ffffff">
+	Yes, each RCU callbacks must wait for a grace period to complete,
+	but it might well be partly (or even completely) finished waiting
+	by the time <tt>rcu_barrier()</tt> is invoked.
+	In that case, <tt>rcu_barrier()</tt> need only wait for the
+	remaining portion of the grace period to elapse.
+	So even if there are quite a few callbacks posted,
+	<tt>rcu_barrier()</tt> might well return quite quickly.
+	</font>
+
+	<p><font color="ffffff">
+	So if you need to wait for a grace period as well as for all
+	pre-existing callbacks, you will need to invoke both
+	<tt>synchronize_rcu()</tt> and <tt>rcu_barrier()</tt>.
+	If latency is a concern, you can always use workqueues
+	to invoke them concurrently.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
+
 <h3><a name="Hotplug CPU">Hotplug CPU</a></h3>
 
 <p>
 The Linux kernel supports CPU hotplug, which means that CPUs
 can come and go.
-It is of course illegal to use any RCU API member from an offline CPU.
+It is of course illegal to use any RCU API member from an offline CPU,
+with the exception of <a href="#Sleepable RCU">SRCU</a> read-side
+critical sections.
 This requirement was present from day one in DYNIX/ptx, but
 on the other hand, the Linux kernel's CPU-hotplug implementation
 is &ldquo;interesting.&rdquo;
@@ -2310,19 +2375,18 @@
 are used to allow the various kernel subsystems (including RCU)
 to respond appropriately to a given CPU-hotplug operation.
 Most RCU operations may be invoked from CPU-hotplug notifiers,
-including even normal synchronous grace-period operations
-such as <tt>synchronize_rcu()</tt>.
-However, expedited grace-period operations such as
-<tt>synchronize_rcu_expedited()</tt> are not supported,
-due to the fact that current implementations block CPU-hotplug
-operations, which could result in deadlock.
+including even synchronous grace-period operations such as
+<tt>synchronize_rcu()</tt> and <tt>synchronize_rcu_expedited()</tt>.
 
 <p>
-In addition, all-callback-wait operations such as
+However, all-callback-wait operations such as
 <tt>rcu_barrier()</tt> are also not supported, due to the
 fact that there are phases of CPU-hotplug operations where
 the outgoing CPU's callbacks will not be invoked until after
 the CPU-hotplug operation ends, which could also result in deadlock.
+Furthermore, <tt>rcu_barrier()</tt> blocks CPU-hotplug operations
+during its execution, which results in another type of deadlock
+when invoked from a CPU-hotplug notifier.
 
 <h3><a name="Scheduler and RCU">Scheduler and RCU</a></h3>
 
@@ -2864,6 +2928,27 @@
 guarantees a full memory barrier.
 
 <p>
+Also unlike other RCU flavors, SRCU's callbacks-wait function
+<tt>srcu_barrier()</tt> may be invoked from CPU-hotplug notifiers,
+though this is not necessarily a good idea.
+The reason that this is possible is that SRCU is insensitive
+to whether or not a CPU is online, which means that <tt>srcu_barrier()</tt>
+need not exclude CPU-hotplug operations.
+
+<p>
+As of v4.12, SRCU's callbacks are maintained per-CPU, eliminating
+a locking bottleneck present in prior kernel versions.
+Although this will allow users to put much heavier stress on
+<tt>call_srcu()</tt>, it is important to note that SRCU does not
+yet take any special steps to deal with callback flooding.
+So if you are posting (say) 10,000 SRCU callbacks per second per CPU,
+you are probably totally OK, but if you intend to post (say) 1,000,000
+SRCU callbacks per second per CPU, please run some tests first.
+SRCU just might need a few adjustment to deal with that sort of load.
+Of course, your mileage may vary based on the speed of your CPUs and
+the size of your memory.
+
+<p>
 The
 <a href="https://lwn.net/Articles/609973/#RCU Per-Flavor API Table">SRCU API</a>
 includes
@@ -3021,8 +3106,8 @@
 
 <p>
 RCU disables CPU hotplug in a few places, perhaps most notably in the
-expedited grace-period and <tt>rcu_barrier()</tt> operations.
-If there is a strong reason to use expedited grace periods in CPU-hotplug
+<tt>rcu_barrier()</tt> operations.
+If there is a strong reason to use <tt>rcu_barrier()</tt> in CPU-hotplug
 notifiers, it will be necessary to avoid disabling CPU hotplug.
 This would introduce some complexity, so there had better be a <i>very</i>
 good reason.
@@ -3096,9 +3181,5 @@
 this article human readable, and to Michelle Rankin for her support
 of this effort.
 Other contributions are acknowledged in the Linux kernel's git archive.
-The cartoon is copyright (c) 2013 by Melissa Broussard,
-and is provided
-under the terms of the Creative Commons Attribution-Share Alike 3.0
-United States license.
 
 </body></html>
diff --git a/Documentation/RCU/rcu_dereference.txt b/Documentation/RCU/rcu_dereference.txt
index c0bf244..b2a613f 100644
--- a/Documentation/RCU/rcu_dereference.txt
+++ b/Documentation/RCU/rcu_dereference.txt
@@ -138,6 +138,15 @@
 		This sort of comparison occurs frequently when scanning
 		RCU-protected circular linked lists.
 
+		Note that if checks for being within an RCU read-side
+		critical section are not required and the pointer is never
+		dereferenced, rcu_access_pointer() should be used in place
+		of rcu_dereference(). The rcu_access_pointer() primitive
+		does not require an enclosing read-side critical section,
+		and also omits the smp_read_barrier_depends() included in
+		rcu_dereference(), which in turn should provide a small
+		performance gain in some CPUs (e.g., the DEC Alpha).
+
 	o	The comparison is against a pointer that references memory
 		that was initialized "a long time ago."  The reason
 		this is safe is that even if misordering occurs, the
diff --git a/Documentation/RCU/rculist_nulls.txt b/Documentation/RCU/rculist_nulls.txt
index 18f9651..8151f01 100644
--- a/Documentation/RCU/rculist_nulls.txt
+++ b/Documentation/RCU/rculist_nulls.txt
@@ -1,5 +1,5 @@
 Using hlist_nulls to protect read-mostly linked lists and
-objects using SLAB_DESTROY_BY_RCU allocations.
+objects using SLAB_TYPESAFE_BY_RCU allocations.
 
 Please read the basics in Documentation/RCU/listRCU.txt
 
@@ -7,7 +7,7 @@
 to solve following problem :
 
 A typical RCU linked list managing objects which are
-allocated with SLAB_DESTROY_BY_RCU kmem_cache can
+allocated with SLAB_TYPESAFE_BY_RCU kmem_cache can
 use following algos :
 
 1) Lookup algo
@@ -96,7 +96,7 @@
 3) Remove algo
 --------------
 Nothing special here, we can use a standard RCU hlist deletion.
-But thanks to SLAB_DESTROY_BY_RCU, beware a deleted object can be reused
+But thanks to SLAB_TYPESAFE_BY_RCU, beware a deleted object can be reused
 very very fast (before the end of RCU grace period)
 
 if (put_last_reference_on(obj) {
diff --git a/Documentation/RCU/stallwarn.txt b/Documentation/RCU/stallwarn.txt
index e93d041..96a3d81 100644
--- a/Documentation/RCU/stallwarn.txt
+++ b/Documentation/RCU/stallwarn.txt
@@ -1,9 +1,102 @@
 Using RCU's CPU Stall Detector
 
-The rcu_cpu_stall_suppress module parameter enables RCU's CPU stall
-detector, which detects conditions that unduly delay RCU grace periods.
-This module parameter enables CPU stall detection by default, but
-may be overridden via boot-time parameter or at runtime via sysfs.
+This document first discusses what sorts of issues RCU's CPU stall
+detector can locate, and then discusses kernel parameters and Kconfig
+options that can be used to fine-tune the detector's operation.  Finally,
+this document explains the stall detector's "splat" format.
+
+
+What Causes RCU CPU Stall Warnings?
+
+So your kernel printed an RCU CPU stall warning.  The next question is
+"What caused it?"  The following problems can result in RCU CPU stall
+warnings:
+
+o	A CPU looping in an RCU read-side critical section.
+
+o	A CPU looping with interrupts disabled.
+
+o	A CPU looping with preemption disabled.  This condition can
+	result in RCU-sched stalls and, if ksoftirqd is in use, RCU-bh
+	stalls.
+
+o	A CPU looping with bottom halves disabled.  This condition can
+	result in RCU-sched and RCU-bh stalls.
+
+o	For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the
+	kernel without invoking schedule().  Note that cond_resched()
+	does not necessarily prevent RCU CPU stall warnings.  Therefore,
+	if the looping in the kernel is really expected and desirable
+	behavior, you might need to replace some of the cond_resched()
+	calls with calls to cond_resched_rcu_qs().
+
+o	Booting Linux using a console connection that is too slow to
+	keep up with the boot-time console-message rate.  For example,
+	a 115Kbaud serial console can be -way- too slow to keep up
+	with boot-time message rates, and will frequently result in
+	RCU CPU stall warning messages.  Especially if you have added
+	debug printk()s.
+
+o	Anything that prevents RCU's grace-period kthreads from running.
+	This can result in the "All QSes seen" console-log message.
+	This message will include information on when the kthread last
+	ran and how often it should be expected to run.
+
+o	A CPU-bound real-time task in a CONFIG_PREEMPT kernel, which might
+	happen to preempt a low-priority task in the middle of an RCU
+	read-side critical section.   This is especially damaging if
+	that low-priority task is not permitted to run on any other CPU,
+	in which case the next RCU grace period can never complete, which
+	will eventually cause the system to run out of memory and hang.
+	While the system is in the process of running itself out of
+	memory, you might see stall-warning messages.
+
+o	A CPU-bound real-time task in a CONFIG_PREEMPT_RT kernel that
+	is running at a higher priority than the RCU softirq threads.
+	This will prevent RCU callbacks from ever being invoked,
+	and in a CONFIG_PREEMPT_RCU kernel will further prevent
+	RCU grace periods from ever completing.  Either way, the
+	system will eventually run out of memory and hang.  In the
+	CONFIG_PREEMPT_RCU case, you might see stall-warning
+	messages.
+
+o	A hardware or software issue shuts off the scheduler-clock
+	interrupt on a CPU that is not in dyntick-idle mode.  This
+	problem really has happened, and seems to be most likely to
+	result in RCU CPU stall warnings for CONFIG_NO_HZ_COMMON=n kernels.
+
+o	A bug in the RCU implementation.
+
+o	A hardware failure.  This is quite unlikely, but has occurred
+	at least once in real life.  A CPU failed in a running system,
+	becoming unresponsive, but not causing an immediate crash.
+	This resulted in a series of RCU CPU stall warnings, eventually
+	leading the realization that the CPU had failed.
+
+The RCU, RCU-sched, RCU-bh, and RCU-tasks implementations have CPU stall
+warning.  Note that SRCU does -not- have CPU stall warnings.  Please note
+that RCU only detects CPU stalls when there is a grace period in progress.
+No grace period, no CPU stall warnings.
+
+To diagnose the cause of the stall, inspect the stack traces.
+The offending function will usually be near the top of the stack.
+If you have a series of stall warnings from a single extended stall,
+comparing the stack traces can often help determine where the stall
+is occurring, which will usually be in the function nearest the top of
+that portion of the stack which remains the same from trace to trace.
+If you can reliably trigger the stall, ftrace can be quite helpful.
+
+RCU bugs can often be debugged with the help of CONFIG_RCU_TRACE
+and with RCU's event tracing.  For information on RCU's event tracing,
+see include/trace/events/rcu.h.
+
+
+Fine-Tuning the RCU CPU Stall Detector
+
+The rcuupdate.rcu_cpu_stall_suppress module parameter disables RCU's
+CPU stall detector, which detects conditions that unduly delay RCU grace
+periods.  This module parameter enables CPU stall detection by default,
+but may be overridden via boot-time parameter or at runtime via sysfs.
 The stall detector's idea of what constitutes "unduly delayed" is
 controlled by a set of kernel configuration variables and cpp macros:
 
@@ -56,6 +149,9 @@
 	And continues with the output of sched_show_task() for each
 	task stalling the current RCU-tasks grace period.
 
+
+Interpreting RCU's CPU Stall-Detector "Splats"
+
 For non-RCU-tasks flavors of RCU, when a CPU detects that it is stalling,
 it will print a message similar to the following:
 
@@ -178,89 +274,3 @@
 
 It is entirely possible to see stall warnings from normal and from
 expedited grace periods at about the same time from the same run.
-
-
-What Causes RCU CPU Stall Warnings?
-
-So your kernel printed an RCU CPU stall warning.  The next question is
-"What caused it?"  The following problems can result in RCU CPU stall
-warnings:
-
-o	A CPU looping in an RCU read-side critical section.
-	
-o	A CPU looping with interrupts disabled.  This condition can
-	result in RCU-sched and RCU-bh stalls.
-
-o	A CPU looping with preemption disabled.  This condition can
-	result in RCU-sched stalls and, if ksoftirqd is in use, RCU-bh
-	stalls.
-
-o	A CPU looping with bottom halves disabled.  This condition can
-	result in RCU-sched and RCU-bh stalls.
-
-o	For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the
-	kernel without invoking schedule().  Note that cond_resched()
-	does not necessarily prevent RCU CPU stall warnings.  Therefore,
-	if the looping in the kernel is really expected and desirable
-	behavior, you might need to replace some of the cond_resched()
-	calls with calls to cond_resched_rcu_qs().
-
-o	Booting Linux using a console connection that is too slow to
-	keep up with the boot-time console-message rate.  For example,
-	a 115Kbaud serial console can be -way- too slow to keep up
-	with boot-time message rates, and will frequently result in
-	RCU CPU stall warning messages.  Especially if you have added
-	debug printk()s.
-
-o	Anything that prevents RCU's grace-period kthreads from running.
-	This can result in the "All QSes seen" console-log message.
-	This message will include information on when the kthread last
-	ran and how often it should be expected to run.
-
-o	A CPU-bound real-time task in a CONFIG_PREEMPT kernel, which might
-	happen to preempt a low-priority task in the middle of an RCU
-	read-side critical section.   This is especially damaging if
-	that low-priority task is not permitted to run on any other CPU,
-	in which case the next RCU grace period can never complete, which
-	will eventually cause the system to run out of memory and hang.
-	While the system is in the process of running itself out of
-	memory, you might see stall-warning messages.
-
-o	A CPU-bound real-time task in a CONFIG_PREEMPT_RT kernel that
-	is running at a higher priority than the RCU softirq threads.
-	This will prevent RCU callbacks from ever being invoked,
-	and in a CONFIG_PREEMPT_RCU kernel will further prevent
-	RCU grace periods from ever completing.  Either way, the
-	system will eventually run out of memory and hang.  In the
-	CONFIG_PREEMPT_RCU case, you might see stall-warning
-	messages.
-
-o	A hardware or software issue shuts off the scheduler-clock
-	interrupt on a CPU that is not in dyntick-idle mode.  This
-	problem really has happened, and seems to be most likely to
-	result in RCU CPU stall warnings for CONFIG_NO_HZ_COMMON=n kernels.
-
-o	A bug in the RCU implementation.
-
-o	A hardware failure.  This is quite unlikely, but has occurred
-	at least once in real life.  A CPU failed in a running system,
-	becoming unresponsive, but not causing an immediate crash.
-	This resulted in a series of RCU CPU stall warnings, eventually
-	leading the realization that the CPU had failed.
-
-The RCU, RCU-sched, RCU-bh, and RCU-tasks implementations have CPU stall
-warning.  Note that SRCU does -not- have CPU stall warnings.  Please note
-that RCU only detects CPU stalls when there is a grace period in progress.
-No grace period, no CPU stall warnings.
-
-To diagnose the cause of the stall, inspect the stack traces.
-The offending function will usually be near the top of the stack.
-If you have a series of stall warnings from a single extended stall,
-comparing the stack traces can often help determine where the stall
-is occurring, which will usually be in the function nearest the top of
-that portion of the stack which remains the same from trace to trace.
-If you can reliably trigger the stall, ftrace can be quite helpful.
-
-RCU bugs can often be debugged with the help of CONFIG_RCU_TRACE
-and with RCU's event tracing.  For information on RCU's event tracing,
-see include/trace/events/rcu.h.
diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt
index 5cbd8b2..8ed6c9f 100644
--- a/Documentation/RCU/whatisRCU.txt
+++ b/Documentation/RCU/whatisRCU.txt
@@ -562,7 +562,9 @@
 familiar locking primitives.  Its overhead makes it a non-starter for
 real-life use, as does its lack of scalability.  It is also unsuitable
 for realtime use, since it allows scheduling latency to "bleed" from
-one read-side critical section to another.
+one read-side critical section to another.  It also assumes recursive
+reader-writer locks:  If you try this with non-recursive locks, and
+you allow nested rcu_read_lock() calls, you can deadlock.
 
 However, it is probably the easiest implementation to relate to, so is
 a good starting point.
@@ -587,20 +589,21 @@
 		write_unlock(&rcu_gp_mutex);
 	}
 
-[You can ignore rcu_assign_pointer() and rcu_dereference() without
-missing much.  But here they are anyway.  And whatever you do, don't
-forget about them when submitting patches making use of RCU!]
+[You can ignore rcu_assign_pointer() and rcu_dereference() without missing
+much.  But here are simplified versions anyway.  And whatever you do,
+don't forget about them when submitting patches making use of RCU!]
 
-	#define rcu_assign_pointer(p, v)	({ \
-							smp_wmb(); \
-							(p) = (v); \
-						})
+	#define rcu_assign_pointer(p, v) \
+	({ \
+		smp_store_release(&(p), (v)); \
+	})
 
-	#define rcu_dereference(p)     ({ \
-					typeof(p) _________p1 = p; \
-					smp_read_barrier_depends(); \
-					(_________p1); \
-					})
+	#define rcu_dereference(p) \
+	({ \
+		typeof(p) _________p1 = p; \
+		smp_read_barrier_depends(); \
+		(_________p1); \
+	})
 
 
 The rcu_read_lock() and rcu_read_unlock() primitive read-acquire
@@ -925,7 +928,8 @@
 
 e.	Is your workload too update-intensive for normal use of
 	RCU, but inappropriate for other synchronization mechanisms?
-	If so, consider SLAB_DESTROY_BY_RCU.  But please be careful!
+	If so, consider SLAB_TYPESAFE_BY_RCU (which was originally
+	named SLAB_DESTROY_BY_RCU).  But please be careful!
 
 f.	Do you need read-side critical sections that are respected
 	even though they are in the middle of the idle loop, during
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index d2b0a8d..08329cb 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -768,7 +768,7 @@
 transform the above code into the following:
 
 	q = READ_ONCE(a);
-	WRITE_ONCE(b, 1);
+	WRITE_ONCE(b, 2);
 	do_something_else();
 
 Given this transformation, the CPU is not required to respect the ordering
diff --git a/drivers/gpu/drm/i915/i915_gem.c b/drivers/gpu/drm/i915/i915_gem.c
index 6908123..3b66889 100644
--- a/drivers/gpu/drm/i915/i915_gem.c
+++ b/drivers/gpu/drm/i915/i915_gem.c
@@ -4552,7 +4552,7 @@ i915_gem_load_init(struct drm_i915_private *dev_priv)
 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
 					SLAB_HWCACHE_ALIGN |
 					SLAB_RECLAIM_ACCOUNT |
-					SLAB_DESTROY_BY_RCU);
+					SLAB_TYPESAFE_BY_RCU);
 	if (!dev_priv->requests)
 		goto err_vmas;
 
diff --git a/drivers/gpu/drm/i915/i915_gem_request.h b/drivers/gpu/drm/i915/i915_gem_request.h
index ea511f0..9ee2750 100644
--- a/drivers/gpu/drm/i915/i915_gem_request.h
+++ b/drivers/gpu/drm/i915/i915_gem_request.h
@@ -493,7 +493,7 @@ static inline struct drm_i915_gem_request *
 __i915_gem_active_get_rcu(const struct i915_gem_active *active)
 {
 	/* Performing a lockless retrieval of the active request is super
-	 * tricky. SLAB_DESTROY_BY_RCU merely guarantees that the backing
+	 * tricky. SLAB_TYPESAFE_BY_RCU merely guarantees that the backing
 	 * slab of request objects will not be freed whilst we hold the
 	 * RCU read lock. It does not guarantee that the request itself
 	 * will not be freed and then *reused*. Viz,
diff --git a/drivers/staging/lustre/lustre/ldlm/ldlm_lockd.c b/drivers/staging/lustre/lustre/ldlm/ldlm_lockd.c
index 12647af..e7fb47e 100644
--- a/drivers/staging/lustre/lustre/ldlm/ldlm_lockd.c
+++ b/drivers/staging/lustre/lustre/ldlm/ldlm_lockd.c
@@ -1071,7 +1071,7 @@ int ldlm_init(void)
 	ldlm_lock_slab = kmem_cache_create("ldlm_locks",
 					   sizeof(struct ldlm_lock), 0,
 					   SLAB_HWCACHE_ALIGN |
-					   SLAB_DESTROY_BY_RCU, NULL);
+					   SLAB_TYPESAFE_BY_RCU, NULL);
 	if (!ldlm_lock_slab) {
 		kmem_cache_destroy(ldlm_resource_slab);
 		return -ENOMEM;
diff --git a/fs/jbd2/journal.c b/fs/jbd2/journal.c
index a1a359b..7f8f962 100644
--- a/fs/jbd2/journal.c
+++ b/fs/jbd2/journal.c
@@ -2340,7 +2340,7 @@ static int jbd2_journal_init_journal_head_cache(void)
 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
 				sizeof(struct journal_head),
 				0,		/* offset */
-				SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
+				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
 				NULL);		/* ctor */
 	retval = 0;
 	if (!jbd2_journal_head_cache) {
diff --git a/fs/signalfd.c b/fs/signalfd.c
index 270221f..7e3d711 100644
--- a/fs/signalfd.c
+++ b/fs/signalfd.c
@@ -38,7 +38,7 @@ void signalfd_cleanup(struct sighand_struct *sighand)
 	/*
 	 * The lockless check can race with remove_wait_queue() in progress,
 	 * but in this case its caller should run under rcu_read_lock() and
-	 * sighand_cachep is SLAB_DESTROY_BY_RCU, we can safely return.
+	 * sighand_cachep is SLAB_TYPESAFE_BY_RCU, we can safely return.
 	 */
 	if (likely(!waitqueue_active(wqh)))
 		return;
diff --git a/include/linux/dma-fence.h b/include/linux/dma-fence.h
index 6048fa4..a5195a7 100644
--- a/include/linux/dma-fence.h
+++ b/include/linux/dma-fence.h
@@ -229,7 +229,7 @@ static inline struct dma_fence *dma_fence_get_rcu(struct dma_fence *fence)
  *
  * Function returns NULL if no refcount could be obtained, or the fence.
  * This function handles acquiring a reference to a fence that may be
- * reallocated within the RCU grace period (such as with SLAB_DESTROY_BY_RCU),
+ * reallocated within the RCU grace period (such as with SLAB_TYPESAFE_BY_RCU),
  * so long as the caller is using RCU on the pointer to the fence.
  *
  * An alternative mechanism is to employ a seqlock to protect a bunch of
@@ -257,7 +257,7 @@ dma_fence_get_rcu_safe(struct dma_fence * __rcu *fencep)
 		 * have successfully acquire a reference to it. If it no
 		 * longer matches, we are holding a reference to some other
 		 * reallocated pointer. This is possible if the allocator
-		 * is using a freelist like SLAB_DESTROY_BY_RCU where the
+		 * is using a freelist like SLAB_TYPESAFE_BY_RCU where the
 		 * fence remains valid for the RCU grace period, but it
 		 * may be reallocated. When using such allocators, we are
 		 * responsible for ensuring the reference we get is to
diff --git a/include/linux/rculist.h b/include/linux/rculist.h
index 4f7a956..b1fd8bf 100644
--- a/include/linux/rculist.h
+++ b/include/linux/rculist.h
@@ -509,7 +509,8 @@ static inline void hlist_add_tail_rcu(struct hlist_node *n,
 {
 	struct hlist_node *i, *last = NULL;
 
-	for (i = hlist_first_rcu(h); i; i = hlist_next_rcu(i))
+	/* Note: write side code, so rcu accessors are not needed. */
+	for (i = h->first; i; i = i->next)
 		last = i;
 
 	if (last) {
diff --git a/include/linux/slab.h b/include/linux/slab.h
index 3c37a8c..04a7f79 100644
--- a/include/linux/slab.h
+++ b/include/linux/slab.h
@@ -28,7 +28,7 @@
 #define SLAB_STORE_USER		0x00010000UL	/* DEBUG: Store the last owner for bug hunting */
 #define SLAB_PANIC		0x00040000UL	/* Panic if kmem_cache_create() fails */
 /*
- * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
+ * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
  *
  * This delays freeing the SLAB page by a grace period, it does _NOT_
  * delay object freeing. This means that if you do kmem_cache_free()
@@ -61,8 +61,10 @@
  *
  * rcu_read_lock before reading the address, then rcu_read_unlock after
  * taking the spinlock within the structure expected at that address.
+ *
+ * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
  */
-#define SLAB_DESTROY_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
+#define SLAB_TYPESAFE_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
 #define SLAB_MEM_SPREAD		0x00100000UL	/* Spread some memory over cpuset */
 #define SLAB_TRACE		0x00200000UL	/* Trace allocations and frees */
 
diff --git a/include/linux/types.h b/include/linux/types.h
index 1e7bd24..258099a 100644
--- a/include/linux/types.h
+++ b/include/linux/types.h
@@ -209,7 +209,7 @@ struct ustat {
  * naturally due ABI requirements, but some architectures (like CRIS) have
  * weird ABI and we need to ask it explicitly.
  *
- * The alignment is required to guarantee that bits 0 and 1 of @next will be
+ * The alignment is required to guarantee that bit 0 of @next will be
  * clear under normal conditions -- as long as we use call_rcu(),
  * call_rcu_bh(), call_rcu_sched(), or call_srcu() to queue callback.
  *
diff --git a/include/net/sock.h b/include/net/sock.h
index 5e59976..59cdcca 100644
--- a/include/net/sock.h
+++ b/include/net/sock.h
@@ -993,7 +993,7 @@ struct smc_hashinfo;
 struct module;
 
 /*
- * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
+ * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
  * un-modified. Special care is taken when initializing object to zero.
  */
 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
diff --git a/init/Kconfig b/init/Kconfig
index 558cc36..4119a44 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -641,11 +641,17 @@
 	  initialization.  These systems tend to run CPU-bound, and thus
 	  are not helped by synchronized interrupts, and thus tend to
 	  skew them, which reduces lock contention enough that large
-	  leaf-level fanouts work well.
+	  leaf-level fanouts work well.  That said, setting leaf-level
+	  fanout to a large number will likely cause problematic
+	  lock contention on the leaf-level rcu_node structures unless
+	  you boot with the skew_tick kernel parameter.
 
 	  Select a specific number if testing RCU itself.
 
-	  Select the maximum permissible value for large systems.
+	  Select the maximum permissible value for large systems, but
+	  please understand that you may also need to set the skew_tick
+	  kernel boot parameter to avoid contention on the rcu_node
+	  structure's locks.
 
 	  Take the default if unsure.
 
diff --git a/kernel/fork.c b/kernel/fork.c
index 6c463c80..9330ce2 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1313,7 +1313,7 @@ void __cleanup_sighand(struct sighand_struct *sighand)
 	if (atomic_dec_and_test(&sighand->count)) {
 		signalfd_cleanup(sighand);
 		/*
-		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
+		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
 		 * without an RCU grace period, see __lock_task_sighand().
 		 */
 		kmem_cache_free(sighand_cachep, sighand);
@@ -2144,7 +2144,7 @@ void __init proc_caches_init(void)
 {
 	sighand_cachep = kmem_cache_create("sighand_cache",
 			sizeof(struct sighand_struct), 0,
-			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
+			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
 	signal_cachep = kmem_cache_create("signal_cache",
 			sizeof(struct signal_struct), 0,
diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c
index a95e5d1..e9d4f85 100644
--- a/kernel/locking/lockdep.c
+++ b/kernel/locking/lockdep.c
@@ -1144,10 +1144,10 @@ print_circular_bug_header(struct lock_list *entry, unsigned int depth,
 		return 0;
 
 	printk("\n");
-	printk("======================================================\n");
-	printk("[ INFO: possible circular locking dependency detected ]\n");
+	pr_warn("======================================================\n");
+	pr_warn("WARNING: possible circular locking dependency detected\n");
 	print_kernel_ident();
-	printk("-------------------------------------------------------\n");
+	pr_warn("------------------------------------------------------\n");
 	printk("%s/%d is trying to acquire lock:\n",
 		curr->comm, task_pid_nr(curr));
 	print_lock(check_src);
@@ -1482,11 +1482,11 @@ print_bad_irq_dependency(struct task_struct *curr,
 		return 0;
 
 	printk("\n");
-	printk("======================================================\n");
-	printk("[ INFO: %s-safe -> %s-unsafe lock order detected ]\n",
+	pr_warn("=====================================================\n");
+	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
 		irqclass, irqclass);
 	print_kernel_ident();
-	printk("------------------------------------------------------\n");
+	pr_warn("-----------------------------------------------------\n");
 	printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
 		curr->comm, task_pid_nr(curr),
 		curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
@@ -1711,10 +1711,10 @@ print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
 		return 0;
 
 	printk("\n");
-	printk("=============================================\n");
-	printk("[ INFO: possible recursive locking detected ]\n");
+	pr_warn("============================================\n");
+	pr_warn("WARNING: possible recursive locking detected\n");
 	print_kernel_ident();
-	printk("---------------------------------------------\n");
+	pr_warn("--------------------------------------------\n");
 	printk("%s/%d is trying to acquire lock:\n",
 		curr->comm, task_pid_nr(curr));
 	print_lock(next);
@@ -2061,10 +2061,10 @@ static void print_collision(struct task_struct *curr,
 			struct lock_chain *chain)
 {
 	printk("\n");
-	printk("======================\n");
-	printk("[chain_key collision ]\n");
+	pr_warn("============================\n");
+	pr_warn("WARNING: chain_key collision\n");
 	print_kernel_ident();
-	printk("----------------------\n");
+	pr_warn("----------------------------\n");
 	printk("%s/%d: ", current->comm, task_pid_nr(current));
 	printk("Hash chain already cached but the contents don't match!\n");
 
@@ -2360,10 +2360,10 @@ print_usage_bug(struct task_struct *curr, struct held_lock *this,
 		return 0;
 
 	printk("\n");
-	printk("=================================\n");
-	printk("[ INFO: inconsistent lock state ]\n");
+	pr_warn("================================\n");
+	pr_warn("WARNING: inconsistent lock state\n");
 	print_kernel_ident();
-	printk("---------------------------------\n");
+	pr_warn("--------------------------------\n");
 
 	printk("inconsistent {%s} -> {%s} usage.\n",
 		usage_str[prev_bit], usage_str[new_bit]);
@@ -2425,10 +2425,10 @@ print_irq_inversion_bug(struct task_struct *curr,
 		return 0;
 
 	printk("\n");
-	printk("=========================================================\n");
-	printk("[ INFO: possible irq lock inversion dependency detected ]\n");
+	pr_warn("========================================================\n");
+	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
 	print_kernel_ident();
-	printk("---------------------------------------------------------\n");
+	pr_warn("--------------------------------------------------------\n");
 	printk("%s/%d just changed the state of lock:\n",
 		curr->comm, task_pid_nr(curr));
 	print_lock(this);
@@ -3170,10 +3170,10 @@ print_lock_nested_lock_not_held(struct task_struct *curr,
 		return 0;
 
 	printk("\n");
-	printk("==================================\n");
-	printk("[ BUG: Nested lock was not taken ]\n");
+	pr_warn("==================================\n");
+	pr_warn("WARNING: Nested lock was not taken\n");
 	print_kernel_ident();
-	printk("----------------------------------\n");
+	pr_warn("----------------------------------\n");
 
 	printk("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
 	print_lock(hlock);
@@ -3383,10 +3383,10 @@ print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock,
 		return 0;
 
 	printk("\n");
-	printk("=====================================\n");
-	printk("[ BUG: bad unlock balance detected! ]\n");
+	pr_warn("=====================================\n");
+	pr_warn("WARNING: bad unlock balance detected!\n");
 	print_kernel_ident();
-	printk("-------------------------------------\n");
+	pr_warn("-------------------------------------\n");
 	printk("%s/%d is trying to release lock (",
 		curr->comm, task_pid_nr(curr));
 	print_lockdep_cache(lock);
@@ -3880,10 +3880,10 @@ print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock,
 		return 0;
 
 	printk("\n");
-	printk("=================================\n");
-	printk("[ BUG: bad contention detected! ]\n");
+	pr_warn("=================================\n");
+	pr_warn("WARNING: bad contention detected!\n");
 	print_kernel_ident();
-	printk("---------------------------------\n");
+	pr_warn("---------------------------------\n");
 	printk("%s/%d is trying to contend lock (",
 		curr->comm, task_pid_nr(curr));
 	print_lockdep_cache(lock);
@@ -4244,10 +4244,10 @@ print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
 		return;
 
 	printk("\n");
-	printk("=========================\n");
-	printk("[ BUG: held lock freed! ]\n");
+	pr_warn("=========================\n");
+	pr_warn("WARNING: held lock freed!\n");
 	print_kernel_ident();
-	printk("-------------------------\n");
+	pr_warn("-------------------------\n");
 	printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n",
 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
 	print_lock(hlock);
@@ -4302,11 +4302,11 @@ static void print_held_locks_bug(void)
 		return;
 
 	printk("\n");
-	printk("=====================================\n");
-	printk("[ BUG: %s/%d still has locks held! ]\n",
+	pr_warn("====================================\n");
+	pr_warn("WARNING: %s/%d still has locks held!\n",
 	       current->comm, task_pid_nr(current));
 	print_kernel_ident();
-	printk("-------------------------------------\n");
+	pr_warn("------------------------------------\n");
 	lockdep_print_held_locks(current);
 	printk("\nstack backtrace:\n");
 	dump_stack();
@@ -4371,7 +4371,7 @@ void debug_show_all_locks(void)
 	} while_each_thread(g, p);
 
 	printk("\n");
-	printk("=============================================\n\n");
+	pr_warn("=============================================\n\n");
 
 	if (unlock)
 		read_unlock(&tasklist_lock);
@@ -4401,10 +4401,10 @@ asmlinkage __visible void lockdep_sys_exit(void)
 		if (!debug_locks_off())
 			return;
 		printk("\n");
-		printk("================================================\n");
-		printk("[ BUG: lock held when returning to user space! ]\n");
+		pr_warn("================================================\n");
+		pr_warn("WARNING: lock held when returning to user space!\n");
 		print_kernel_ident();
-		printk("------------------------------------------------\n");
+		pr_warn("------------------------------------------------\n");
 		printk("%s/%d is leaving the kernel with locks still held!\n",
 				curr->comm, curr->pid);
 		lockdep_print_held_locks(curr);
@@ -4421,13 +4421,13 @@ void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
 #endif /* #ifdef CONFIG_PROVE_RCU_REPEATEDLY */
 	/* Note: the following can be executed concurrently, so be careful. */
 	printk("\n");
-	pr_err("===============================\n");
-	pr_err("[ ERR: suspicious RCU usage.  ]\n");
+	pr_warn("=============================\n");
+	pr_warn("WARNING: suspicious RCU usage\n");
 	print_kernel_ident();
-	pr_err("-------------------------------\n");
-	pr_err("%s:%d %s!\n", file, line, s);
-	pr_err("\nother info that might help us debug this:\n\n");
-	pr_err("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
+	pr_warn("-----------------------------\n");
+	printk("%s:%d %s!\n", file, line, s);
+	printk("\nother info that might help us debug this:\n\n");
+	printk("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
 	       !rcu_lockdep_current_cpu_online()
 			? "RCU used illegally from offline CPU!\n"
 			: !rcu_is_watching()
diff --git a/kernel/locking/rtmutex-debug.c b/kernel/locking/rtmutex-debug.c
index 97ee9df..db4f552 100644
--- a/kernel/locking/rtmutex-debug.c
+++ b/kernel/locking/rtmutex-debug.c
@@ -102,10 +102,11 @@ void debug_rt_mutex_print_deadlock(struct rt_mutex_waiter *waiter)
 		return;
 	}
 
-	printk("\n============================================\n");
-	printk(  "[ BUG: circular locking deadlock detected! ]\n");
-	printk("%s\n", print_tainted());
-	printk(  "--------------------------------------------\n");
+	pr_warn("\n");
+	pr_warn("============================================\n");
+	pr_warn("WARNING: circular locking deadlock detected!\n");
+	pr_warn("%s\n", print_tainted());
+	pr_warn("--------------------------------------------\n");
 	printk("%s/%d is deadlocking current task %s/%d\n\n",
 	       task->comm, task_pid_nr(task),
 	       current->comm, task_pid_nr(current));
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index 891d971..23aa025 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -199,7 +199,7 @@ static const int gp_cleanup_delay;
 
 /*
  * Number of grace periods between delays, normalized by the duration of
- * the delay.  The longer the the delay, the more the grace periods between
+ * the delay.  The longer the delay, the more the grace periods between
  * each delay.  The reason for this normalization is that it means that,
  * for non-zero delays, the overall slowdown of grace periods is constant
  * regardless of the duration of the delay.  This arrangement balances
@@ -1789,9 +1789,7 @@ rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 
 /*
  * Clean up any old requests for the just-ended grace period.  Also return
- * whether any additional grace periods have been requested.  Also invoke
- * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
- * waiting for this grace period to complete.
+ * whether any additional grace periods have been requested.
  */
 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
 {
@@ -2998,7 +2996,7 @@ __rcu_process_callbacks(struct rcu_state *rsp)
 	bool needwake;
 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
 
-	WARN_ON_ONCE(rdp->beenonline == 0);
+	WARN_ON_ONCE(!rdp->beenonline);
 
 	/* Update RCU state based on any recent quiescent states. */
 	rcu_check_quiescent_state(rsp, rdp);
@@ -3772,6 +3770,10 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 }
 
+/*
+ * Invoked early in the CPU-online process, when pretty much all
+ * services are available.  The incoming CPU is not present.
+ */
 int rcutree_prepare_cpu(unsigned int cpu)
 {
 	struct rcu_state *rsp;
@@ -3785,6 +3787,9 @@ int rcutree_prepare_cpu(unsigned int cpu)
 	return 0;
 }
 
+/*
+ * Update RCU priority boot kthread affinity for CPU-hotplug changes.
+ */
 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
 {
 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
@@ -3792,6 +3797,10 @@ static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
 }
 
+/*
+ * Near the end of the CPU-online process.  Pretty much all services
+ * enabled, and the CPU is now very much alive.
+ */
 int rcutree_online_cpu(unsigned int cpu)
 {
 	sync_sched_exp_online_cleanup(cpu);
@@ -3801,6 +3810,10 @@ int rcutree_online_cpu(unsigned int cpu)
 	return 0;
 }
 
+/*
+ * Near the beginning of the process.  The CPU is still very much alive
+ * with pretty much all services enabled.
+ */
 int rcutree_offline_cpu(unsigned int cpu)
 {
 	rcutree_affinity_setting(cpu, cpu);
@@ -3809,7 +3822,9 @@ int rcutree_offline_cpu(unsigned int cpu)
 	return 0;
 }
 
-
+/*
+ * Near the end of the offline process.  We do only tracing here.
+ */
 int rcutree_dying_cpu(unsigned int cpu)
 {
 	struct rcu_state *rsp;
@@ -3819,6 +3834,9 @@ int rcutree_dying_cpu(unsigned int cpu)
 	return 0;
 }
 
+/*
+ * The outgoing CPU is gone and we are running elsewhere.
+ */
 int rcutree_dead_cpu(unsigned int cpu)
 {
 	struct rcu_state *rsp;
@@ -3836,6 +3854,10 @@ int rcutree_dead_cpu(unsigned int cpu)
  * incoming CPUs are not allowed to use RCU read-side critical sections
  * until this function is called.  Failing to observe this restriction
  * will result in lockdep splats.
+ *
+ * Note that this function is special in that it is invoked directly
+ * from the incoming CPU rather than from the cpuhp_step mechanism.
+ * This is because this function must be invoked at a precise location.
  */
 void rcu_cpu_starting(unsigned int cpu)
 {
@@ -3861,9 +3883,6 @@ void rcu_cpu_starting(unsigned int cpu)
  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
  * bit masks.
- * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
- * function.  We now remove it from the rcu_node tree's ->qsmaskinit
- * bit masks.
  */
 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
 {
@@ -3879,6 +3898,14 @@ static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 }
 
+/*
+ * The outgoing function has no further need of RCU, so remove it from
+ * the list of CPUs that RCU must track.
+ *
+ * Note that this function is special in that it is invoked directly
+ * from the outgoing CPU rather than from the cpuhp_step mechanism.
+ * This is because this function must be invoked at a precise location.
+ */
 void rcu_report_dead(unsigned int cpu)
 {
 	struct rcu_state *rsp;
@@ -3893,6 +3920,10 @@ void rcu_report_dead(unsigned int cpu)
 }
 #endif
 
+/*
+ * On non-huge systems, use expedited RCU grace periods to make suspend
+ * and hibernation run faster.
+ */
 static int rcu_pm_notify(struct notifier_block *self,
 			 unsigned long action, void *hcpu)
 {
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h
index f883566..7f1d677 100644
--- a/kernel/rcu/tree_plugin.h
+++ b/kernel/rcu/tree_plugin.h
@@ -1709,7 +1709,7 @@ __setup("rcu_nocbs=", rcu_nocb_setup);
 
 static int __init parse_rcu_nocb_poll(char *arg)
 {
-	rcu_nocb_poll = 1;
+	rcu_nocb_poll = true;
 	return 0;
 }
 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
diff --git a/kernel/signal.c b/kernel/signal.c
index 7e59ebc..6df5f72 100644
--- a/kernel/signal.c
+++ b/kernel/signal.c
@@ -1237,7 +1237,7 @@ struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
 		}
 		/*
 		 * This sighand can be already freed and even reused, but
-		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
+		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
 		 * initializes ->siglock: this slab can't go away, it has
 		 * the same object type, ->siglock can't be reinitialized.
 		 *
diff --git a/mm/kasan/kasan.c b/mm/kasan/kasan.c
index 98b2719..4b20061 100644
--- a/mm/kasan/kasan.c
+++ b/mm/kasan/kasan.c
@@ -413,7 +413,7 @@ void kasan_cache_create(struct kmem_cache *cache, size_t *size,
 	*size += sizeof(struct kasan_alloc_meta);
 
 	/* Add free meta. */
-	if (cache->flags & SLAB_DESTROY_BY_RCU || cache->ctor ||
+	if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
 	    cache->object_size < sizeof(struct kasan_free_meta)) {
 		cache->kasan_info.free_meta_offset = *size;
 		*size += sizeof(struct kasan_free_meta);
@@ -561,7 +561,7 @@ static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
 	unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
 
 	/* RCU slabs could be legally used after free within the RCU period */
-	if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
+	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
 		return;
 
 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
@@ -572,7 +572,7 @@ bool kasan_slab_free(struct kmem_cache *cache, void *object)
 	s8 shadow_byte;
 
 	/* RCU slabs could be legally used after free within the RCU period */
-	if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
+	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
 		return false;
 
 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
diff --git a/mm/kmemcheck.c b/mm/kmemcheck.c
index 5bf1917..2d5959c 100644
--- a/mm/kmemcheck.c
+++ b/mm/kmemcheck.c
@@ -95,7 +95,7 @@ void kmemcheck_slab_alloc(struct kmem_cache *s, gfp_t gfpflags, void *object,
 void kmemcheck_slab_free(struct kmem_cache *s, void *object, size_t size)
 {
 	/* TODO: RCU freeing is unsupported for now; hide false positives. */
-	if (!s->ctor && !(s->flags & SLAB_DESTROY_BY_RCU))
+	if (!s->ctor && !(s->flags & SLAB_TYPESAFE_BY_RCU))
 		kmemcheck_mark_freed(object, size);
 }
 
diff --git a/mm/rmap.c b/mm/rmap.c
index 49ed681..8ffd59d 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -430,7 +430,7 @@ static void anon_vma_ctor(void *data)
 void __init anon_vma_init(void)
 {
 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
-			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
+			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 			anon_vma_ctor);
 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 			SLAB_PANIC|SLAB_ACCOUNT);
@@ -481,7 +481,7 @@ struct anon_vma *page_get_anon_vma(struct page *page)
 	 * If this page is still mapped, then its anon_vma cannot have been
 	 * freed.  But if it has been unmapped, we have no security against the
 	 * anon_vma structure being freed and reused (for another anon_vma:
-	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
+	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 	 * above cannot corrupt).
 	 */
 	if (!page_mapped(page)) {
diff --git a/mm/slab.c b/mm/slab.c
index 807d86c..93c82786 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -1728,7 +1728,7 @@ static void slab_destroy(struct kmem_cache *cachep, struct page *page)
 
 	freelist = page->freelist;
 	slab_destroy_debugcheck(cachep, page);
-	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
+	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
 		call_rcu(&page->rcu_head, kmem_rcu_free);
 	else
 		kmem_freepages(cachep, page);
@@ -1924,7 +1924,7 @@ static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
 
 	cachep->num = 0;
 
-	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
+	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
 		return false;
 
 	left = calculate_slab_order(cachep, size,
@@ -2030,7 +2030,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
 						2 * sizeof(unsigned long long)))
 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
-	if (!(flags & SLAB_DESTROY_BY_RCU))
+	if (!(flags & SLAB_TYPESAFE_BY_RCU))
 		flags |= SLAB_POISON;
 #endif
 #endif
diff --git a/mm/slab.h b/mm/slab.h
index 65e7c3f..9cfcf09 100644
--- a/mm/slab.h
+++ b/mm/slab.h
@@ -126,7 +126,7 @@ static inline unsigned long kmem_cache_flags(unsigned long object_size,
 
 /* Legal flag mask for kmem_cache_create(), for various configurations */
 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
-			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
+			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
 
 #if defined(CONFIG_DEBUG_SLAB)
 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
@@ -415,7 +415,7 @@ static inline size_t slab_ksize(const struct kmem_cache *s)
 	 * back there or track user information then we can
 	 * only use the space before that information.
 	 */
-	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
+	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
 		return s->inuse;
 	/*
 	 * Else we can use all the padding etc for the allocation
diff --git a/mm/slab_common.c b/mm/slab_common.c
index 09d0e84..01a0fe2 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -39,7 +39,7 @@ static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  * Set of flags that will prevent slab merging
  */
 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
-		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
+		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
 		SLAB_FAILSLAB | SLAB_KASAN)
 
 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
@@ -500,7 +500,7 @@ static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 	struct kmem_cache *s, *s2;
 
 	/*
-	 * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
+	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 	 * through RCU and and the associated kmem_cache are dereferenced
 	 * while freeing the pages, so the kmem_caches should be freed only
@@ -537,7 +537,7 @@ static int shutdown_cache(struct kmem_cache *s)
 	memcg_unlink_cache(s);
 	list_del(&s->list);
 
-	if (s->flags & SLAB_DESTROY_BY_RCU) {
+	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 		schedule_work(&slab_caches_to_rcu_destroy_work);
 	} else {
diff --git a/mm/slob.c b/mm/slob.c
index eac04d4..1bae78d 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -126,7 +126,7 @@ static inline void clear_slob_page_free(struct page *sp)
 
 /*
  * struct slob_rcu is inserted at the tail of allocated slob blocks, which
- * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
+ * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
  * the block using call_rcu.
  */
 struct slob_rcu {
@@ -524,7 +524,7 @@ EXPORT_SYMBOL(ksize);
 
 int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
 {
-	if (flags & SLAB_DESTROY_BY_RCU) {
+	if (flags & SLAB_TYPESAFE_BY_RCU) {
 		/* leave room for rcu footer at the end of object */
 		c->size += sizeof(struct slob_rcu);
 	}
@@ -598,7 +598,7 @@ static void kmem_rcu_free(struct rcu_head *head)
 void kmem_cache_free(struct kmem_cache *c, void *b)
 {
 	kmemleak_free_recursive(b, c->flags);
-	if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
+	if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
 		struct slob_rcu *slob_rcu;
 		slob_rcu = b + (c->size - sizeof(struct slob_rcu));
 		slob_rcu->size = c->size;
diff --git a/mm/slub.c b/mm/slub.c
index 7f4bc70..57e5156 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -1687,7 +1687,7 @@ static void rcu_free_slab(struct rcu_head *h)
 
 static void free_slab(struct kmem_cache *s, struct page *page)
 {
-	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
+	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
 		struct rcu_head *head;
 
 		if (need_reserve_slab_rcu) {
@@ -2963,7 +2963,7 @@ static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
 	 * slab_free_freelist_hook() could have put the items into quarantine.
 	 * If so, no need to free them.
 	 */
-	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
+	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
 		return;
 	do_slab_free(s, page, head, tail, cnt, addr);
 }
@@ -3433,7 +3433,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
 	 * the slab may touch the object after free or before allocation
 	 * then we should never poison the object itself.
 	 */
-	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
+	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
 			!s->ctor)
 		s->flags |= __OBJECT_POISON;
 	else
@@ -3455,7 +3455,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
 	 */
 	s->inuse = size;
 
-	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
+	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
 		s->ctor)) {
 		/*
 		 * Relocate free pointer after the object if it is not
@@ -3537,7 +3537,7 @@ static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
 	s->reserved = 0;
 
-	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
+	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
 		s->reserved = sizeof(struct rcu_head);
 
 	if (!calculate_sizes(s, -1))
@@ -5042,7 +5042,7 @@ SLAB_ATTR_RO(cache_dma);
 
 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
 {
-	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
+	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
 }
 SLAB_ATTR_RO(destroy_by_rcu);
 
diff --git a/net/dccp/ipv4.c b/net/dccp/ipv4.c
index 409d0cf..90210a0 100644
--- a/net/dccp/ipv4.c
+++ b/net/dccp/ipv4.c
@@ -950,7 +950,7 @@ static struct proto dccp_v4_prot = {
 	.orphan_count		= &dccp_orphan_count,
 	.max_header		= MAX_DCCP_HEADER,
 	.obj_size		= sizeof(struct dccp_sock),
-	.slab_flags		= SLAB_DESTROY_BY_RCU,
+	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
 	.rsk_prot		= &dccp_request_sock_ops,
 	.twsk_prot		= &dccp_timewait_sock_ops,
 	.h.hashinfo		= &dccp_hashinfo,
diff --git a/net/dccp/ipv6.c b/net/dccp/ipv6.c
index 233b573..b4019a5 100644
--- a/net/dccp/ipv6.c
+++ b/net/dccp/ipv6.c
@@ -1012,7 +1012,7 @@ static struct proto dccp_v6_prot = {
 	.orphan_count	   = &dccp_orphan_count,
 	.max_header	   = MAX_DCCP_HEADER,
 	.obj_size	   = sizeof(struct dccp6_sock),
-	.slab_flags	   = SLAB_DESTROY_BY_RCU,
+	.slab_flags	   = SLAB_TYPESAFE_BY_RCU,
 	.rsk_prot	   = &dccp6_request_sock_ops,
 	.twsk_prot	   = &dccp6_timewait_sock_ops,
 	.h.hashinfo	   = &dccp_hashinfo,
diff --git a/net/ipv4/tcp_ipv4.c b/net/ipv4/tcp_ipv4.c
index 9a89b8d..82c89ab 100644
--- a/net/ipv4/tcp_ipv4.c
+++ b/net/ipv4/tcp_ipv4.c
@@ -2398,7 +2398,7 @@ struct proto tcp_prot = {
 	.sysctl_rmem		= sysctl_tcp_rmem,
 	.max_header		= MAX_TCP_HEADER,
 	.obj_size		= sizeof(struct tcp_sock),
-	.slab_flags		= SLAB_DESTROY_BY_RCU,
+	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
 	.twsk_prot		= &tcp_timewait_sock_ops,
 	.rsk_prot		= &tcp_request_sock_ops,
 	.h.hashinfo		= &tcp_hashinfo,
diff --git a/net/ipv6/tcp_ipv6.c b/net/ipv6/tcp_ipv6.c
index 60a5295..bdbc432 100644
--- a/net/ipv6/tcp_ipv6.c
+++ b/net/ipv6/tcp_ipv6.c
@@ -1919,7 +1919,7 @@ struct proto tcpv6_prot = {
 	.sysctl_rmem		= sysctl_tcp_rmem,
 	.max_header		= MAX_TCP_HEADER,
 	.obj_size		= sizeof(struct tcp6_sock),
-	.slab_flags		= SLAB_DESTROY_BY_RCU,
+	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
 	.twsk_prot		= &tcp6_timewait_sock_ops,
 	.rsk_prot		= &tcp6_request_sock_ops,
 	.h.hashinfo		= &tcp_hashinfo,
diff --git a/net/llc/af_llc.c b/net/llc/af_llc.c
index 06186d6..d096ca5 100644
--- a/net/llc/af_llc.c
+++ b/net/llc/af_llc.c
@@ -142,7 +142,7 @@ static struct proto llc_proto = {
 	.name	  = "LLC",
 	.owner	  = THIS_MODULE,
 	.obj_size = sizeof(struct llc_sock),
-	.slab_flags = SLAB_DESTROY_BY_RCU,
+	.slab_flags = SLAB_TYPESAFE_BY_RCU,
 };
 
 /**
diff --git a/net/llc/llc_conn.c b/net/llc/llc_conn.c
index 8bc5a1b..9b02c13 100644
--- a/net/llc/llc_conn.c
+++ b/net/llc/llc_conn.c
@@ -506,7 +506,7 @@ static struct sock *__llc_lookup_established(struct llc_sap *sap,
 again:
 	sk_nulls_for_each_rcu(rc, node, laddr_hb) {
 		if (llc_estab_match(sap, daddr, laddr, rc)) {
-			/* Extra checks required by SLAB_DESTROY_BY_RCU */
+			/* Extra checks required by SLAB_TYPESAFE_BY_RCU */
 			if (unlikely(!atomic_inc_not_zero(&rc->sk_refcnt)))
 				goto again;
 			if (unlikely(llc_sk(rc)->sap != sap ||
@@ -565,7 +565,7 @@ static struct sock *__llc_lookup_listener(struct llc_sap *sap,
 again:
 	sk_nulls_for_each_rcu(rc, node, laddr_hb) {
 		if (llc_listener_match(sap, laddr, rc)) {
-			/* Extra checks required by SLAB_DESTROY_BY_RCU */
+			/* Extra checks required by SLAB_TYPESAFE_BY_RCU */
 			if (unlikely(!atomic_inc_not_zero(&rc->sk_refcnt)))
 				goto again;
 			if (unlikely(llc_sk(rc)->sap != sap ||
diff --git a/net/llc/llc_sap.c b/net/llc/llc_sap.c
index 5404d0d..63b6ab0 100644
--- a/net/llc/llc_sap.c
+++ b/net/llc/llc_sap.c
@@ -328,7 +328,7 @@ static struct sock *llc_lookup_dgram(struct llc_sap *sap,
 again:
 	sk_nulls_for_each_rcu(rc, node, laddr_hb) {
 		if (llc_dgram_match(sap, laddr, rc)) {
-			/* Extra checks required by SLAB_DESTROY_BY_RCU */
+			/* Extra checks required by SLAB_TYPESAFE_BY_RCU */
 			if (unlikely(!atomic_inc_not_zero(&rc->sk_refcnt)))
 				goto again;
 			if (unlikely(llc_sk(rc)->sap != sap ||
diff --git a/net/netfilter/nf_conntrack_core.c b/net/netfilter/nf_conntrack_core.c
index 071b97f..fdcdac7 100644
--- a/net/netfilter/nf_conntrack_core.c
+++ b/net/netfilter/nf_conntrack_core.c
@@ -914,7 +914,7 @@ static unsigned int early_drop_list(struct net *net,
 			continue;
 
 		/* kill only if still in same netns -- might have moved due to
-		 * SLAB_DESTROY_BY_RCU rules.
+		 * SLAB_TYPESAFE_BY_RCU rules.
 		 *
 		 * We steal the timer reference.  If that fails timer has
 		 * already fired or someone else deleted it. Just drop ref
@@ -1069,7 +1069,7 @@ __nf_conntrack_alloc(struct net *net,
 
 	/*
 	 * Do not use kmem_cache_zalloc(), as this cache uses
-	 * SLAB_DESTROY_BY_RCU.
+	 * SLAB_TYPESAFE_BY_RCU.
 	 */
 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
 	if (ct == NULL)
@@ -1114,7 +1114,7 @@ void nf_conntrack_free(struct nf_conn *ct)
 	struct net *net = nf_ct_net(ct);
 
 	/* A freed object has refcnt == 0, that's
-	 * the golden rule for SLAB_DESTROY_BY_RCU
+	 * the golden rule for SLAB_TYPESAFE_BY_RCU
 	 */
 	NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
 
@@ -1878,7 +1878,7 @@ int nf_conntrack_init_start(void)
 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
 						sizeof(struct nf_conn),
 						NFCT_INFOMASK + 1,
-						SLAB_DESTROY_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
+						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
 	if (!nf_conntrack_cachep)
 		goto err_cachep;
 
diff --git a/net/smc/af_smc.c b/net/smc/af_smc.c
index 85837ab..d34bbd6 100644
--- a/net/smc/af_smc.c
+++ b/net/smc/af_smc.c
@@ -101,7 +101,7 @@ struct proto smc_proto = {
 	.unhash		= smc_unhash_sk,
 	.obj_size	= sizeof(struct smc_sock),
 	.h.smc_hash	= &smc_v4_hashinfo,
-	.slab_flags	= SLAB_DESTROY_BY_RCU,
+	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
 };
 EXPORT_SYMBOL_GPL(smc_proto);
 
diff --git a/tools/testing/selftests/rcutorture/bin/kvm-test-1-run.sh b/tools/testing/selftests/rcutorture/bin/kvm-test-1-run.sh
index ea6e373..93eede4 100755
--- a/tools/testing/selftests/rcutorture/bin/kvm-test-1-run.sh
+++ b/tools/testing/selftests/rcutorture/bin/kvm-test-1-run.sh
@@ -170,7 +170,7 @@
 # Pull in Kconfig-fragment boot parameters
 boot_args="`configfrag_boot_params "$boot_args" "$config_template"`"
 # Generate kernel-version-specific boot parameters
-boot_args="`per_version_boot_params "$boot_args" $builddir/.config $seconds`"
+boot_args="`per_version_boot_params "$boot_args" $resdir/.config $seconds`"
 
 if test -n "$TORTURE_BUILDONLY"
 then