blob: 7135075585687f0651e17d661efeaa307b738019 [file] [log] [blame]
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/mfd/syscon.h>
#include <linux/clk.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/io.h>
#include <linux/bug.h>
#include <linux/regmap.h>
#include "mtk_eth_soc.h"
#include "mdio.h"
#include "ethtool.h"
#define MAX_RX_LENGTH 1536
#define MTK_RX_ETH_HLEN (VLAN_ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN)
#define MTK_RX_HLEN (NET_SKB_PAD + MTK_RX_ETH_HLEN + NET_IP_ALIGN)
#define DMA_DUMMY_DESC 0xffffffff
#define MTK_DEFAULT_MSG_ENABLE \
(NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
#define TX_DMA_DESP2_DEF (TX_DMA_LS0 | TX_DMA_DONE)
#define NEXT_TX_DESP_IDX(X) (((X) + 1) & (ring->tx_ring_size - 1))
#define NEXT_RX_DESP_IDX(X) (((X) + 1) & (ring->rx_ring_size - 1))
#define SYSC_REG_RSTCTRL 0x34
static int mtk_msg_level = -1;
module_param_named(msg_level, mtk_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
static const u16 mtk_reg_table_default[MTK_REG_COUNT] = {
[MTK_REG_PDMA_GLO_CFG] = MTK_PDMA_GLO_CFG,
[MTK_REG_PDMA_RST_CFG] = MTK_PDMA_RST_CFG,
[MTK_REG_DLY_INT_CFG] = MTK_DLY_INT_CFG,
[MTK_REG_TX_BASE_PTR0] = MTK_TX_BASE_PTR0,
[MTK_REG_TX_MAX_CNT0] = MTK_TX_MAX_CNT0,
[MTK_REG_TX_CTX_IDX0] = MTK_TX_CTX_IDX0,
[MTK_REG_TX_DTX_IDX0] = MTK_TX_DTX_IDX0,
[MTK_REG_RX_BASE_PTR0] = MTK_RX_BASE_PTR0,
[MTK_REG_RX_MAX_CNT0] = MTK_RX_MAX_CNT0,
[MTK_REG_RX_CALC_IDX0] = MTK_RX_CALC_IDX0,
[MTK_REG_RX_DRX_IDX0] = MTK_RX_DRX_IDX0,
[MTK_REG_MTK_INT_ENABLE] = MTK_INT_ENABLE,
[MTK_REG_MTK_INT_STATUS] = MTK_INT_STATUS,
[MTK_REG_MTK_DMA_VID_BASE] = MTK_DMA_VID0,
[MTK_REG_MTK_COUNTER_BASE] = MTK_GDMA1_TX_GBCNT,
[MTK_REG_MTK_RST_GL] = MTK_RST_GL,
};
static const u16 *mtk_reg_table = mtk_reg_table_default;
void mtk_w32(struct mtk_eth *eth, u32 val, unsigned int reg)
{
__raw_writel(val, eth->base + reg);
}
u32 mtk_r32(struct mtk_eth *eth, unsigned int reg)
{
return __raw_readl(eth->base + reg);
}
static void mtk_reg_w32(struct mtk_eth *eth, u32 val, enum mtk_reg reg)
{
mtk_w32(eth, val, mtk_reg_table[reg]);
}
static u32 mtk_reg_r32(struct mtk_eth *eth, enum mtk_reg reg)
{
return mtk_r32(eth, mtk_reg_table[reg]);
}
/* these bits are also exposed via the reset-controller API. however the switch
* and FE need to be brought out of reset in the exakt same moemtn and the
* reset-controller api does not provide this feature yet. Do the reset manually
* until we fixed the reset-controller api to be able to do this
*/
void mtk_reset(struct mtk_eth *eth, u32 reset_bits)
{
u32 val;
regmap_read(eth->ethsys, SYSC_REG_RSTCTRL, &val);
val |= reset_bits;
regmap_write(eth->ethsys, SYSC_REG_RSTCTRL, val);
usleep_range(10, 20);
val &= ~reset_bits;
regmap_write(eth->ethsys, SYSC_REG_RSTCTRL, val);
usleep_range(10, 20);
}
EXPORT_SYMBOL(mtk_reset);
static inline void mtk_irq_ack(struct mtk_eth *eth, u32 mask)
{
if (eth->soc->dma_type & MTK_PDMA)
mtk_reg_w32(eth, mask, MTK_REG_MTK_INT_STATUS);
if (eth->soc->dma_type & MTK_QDMA)
mtk_w32(eth, mask, MTK_QMTK_INT_STATUS);
}
static inline u32 mtk_irq_pending(struct mtk_eth *eth)
{
u32 status = 0;
if (eth->soc->dma_type & MTK_PDMA)
status |= mtk_reg_r32(eth, MTK_REG_MTK_INT_STATUS);
if (eth->soc->dma_type & MTK_QDMA)
status |= mtk_r32(eth, MTK_QMTK_INT_STATUS);
return status;
}
static void mtk_irq_ack_status(struct mtk_eth *eth, u32 mask)
{
u32 status_reg = MTK_REG_MTK_INT_STATUS;
if (mtk_reg_table[MTK_REG_MTK_INT_STATUS2])
status_reg = MTK_REG_MTK_INT_STATUS2;
mtk_reg_w32(eth, mask, status_reg);
}
static u32 mtk_irq_pending_status(struct mtk_eth *eth)
{
u32 status_reg = MTK_REG_MTK_INT_STATUS;
if (mtk_reg_table[MTK_REG_MTK_INT_STATUS2])
status_reg = MTK_REG_MTK_INT_STATUS2;
return mtk_reg_r32(eth, status_reg);
}
static inline void mtk_irq_disable(struct mtk_eth *eth, u32 mask)
{
u32 val;
if (eth->soc->dma_type & MTK_PDMA) {
val = mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
mtk_reg_w32(eth, val & ~mask, MTK_REG_MTK_INT_ENABLE);
/* flush write */
mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
}
if (eth->soc->dma_type & MTK_QDMA) {
val = mtk_r32(eth, MTK_QMTK_INT_ENABLE);
mtk_w32(eth, val & ~mask, MTK_QMTK_INT_ENABLE);
/* flush write */
mtk_r32(eth, MTK_QMTK_INT_ENABLE);
}
}
static inline void mtk_irq_enable(struct mtk_eth *eth, u32 mask)
{
u32 val;
if (eth->soc->dma_type & MTK_PDMA) {
val = mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
mtk_reg_w32(eth, val | mask, MTK_REG_MTK_INT_ENABLE);
/* flush write */
mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
}
if (eth->soc->dma_type & MTK_QDMA) {
val = mtk_r32(eth, MTK_QMTK_INT_ENABLE);
mtk_w32(eth, val | mask, MTK_QMTK_INT_ENABLE);
/* flush write */
mtk_r32(eth, MTK_QMTK_INT_ENABLE);
}
}
static inline u32 mtk_irq_enabled(struct mtk_eth *eth)
{
u32 enabled = 0;
if (eth->soc->dma_type & MTK_PDMA)
enabled |= mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
if (eth->soc->dma_type & MTK_QDMA)
enabled |= mtk_r32(eth, MTK_QMTK_INT_ENABLE);
return enabled;
}
static inline void mtk_hw_set_macaddr(struct mtk_mac *mac,
unsigned char *macaddr)
{
unsigned long flags;
spin_lock_irqsave(&mac->hw->page_lock, flags);
mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1], MTK_GDMA1_MAC_ADRH);
mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
(macaddr[4] << 8) | macaddr[5],
MTK_GDMA1_MAC_ADRL);
spin_unlock_irqrestore(&mac->hw->page_lock, flags);
}
static int mtk_set_mac_address(struct net_device *dev, void *p)
{
int ret = eth_mac_addr(dev, p);
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
if (ret)
return ret;
if (eth->soc->set_mac)
eth->soc->set_mac(mac, dev->dev_addr);
else
mtk_hw_set_macaddr(mac, p);
return 0;
}
static inline int mtk_max_frag_size(int mtu)
{
/* make sure buf_size will be at least MAX_RX_LENGTH */
if (mtu + MTK_RX_ETH_HLEN < MAX_RX_LENGTH)
mtu = MAX_RX_LENGTH - MTK_RX_ETH_HLEN;
return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static inline int mtk_max_buf_size(int frag_size)
{
int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
WARN_ON(buf_size < MAX_RX_LENGTH);
return buf_size;
}
static inline void mtk_get_rxd(struct mtk_rx_dma *rxd,
struct mtk_rx_dma *dma_rxd)
{
rxd->rxd1 = READ_ONCE(dma_rxd->rxd1);
rxd->rxd2 = READ_ONCE(dma_rxd->rxd2);
rxd->rxd3 = READ_ONCE(dma_rxd->rxd3);
rxd->rxd4 = READ_ONCE(dma_rxd->rxd4);
}
static inline void mtk_set_txd_pdma(struct mtk_tx_dma *txd,
struct mtk_tx_dma *dma_txd)
{
WRITE_ONCE(dma_txd->txd1, txd->txd1);
WRITE_ONCE(dma_txd->txd3, txd->txd3);
WRITE_ONCE(dma_txd->txd4, txd->txd4);
/* clean dma done flag last */
WRITE_ONCE(dma_txd->txd2, txd->txd2);
}
static void mtk_clean_rx(struct mtk_eth *eth, struct mtk_rx_ring *ring)
{
int i;
if (ring->rx_data && ring->rx_dma) {
for (i = 0; i < ring->rx_ring_size; i++) {
if (!ring->rx_data[i])
continue;
if (!ring->rx_dma[i].rxd1)
continue;
dma_unmap_single(eth->dev,
ring->rx_dma[i].rxd1,
ring->rx_buf_size,
DMA_FROM_DEVICE);
skb_free_frag(ring->rx_data[i]);
}
kfree(ring->rx_data);
ring->rx_data = NULL;
}
if (ring->rx_dma) {
dma_free_coherent(eth->dev,
ring->rx_ring_size * sizeof(*ring->rx_dma),
ring->rx_dma,
ring->rx_phys);
ring->rx_dma = NULL;
}
}
static int mtk_dma_rx_alloc(struct mtk_eth *eth, struct mtk_rx_ring *ring)
{
int i, pad = 0;
ring->frag_size = mtk_max_frag_size(ETH_DATA_LEN);
ring->rx_buf_size = mtk_max_buf_size(ring->frag_size);
ring->rx_ring_size = eth->soc->dma_ring_size;
ring->rx_data = kcalloc(ring->rx_ring_size, sizeof(*ring->rx_data),
GFP_KERNEL);
if (!ring->rx_data)
goto no_rx_mem;
for (i = 0; i < ring->rx_ring_size; i++) {
ring->rx_data[i] = netdev_alloc_frag(ring->frag_size);
if (!ring->rx_data[i])
goto no_rx_mem;
}
ring->rx_dma =
dma_alloc_coherent(eth->dev,
ring->rx_ring_size * sizeof(*ring->rx_dma),
&ring->rx_phys, GFP_ATOMIC | __GFP_ZERO);
if (!ring->rx_dma)
goto no_rx_mem;
if (!eth->soc->rx_2b_offset)
pad = NET_IP_ALIGN;
for (i = 0; i < ring->rx_ring_size; i++) {
dma_addr_t dma_addr = dma_map_single(eth->dev,
ring->rx_data[i] + NET_SKB_PAD + pad,
ring->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
goto no_rx_mem;
ring->rx_dma[i].rxd1 = (unsigned int)dma_addr;
if (eth->soc->rx_sg_dma)
ring->rx_dma[i].rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
else
ring->rx_dma[i].rxd2 = RX_DMA_LSO;
}
ring->rx_calc_idx = ring->rx_ring_size - 1;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
return 0;
no_rx_mem:
return -ENOMEM;
}
static void mtk_txd_unmap(struct device *dev, struct mtk_tx_buf *tx_buf)
{
if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) {
dma_unmap_single(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
} else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) {
dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
if (tx_buf->flags & MTK_TX_FLAGS_PAGE1)
dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr1),
dma_unmap_len(tx_buf, dma_len1),
DMA_TO_DEVICE);
tx_buf->flags = 0;
if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC))
dev_kfree_skb_any(tx_buf->skb);
tx_buf->skb = NULL;
}
static void mtk_pdma_tx_clean(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i;
if (ring->tx_buf) {
for (i = 0; i < ring->tx_ring_size; i++)
mtk_txd_unmap(eth->dev, &ring->tx_buf[i]);
kfree(ring->tx_buf);
ring->tx_buf = NULL;
}
if (ring->tx_dma) {
dma_free_coherent(eth->dev,
ring->tx_ring_size * sizeof(*ring->tx_dma),
ring->tx_dma,
ring->tx_phys);
ring->tx_dma = NULL;
}
}
static void mtk_qdma_tx_clean(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i;
if (ring->tx_buf) {
for (i = 0; i < ring->tx_ring_size; i++)
mtk_txd_unmap(eth->dev, &ring->tx_buf[i]);
kfree(ring->tx_buf);
ring->tx_buf = NULL;
}
if (ring->tx_dma) {
dma_free_coherent(eth->dev,
ring->tx_ring_size * sizeof(*ring->tx_dma),
ring->tx_dma,
ring->tx_phys);
ring->tx_dma = NULL;
}
}
void mtk_stats_update_mac(struct mtk_mac *mac)
{
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int base = mtk_reg_table[MTK_REG_MTK_COUNTER_BASE];
u64 stats;
base += hw_stats->reg_offset;
u64_stats_update_begin(&hw_stats->syncp);
if (mac->hw->soc->new_stats) {
hw_stats->rx_bytes += mtk_r32(mac->hw, base);
stats = mtk_r32(mac->hw, base + 0x04);
if (stats)
hw_stats->rx_bytes += (stats << 32);
hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x08);
hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x10);
hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x14);
hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x18);
hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x1c);
hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x20);
hw_stats->rx_flow_control_packets +=
mtk_r32(mac->hw, base + 0x24);
hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x28);
hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x2c);
hw_stats->tx_bytes += mtk_r32(mac->hw, base + 0x30);
stats = mtk_r32(mac->hw, base + 0x34);
if (stats)
hw_stats->tx_bytes += (stats << 32);
hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x38);
} else {
hw_stats->tx_bytes += mtk_r32(mac->hw, base);
hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x04);
hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x08);
hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x0c);
hw_stats->rx_bytes += mtk_r32(mac->hw, base + 0x20);
hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x24);
hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x28);
hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x2c);
hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x30);
hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x34);
hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x38);
hw_stats->rx_flow_control_packets +=
mtk_r32(mac->hw, base + 0x3c);
}
u64_stats_update_end(&hw_stats->syncp);
}
static void mtk_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int base = mtk_reg_table[MTK_REG_MTK_COUNTER_BASE];
unsigned int start;
if (!base) {
netdev_stats_to_stats64(storage, &dev->stats);
return;
}
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock(&hw_stats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock(&hw_stats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_irq(&hw_stats->syncp);
storage->rx_packets = hw_stats->rx_packets;
storage->tx_packets = hw_stats->tx_packets;
storage->rx_bytes = hw_stats->rx_bytes;
storage->tx_bytes = hw_stats->tx_bytes;
storage->collisions = hw_stats->tx_collisions;
storage->rx_length_errors = hw_stats->rx_short_errors +
hw_stats->rx_long_errors;
storage->rx_over_errors = hw_stats->rx_overflow;
storage->rx_crc_errors = hw_stats->rx_fcs_errors;
storage->rx_errors = hw_stats->rx_checksum_errors;
storage->tx_aborted_errors = hw_stats->tx_skip;
} while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start));
storage->tx_errors = dev->stats.tx_errors;
storage->rx_dropped = dev->stats.rx_dropped;
storage->tx_dropped = dev->stats.tx_dropped;
}
static int mtk_vlan_rx_add_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
u32 idx = (vid & 0xf);
u32 vlan_cfg;
if (!((mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE]) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
return 0;
if (test_bit(idx, &eth->vlan_map)) {
netdev_warn(dev, "disable tx vlan offload\n");
dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
netdev_update_features(dev);
} else {
vlan_cfg = mtk_r32(eth,
mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE] +
((idx >> 1) << 2));
if (idx & 0x1) {
vlan_cfg &= 0xffff;
vlan_cfg |= (vid << 16);
} else {
vlan_cfg &= 0xffff0000;
vlan_cfg |= vid;
}
mtk_w32(eth,
vlan_cfg, mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE] +
((idx >> 1) << 2));
set_bit(idx, &eth->vlan_map);
}
return 0;
}
static int mtk_vlan_rx_kill_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
u32 idx = (vid & 0xf);
if (!((mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE]) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
return 0;
clear_bit(idx, &eth->vlan_map);
return 0;
}
static inline u32 mtk_pdma_empty_txd(struct mtk_tx_ring *ring)
{
barrier();
return (u32)(ring->tx_ring_size -
((ring->tx_next_idx - ring->tx_free_idx) &
(ring->tx_ring_size - 1)));
}
static int mtk_skb_padto(struct sk_buff *skb, struct mtk_eth *eth)
{
unsigned int len;
int ret;
if (unlikely(skb->len >= VLAN_ETH_ZLEN))
return 0;
if (eth->soc->padding_64b && !eth->soc->padding_bug)
return 0;
if (skb_vlan_tag_present(skb))
len = ETH_ZLEN;
else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
len = VLAN_ETH_ZLEN;
else if (!eth->soc->padding_64b)
len = ETH_ZLEN;
else
return 0;
if (skb->len >= len)
return 0;
ret = skb_pad(skb, len - skb->len);
if (ret < 0)
return ret;
skb->len = len;
skb_set_tail_pointer(skb, len);
return ret;
}
static int mtk_pdma_tx_map(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct mtk_tx_ring *ring, bool gso)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct skb_frag_struct *frag;
struct mtk_tx_dma txd, *ptxd;
struct mtk_tx_buf *tx_buf;
int i, j, k, frag_size, frag_map_size, offset;
dma_addr_t mapped_addr;
unsigned int nr_frags;
u32 def_txd4;
if (mtk_skb_padto(skb, eth)) {
netif_warn(eth, tx_err, dev, "tx padding failed!\n");
return -1;
}
tx_buf = &ring->tx_buf[ring->tx_next_idx];
memset(tx_buf, 0, sizeof(*tx_buf));
memset(&txd, 0, sizeof(txd));
nr_frags = skb_shinfo(skb)->nr_frags;
/* init tx descriptor */
def_txd4 = eth->soc->txd4;
txd.txd4 = def_txd4;
if (eth->soc->mac_count > 1)
txd.txd4 |= (mac->id + 1) << TX_DMA_FPORT_SHIFT;
if (gso)
txd.txd4 |= TX_DMA_TSO;
/* TX Checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL)
txd.txd4 |= TX_DMA_CHKSUM;
/* VLAN header offload */
if (skb_vlan_tag_present(skb)) {
u16 tag = skb_vlan_tag_get(skb);
txd.txd4 |= TX_DMA_INS_VLAN |
((tag >> VLAN_PRIO_SHIFT) << 4) |
(tag & 0xF);
}
mapped_addr = dma_map_single(&dev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
return -1;
txd.txd1 = mapped_addr;
txd.txd2 = TX_DMA_PLEN0(skb_headlen(skb));
tx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb));
/* TX SG offload */
j = ring->tx_next_idx;
k = 0;
for (i = 0; i < nr_frags; i++) {
offset = 0;
frag = &skb_shinfo(skb)->frags[i];
frag_size = skb_frag_size(frag);
while (frag_size > 0) {
frag_map_size = min(frag_size, TX_DMA_BUF_LEN);
mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset,
frag_map_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
goto err_dma;
if (k & 0x1) {
j = NEXT_TX_DESP_IDX(j);
txd.txd1 = mapped_addr;
txd.txd2 = TX_DMA_PLEN0(frag_map_size);
txd.txd4 = def_txd4;
tx_buf = &ring->tx_buf[j];
memset(tx_buf, 0, sizeof(*tx_buf));
tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
dma_unmap_addr_set(tx_buf, dma_addr0,
mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0,
frag_map_size);
} else {
txd.txd3 = mapped_addr;
txd.txd2 |= TX_DMA_PLEN1(frag_map_size);
tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
tx_buf->flags |= MTK_TX_FLAGS_PAGE1;
dma_unmap_addr_set(tx_buf, dma_addr1,
mapped_addr);
dma_unmap_len_set(tx_buf, dma_len1,
frag_map_size);
if (!((i == (nr_frags - 1)) &&
(frag_map_size == frag_size))) {
mtk_set_txd_pdma(&txd,
&ring->tx_dma[j]);
memset(&txd, 0, sizeof(txd));
}
}
frag_size -= frag_map_size;
offset += frag_map_size;
k++;
}
}
/* set last segment */
if (k & 0x1)
txd.txd2 |= TX_DMA_LS1;
else
txd.txd2 |= TX_DMA_LS0;
mtk_set_txd_pdma(&txd, &ring->tx_dma[j]);
/* store skb to cleanup */
tx_buf->skb = skb;
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
ring->tx_next_idx = NEXT_TX_DESP_IDX(j);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
atomic_set(&ring->tx_free_count, mtk_pdma_empty_txd(ring));
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
mtk_reg_w32(eth, ring->tx_next_idx, MTK_REG_TX_CTX_IDX0);
return 0;
err_dma:
j = ring->tx_next_idx;
for (i = 0; i < tx_num; i++) {
ptxd = &ring->tx_dma[j];
tx_buf = &ring->tx_buf[j];
/* unmap dma */
mtk_txd_unmap(&dev->dev, tx_buf);
ptxd->txd2 = TX_DMA_DESP2_DEF;
j = NEXT_TX_DESP_IDX(j);
}
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
return -1;
}
/* the qdma core needs scratch memory to be setup */
static int mtk_init_fq_dma(struct mtk_eth *eth)
{
dma_addr_t dma_addr, phy_ring_head, phy_ring_tail;
int cnt = eth->soc->dma_ring_size;
int i;
eth->scratch_ring = dma_alloc_coherent(eth->dev,
cnt * sizeof(struct mtk_tx_dma),
&phy_ring_head,
GFP_ATOMIC | __GFP_ZERO);
if (unlikely(!eth->scratch_ring))
return -ENOMEM;
eth->scratch_head = kcalloc(cnt, QDMA_PAGE_SIZE,
GFP_KERNEL);
dma_addr = dma_map_single(eth->dev,
eth->scratch_head, cnt * QDMA_PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
return -ENOMEM;
memset(eth->scratch_ring, 0x0, sizeof(struct mtk_tx_dma) * cnt);
phy_ring_tail = phy_ring_head + (sizeof(struct mtk_tx_dma) * (cnt - 1));
for (i = 0; i < cnt; i++) {
eth->scratch_ring[i].txd1 = (dma_addr + (i * QDMA_PAGE_SIZE));
if (i < cnt - 1)
eth->scratch_ring[i].txd2 = (phy_ring_head +
((i + 1) * sizeof(struct mtk_tx_dma)));
eth->scratch_ring[i].txd3 = TX_QDMA_SDL(QDMA_PAGE_SIZE);
}
mtk_w32(eth, phy_ring_head, MTK_QDMA_FQ_HEAD);
mtk_w32(eth, phy_ring_tail, MTK_QDMA_FQ_TAIL);
mtk_w32(eth, (cnt << 16) | cnt, MTK_QDMA_FQ_CNT);
mtk_w32(eth, QDMA_PAGE_SIZE << 16, MTK_QDMA_FQ_BLEN);
return 0;
}
static void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc)
{
void *ret = ring->tx_dma;
return ret + (desc - ring->tx_phys);
}
static struct mtk_tx_dma *mtk_tx_next_qdma(struct mtk_tx_ring *ring,
struct mtk_tx_dma *txd)
{
return mtk_qdma_phys_to_virt(ring, txd->txd2);
}
static struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring,
struct mtk_tx_dma *txd)
{
int idx = txd - ring->tx_dma;
return &ring->tx_buf[idx];
}
static int mtk_qdma_tx_map(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct mtk_tx_ring *ring, bool gso)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma *itxd, *txd;
struct mtk_tx_buf *tx_buf;
dma_addr_t mapped_addr;
unsigned int nr_frags;
int i, n_desc = 1;
u32 txd4 = eth->soc->txd4;
itxd = ring->tx_next_free;
if (itxd == ring->tx_last_free)
return -ENOMEM;
if (eth->soc->mac_count > 1)
txd4 |= (mac->id + 1) << TX_DMA_FPORT_SHIFT;
tx_buf = mtk_desc_to_tx_buf(ring, itxd);
memset(tx_buf, 0, sizeof(*tx_buf));
if (gso)
txd4 |= TX_DMA_TSO;
/* TX Checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL)
txd4 |= TX_DMA_CHKSUM;
/* VLAN header offload */
if (skb_vlan_tag_present(skb))
txd4 |= TX_DMA_INS_VLAN_MT7621 | skb_vlan_tag_get(skb);
mapped_addr = dma_map_single(&dev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
return -ENOMEM;
WRITE_ONCE(itxd->txd1, mapped_addr);
tx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb));
/* TX SG offload */
txd = itxd;
nr_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < nr_frags; i++) {
struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
unsigned int offset = 0;
int frag_size = skb_frag_size(frag);
while (frag_size) {
bool last_frag = false;
unsigned int frag_map_size;
txd = mtk_tx_next_qdma(ring, txd);
if (txd == ring->tx_last_free)
goto err_dma;
n_desc++;
frag_map_size = min(frag_size, TX_DMA_BUF_LEN);
mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset,
frag_map_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
goto err_dma;
if (i == nr_frags - 1 &&
(frag_size - frag_map_size) == 0)
last_frag = true;
WRITE_ONCE(txd->txd1, mapped_addr);
WRITE_ONCE(txd->txd3, (QDMA_TX_SWC |
TX_DMA_PLEN0(frag_map_size) |
last_frag * TX_DMA_LS0) |
mac->id);
WRITE_ONCE(txd->txd4, 0);
tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
tx_buf = mtk_desc_to_tx_buf(ring, txd);
memset(tx_buf, 0, sizeof(*tx_buf));
tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, frag_map_size);
frag_size -= frag_map_size;
offset += frag_map_size;
}
}
/* store skb to cleanup */
tx_buf->skb = skb;
WRITE_ONCE(itxd->txd4, txd4);
WRITE_ONCE(itxd->txd3, (QDMA_TX_SWC | TX_DMA_PLEN0(skb_headlen(skb)) |
(!nr_frags * TX_DMA_LS0)));
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
ring->tx_next_free = mtk_tx_next_qdma(ring, txd);
atomic_sub(n_desc, &ring->tx_free_count);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
mtk_w32(eth, txd->txd2, MTK_QTX_CTX_PTR);
return 0;
err_dma:
do {
tx_buf = mtk_desc_to_tx_buf(ring, txd);
/* unmap dma */
mtk_txd_unmap(&dev->dev, tx_buf);
itxd->txd3 = TX_DMA_DESP2_DEF;
itxd = mtk_tx_next_qdma(ring, itxd);
} while (itxd != txd);
return -ENOMEM;
}
static inline int mtk_cal_txd_req(struct sk_buff *skb)
{
int i, nfrags;
struct skb_frag_struct *frag;
nfrags = 1;
if (skb_is_gso(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
nfrags += DIV_ROUND_UP(frag->size, TX_DMA_BUF_LEN);
}
} else {
nfrags += skb_shinfo(skb)->nr_frags;
}
return DIV_ROUND_UP(nfrags, 2);
}
static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_ring *ring = &eth->tx_ring;
struct net_device_stats *stats = &dev->stats;
int tx_num;
int len = skb->len;
bool gso = false;
tx_num = mtk_cal_txd_req(skb);
if (unlikely(atomic_read(&ring->tx_free_count) <= tx_num)) {
netif_stop_queue(dev);
netif_err(eth, tx_queued, dev,
"Tx Ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0)) {
netif_warn(eth, tx_err, dev,
"GSO expand head fail.\n");
goto drop;
}
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
gso = true;
tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
}
}
if (ring->tx_map(skb, dev, tx_num, ring, gso) < 0)
goto drop;
stats->tx_packets++;
stats->tx_bytes += len;
if (unlikely(atomic_read(&ring->tx_free_count) <= ring->tx_thresh)) {
netif_stop_queue(dev);
smp_mb();
if (unlikely(atomic_read(&ring->tx_free_count) >
ring->tx_thresh))
netif_wake_queue(dev);
}
return NETDEV_TX_OK;
drop:
stats->tx_dropped++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int mtk_poll_rx(struct napi_struct *napi, int budget,
struct mtk_eth *eth, u32 rx_intr)
{
struct mtk_soc_data *soc = eth->soc;
struct mtk_rx_ring *ring = &eth->rx_ring[0];
int idx = ring->rx_calc_idx;
u32 checksum_bit;
struct sk_buff *skb;
u8 *data, *new_data;
struct mtk_rx_dma *rxd, trxd;
int done = 0, pad;
if (eth->soc->hw_features & NETIF_F_RXCSUM)
checksum_bit = soc->checksum_bit;
else
checksum_bit = 0;
if (eth->soc->rx_2b_offset)
pad = 0;
else
pad = NET_IP_ALIGN;
while (done < budget) {
struct net_device *netdev;
unsigned int pktlen;
dma_addr_t dma_addr;
int mac = 0;
idx = NEXT_RX_DESP_IDX(idx);
rxd = &ring->rx_dma[idx];
data = ring->rx_data[idx];
mtk_get_rxd(&trxd, rxd);
if (!(trxd.rxd2 & RX_DMA_DONE))
break;
/* find out which mac the packet come from. values start at 1 */
if (eth->soc->mac_count > 1) {
mac = (trxd.rxd4 >> RX_DMA_FPORT_SHIFT) &
RX_DMA_FPORT_MASK;
mac--;
if (mac < 0 || mac >= eth->soc->mac_count)
goto release_desc;
}
netdev = eth->netdev[mac];
/* alloc new buffer */
new_data = napi_alloc_frag(ring->frag_size);
if (unlikely(!new_data || !netdev)) {
netdev->stats.rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(&netdev->dev,
new_data + NET_SKB_PAD + pad,
ring->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
skb_free_frag(new_data);
goto release_desc;
}
/* receive data */
skb = build_skb(data, ring->frag_size);
if (unlikely(!skb)) {
put_page(virt_to_head_page(new_data));
goto release_desc;
}
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
dma_unmap_single(&netdev->dev, trxd.rxd1,
ring->rx_buf_size, DMA_FROM_DEVICE);
pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
skb->dev = netdev;
skb_put(skb, pktlen);
if (trxd.rxd4 & checksum_bit)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, netdev);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += pktlen;
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
RX_DMA_VID(trxd.rxd3))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
RX_DMA_VID(trxd.rxd3));
napi_gro_receive(napi, skb);
ring->rx_data[idx] = new_data;
rxd->rxd1 = (unsigned int)dma_addr;
release_desc:
if (eth->soc->rx_sg_dma)
rxd->rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
else
rxd->rxd2 = RX_DMA_LSO;
ring->rx_calc_idx = idx;
/* make sure that all changes to the dma ring are flushed before
* we continue
*/
wmb();
if (eth->soc->dma_type == MTK_QDMA)
mtk_w32(eth, ring->rx_calc_idx, MTK_QRX_CRX_IDX0);
else
mtk_reg_w32(eth, ring->rx_calc_idx,
MTK_REG_RX_CALC_IDX0);
done++;
}
if (done < budget)
mtk_irq_ack(eth, rx_intr);
return done;
}
static int mtk_pdma_tx_poll(struct mtk_eth *eth, int budget, bool *tx_again)
{
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
int done = 0;
u32 idx, hwidx;
struct mtk_tx_ring *ring = &eth->tx_ring;
unsigned int bytes = 0;
idx = ring->tx_free_idx;
hwidx = mtk_reg_r32(eth, MTK_REG_TX_DTX_IDX0);
while ((idx != hwidx) && budget) {
tx_buf = &ring->tx_buf[idx];
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
bytes += skb->len;
done++;
budget--;
}
mtk_txd_unmap(eth->dev, tx_buf);
idx = NEXT_TX_DESP_IDX(idx);
}
ring->tx_free_idx = idx;
atomic_set(&ring->tx_free_count, mtk_pdma_empty_txd(ring));
/* read hw index again make sure no new tx packet */
if (idx != hwidx || idx != mtk_reg_r32(eth, MTK_REG_TX_DTX_IDX0))
*tx_again = 1;
if (done)
netdev_completed_queue(*eth->netdev, done, bytes);
return done;
}
static int mtk_qdma_tx_poll(struct mtk_eth *eth, int budget, bool *tx_again)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
struct mtk_tx_dma *desc;
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
int total = 0, done[MTK_MAX_DEVS];
unsigned int bytes[MTK_MAX_DEVS];
u32 cpu, dma;
int i;
memset(done, 0, sizeof(done));
memset(bytes, 0, sizeof(bytes));
cpu = mtk_r32(eth, MTK_QTX_CRX_PTR);
dma = mtk_r32(eth, MTK_QTX_DRX_PTR);
desc = mtk_qdma_phys_to_virt(ring, cpu);
while ((cpu != dma) && budget) {
u32 next_cpu = desc->txd2;
int mac;
desc = mtk_tx_next_qdma(ring, desc);
if ((desc->txd3 & QDMA_TX_OWNER_CPU) == 0)
break;
mac = (desc->txd4 >> TX_DMA_FPORT_SHIFT) &
TX_DMA_FPORT_MASK;
mac--;
tx_buf = mtk_desc_to_tx_buf(ring, desc);
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
bytes[mac] += skb->len;
done[mac]++;
budget--;
}
mtk_txd_unmap(eth->dev, tx_buf);
ring->tx_last_free->txd2 = next_cpu;
ring->tx_last_free = desc;
atomic_inc(&ring->tx_free_count);
cpu = next_cpu;
}
mtk_w32(eth, cpu, MTK_QTX_CRX_PTR);
/* read hw index again make sure no new tx packet */
if (cpu != dma || cpu != mtk_r32(eth, MTK_QTX_DRX_PTR))
*tx_again = true;
for (i = 0; i < eth->soc->mac_count; i++) {
if (!done[i])
continue;
netdev_completed_queue(eth->netdev[i], done[i], bytes[i]);
total += done[i];
}
return total;
}
static int mtk_poll_tx(struct mtk_eth *eth, int budget, u32 tx_intr,
bool *tx_again)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
struct net_device *netdev = eth->netdev[0];
int done;
done = eth->tx_ring.tx_poll(eth, budget, tx_again);
if (!*tx_again)
mtk_irq_ack(eth, tx_intr);
if (!done)
return 0;
smp_mb();
if (unlikely(!netif_queue_stopped(netdev)))
return done;
if (atomic_read(&ring->tx_free_count) > ring->tx_thresh)
netif_wake_queue(netdev);
return done;
}
static void mtk_stats_update(struct mtk_eth *eth)
{
int i;
for (i = 0; i < eth->soc->mac_count; i++) {
if (!eth->mac[i] || !eth->mac[i]->hw_stats)
continue;
if (spin_trylock(&eth->mac[i]->hw_stats->stats_lock)) {
mtk_stats_update_mac(eth->mac[i]);
spin_unlock(&eth->mac[i]->hw_stats->stats_lock);
}
}
}
static int mtk_poll(struct napi_struct *napi, int budget)
{
struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi);
u32 status, mtk_status, mask, tx_intr, rx_intr, status_intr;
int tx_done, rx_done;
bool tx_again = false;
status = mtk_irq_pending(eth);
mtk_status = mtk_irq_pending_status(eth);
tx_intr = eth->soc->tx_int;
rx_intr = eth->soc->rx_int;
status_intr = eth->soc->status_int;
tx_done = 0;
rx_done = 0;
tx_again = 0;
if (status & tx_intr)
tx_done = mtk_poll_tx(eth, budget, tx_intr, &tx_again);
if (status & rx_intr)
rx_done = mtk_poll_rx(napi, budget, eth, rx_intr);
if (unlikely(mtk_status & status_intr)) {
mtk_stats_update(eth);
mtk_irq_ack_status(eth, status_intr);
}
if (unlikely(netif_msg_intr(eth))) {
mask = mtk_irq_enabled(eth);
netdev_info(eth->netdev[0],
"done tx %d, rx %d, intr 0x%08x/0x%x\n",
tx_done, rx_done, status, mask);
}
if (tx_again || rx_done == budget)
return budget;
status = mtk_irq_pending(eth);
if (status & (tx_intr | rx_intr))
return budget;
napi_complete(napi);
mtk_irq_enable(eth, tx_intr | rx_intr);
return rx_done;
}
static int mtk_pdma_tx_alloc(struct mtk_eth *eth)
{
int i;
struct mtk_tx_ring *ring = &eth->tx_ring;
ring->tx_ring_size = eth->soc->dma_ring_size;
ring->tx_free_idx = 0;
ring->tx_next_idx = 0;
ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
MAX_SKB_FRAGS);
ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
GFP_KERNEL);
if (!ring->tx_buf)
goto no_tx_mem;
ring->tx_dma =
dma_alloc_coherent(eth->dev,
ring->tx_ring_size * sizeof(*ring->tx_dma),
&ring->tx_phys, GFP_ATOMIC | __GFP_ZERO);
if (!ring->tx_dma)
goto no_tx_mem;
for (i = 0; i < ring->tx_ring_size; i++) {
ring->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
ring->tx_dma[i].txd4 = eth->soc->txd4;
}
atomic_set(&ring->tx_free_count, mtk_pdma_empty_txd(ring));
ring->tx_map = mtk_pdma_tx_map;
ring->tx_poll = mtk_pdma_tx_poll;
ring->tx_clean = mtk_pdma_tx_clean;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
mtk_reg_w32(eth, ring->tx_phys, MTK_REG_TX_BASE_PTR0);
mtk_reg_w32(eth, ring->tx_ring_size, MTK_REG_TX_MAX_CNT0);
mtk_reg_w32(eth, 0, MTK_REG_TX_CTX_IDX0);
mtk_reg_w32(eth, MTK_PST_DTX_IDX0, MTK_REG_PDMA_RST_CFG);
return 0;
no_tx_mem:
return -ENOMEM;
}
static int mtk_qdma_tx_alloc_tx(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i, sz = sizeof(*ring->tx_dma);
ring->tx_ring_size = eth->soc->dma_ring_size;
ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
GFP_KERNEL);
if (!ring->tx_buf)
goto no_tx_mem;
ring->tx_dma = dma_zalloc_coherent(eth->dev,
ring->tx_ring_size * sz,
&ring->tx_phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->tx_dma)
goto no_tx_mem;
for (i = 0; i < ring->tx_ring_size; i++) {
int next = (i + 1) % ring->tx_ring_size;
u32 next_ptr = ring->tx_phys + next * sz;
ring->tx_dma[i].txd2 = next_ptr;
ring->tx_dma[i].txd3 = TX_DMA_DESP2_DEF;
}
atomic_set(&ring->tx_free_count, ring->tx_ring_size - 2);
ring->tx_next_free = &ring->tx_dma[0];
ring->tx_last_free = &ring->tx_dma[ring->tx_ring_size - 2];
ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
MAX_SKB_FRAGS);
ring->tx_map = mtk_qdma_tx_map;
ring->tx_poll = mtk_qdma_tx_poll;
ring->tx_clean = mtk_qdma_tx_clean;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
mtk_w32(eth, ring->tx_phys, MTK_QTX_CTX_PTR);
mtk_w32(eth, ring->tx_phys, MTK_QTX_DTX_PTR);
mtk_w32(eth,
ring->tx_phys + ((ring->tx_ring_size - 1) * sz),
MTK_QTX_CRX_PTR);
mtk_w32(eth,
ring->tx_phys + ((ring->tx_ring_size - 1) * sz),
MTK_QTX_DRX_PTR);
return 0;
no_tx_mem:
return -ENOMEM;
}
static int mtk_qdma_init(struct mtk_eth *eth, int ring)
{
int err;
err = mtk_init_fq_dma(eth);
if (err)
return err;
err = mtk_qdma_tx_alloc_tx(eth);
if (err)
return err;
err = mtk_dma_rx_alloc(eth, &eth->rx_ring[ring]);
if (err)
return err;
mtk_w32(eth, eth->rx_ring[ring].rx_phys, MTK_QRX_BASE_PTR0);
mtk_w32(eth, eth->rx_ring[ring].rx_ring_size, MTK_QRX_MAX_CNT0);
mtk_w32(eth, eth->rx_ring[ring].rx_calc_idx, MTK_QRX_CRX_IDX0);
mtk_w32(eth, MTK_PST_DRX_IDX0, MTK_QDMA_RST_IDX);
mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES, MTK_QTX_CFG(0));
/* Enable random early drop and set drop threshold automatically */
mtk_w32(eth, 0x174444, MTK_QDMA_FC_THRES);
mtk_w32(eth, 0x0, MTK_QDMA_HRED2);
return 0;
}
static int mtk_pdma_qdma_init(struct mtk_eth *eth)
{
int err = mtk_qdma_init(eth, 1);
if (err)
return err;
err = mtk_dma_rx_alloc(eth, &eth->rx_ring[0]);
if (err)
return err;
mtk_reg_w32(eth, eth->rx_ring[0].rx_phys, MTK_REG_RX_BASE_PTR0);
mtk_reg_w32(eth, eth->rx_ring[0].rx_ring_size, MTK_REG_RX_MAX_CNT0);
mtk_reg_w32(eth, eth->rx_ring[0].rx_calc_idx, MTK_REG_RX_CALC_IDX0);
mtk_reg_w32(eth, MTK_PST_DRX_IDX0, MTK_REG_PDMA_RST_CFG);
return 0;
}
static int mtk_pdma_init(struct mtk_eth *eth)
{
struct mtk_rx_ring *ring = &eth->rx_ring[0];
int err;
err = mtk_pdma_tx_alloc(eth);
if (err)
return err;
err = mtk_dma_rx_alloc(eth, ring);
if (err)
return err;
mtk_reg_w32(eth, ring->rx_phys, MTK_REG_RX_BASE_PTR0);
mtk_reg_w32(eth, ring->rx_ring_size, MTK_REG_RX_MAX_CNT0);
mtk_reg_w32(eth, ring->rx_calc_idx, MTK_REG_RX_CALC_IDX0);
mtk_reg_w32(eth, MTK_PST_DRX_IDX0, MTK_REG_PDMA_RST_CFG);
return 0;
}
static void mtk_dma_free(struct mtk_eth *eth)
{
int i;
for (i = 0; i < eth->soc->mac_count; i++)
if (eth->netdev[i])
netdev_reset_queue(eth->netdev[i]);
eth->tx_ring.tx_clean(eth);
mtk_clean_rx(eth, &eth->rx_ring[0]);
mtk_clean_rx(eth, &eth->rx_ring[1]);
kfree(eth->scratch_head);
}
static void mtk_tx_timeout(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_ring *ring = &eth->tx_ring;
eth->netdev[mac->id]->stats.tx_errors++;
netif_err(eth, tx_err, dev,
"transmit timed out\n");
if (eth->soc->dma_type & MTK_PDMA) {
netif_info(eth, drv, dev, "pdma_cfg:%08x\n",
mtk_reg_r32(eth, MTK_REG_PDMA_GLO_CFG));
netif_info(eth, drv, dev,
"tx_ring=%d, base=%08x, max=%u, ctx=%u, dtx=%u, fdx=%hu, next=%hu\n",
0, mtk_reg_r32(eth, MTK_REG_TX_BASE_PTR0),
mtk_reg_r32(eth, MTK_REG_TX_MAX_CNT0),
mtk_reg_r32(eth, MTK_REG_TX_CTX_IDX0),
mtk_reg_r32(eth, MTK_REG_TX_DTX_IDX0),
ring->tx_free_idx,
ring->tx_next_idx);
}
if (eth->soc->dma_type & MTK_QDMA) {
netif_info(eth, drv, dev, "qdma_cfg:%08x\n",
mtk_r32(eth, MTK_QDMA_GLO_CFG));
netif_info(eth, drv, dev,
"tx_ring=%d, ctx=%08x, dtx=%08x, crx=%08x, drx=%08x, free=%hu\n",
0, mtk_r32(eth, MTK_QTX_CTX_PTR),
mtk_r32(eth, MTK_QTX_DTX_PTR),
mtk_r32(eth, MTK_QTX_CRX_PTR),
mtk_r32(eth, MTK_QTX_DRX_PTR),
atomic_read(&ring->tx_free_count));
}
netif_info(eth, drv, dev,
"rx_ring=%d, base=%08x, max=%u, calc=%u, drx=%u\n",
0, mtk_reg_r32(eth, MTK_REG_RX_BASE_PTR0),
mtk_reg_r32(eth, MTK_REG_RX_MAX_CNT0),
mtk_reg_r32(eth, MTK_REG_RX_CALC_IDX0),
mtk_reg_r32(eth, MTK_REG_RX_DRX_IDX0));
schedule_work(&mac->pending_work);
}
static irqreturn_t mtk_handle_irq(int irq, void *_eth)
{
struct mtk_eth *eth = _eth;
u32 status, int_mask;
status = mtk_irq_pending(eth);
if (unlikely(!status))
return IRQ_NONE;
int_mask = (eth->soc->rx_int | eth->soc->tx_int);
if (likely(status & int_mask)) {
if (likely(napi_schedule_prep(&eth->rx_napi)))
__napi_schedule(&eth->rx_napi);
} else {
mtk_irq_ack(eth, status);
}
mtk_irq_disable(eth, int_mask);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void mtk_poll_controller(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
u32 int_mask = eth->soc->tx_int | eth->soc->rx_int;
mtk_irq_disable(eth, int_mask);
mtk_handle_irq(dev->irq, dev);
mtk_irq_enable(eth, int_mask);
}
#endif
int mtk_set_clock_cycle(struct mtk_eth *eth)
{
unsigned long sysclk = eth->sysclk;
sysclk /= MTK_US_CYC_CNT_DIVISOR;
sysclk <<= MTK_US_CYC_CNT_SHIFT;
mtk_w32(eth, (mtk_r32(eth, MTK_GLO_CFG) &
~(MTK_US_CYC_CNT_MASK << MTK_US_CYC_CNT_SHIFT)) |
sysclk,
MTK_GLO_CFG);
return 0;
}
void mtk_fwd_config(struct mtk_eth *eth)
{
u32 fwd_cfg;
fwd_cfg = mtk_r32(eth, MTK_GDMA1_FWD_CFG);
/* disable jumbo frame */
if (eth->soc->jumbo_frame)
fwd_cfg &= ~MTK_GDM1_JMB_EN;
/* set unicast/multicast/broadcast frame to cpu */
fwd_cfg &= ~0xffff;
mtk_w32(eth, fwd_cfg, MTK_GDMA1_FWD_CFG);
}
void mtk_csum_config(struct mtk_eth *eth)
{
if (eth->soc->hw_features & NETIF_F_RXCSUM)
mtk_w32(eth, mtk_r32(eth, MTK_GDMA1_FWD_CFG) |
(MTK_GDM1_ICS_EN | MTK_GDM1_TCS_EN | MTK_GDM1_UCS_EN),
MTK_GDMA1_FWD_CFG);
else
mtk_w32(eth, mtk_r32(eth, MTK_GDMA1_FWD_CFG) &
~(MTK_GDM1_ICS_EN | MTK_GDM1_TCS_EN | MTK_GDM1_UCS_EN),
MTK_GDMA1_FWD_CFG);
if (eth->soc->hw_features & NETIF_F_IP_CSUM)
mtk_w32(eth, mtk_r32(eth, MTK_CDMA_CSG_CFG) |
(MTK_ICS_GEN_EN | MTK_TCS_GEN_EN | MTK_UCS_GEN_EN),
MTK_CDMA_CSG_CFG);
else
mtk_w32(eth, mtk_r32(eth, MTK_CDMA_CSG_CFG) &
~(MTK_ICS_GEN_EN | MTK_TCS_GEN_EN | MTK_UCS_GEN_EN),
MTK_CDMA_CSG_CFG);
}
static int mtk_start_dma(struct mtk_eth *eth)
{
unsigned long flags;
u32 val;
int err;
if (eth->soc->dma_type == MTK_PDMA)
err = mtk_pdma_init(eth);
else if (eth->soc->dma_type == MTK_QDMA)
err = mtk_qdma_init(eth, 0);
else
err = mtk_pdma_qdma_init(eth);
if (err) {
mtk_dma_free(eth);
return err;
}
spin_lock_irqsave(&eth->page_lock, flags);
val = MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN;
if (eth->soc->rx_2b_offset)
val |= MTK_RX_2B_OFFSET;
val |= eth->soc->pdma_glo_cfg;
if (eth->soc->dma_type & MTK_PDMA)
mtk_reg_w32(eth, val, MTK_REG_PDMA_GLO_CFG);
if (eth->soc->dma_type & MTK_QDMA)
mtk_w32(eth, val, MTK_QDMA_GLO_CFG);
spin_unlock_irqrestore(&eth->page_lock, flags);
return 0;
}
static int mtk_open(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
if (!atomic_read(&eth->dma_refcnt)) {
int err = mtk_start_dma(eth);
if (err)
return err;
napi_enable(&eth->rx_napi);
mtk_irq_enable(eth, eth->soc->tx_int | eth->soc->rx_int);
}
atomic_inc(&eth->dma_refcnt);
if (eth->phy)
eth->phy->start(mac);
if (eth->soc->has_carrier && eth->soc->has_carrier(eth))
netif_carrier_on(dev);
netif_start_queue(dev);
eth->soc->fwd_config(eth);
return 0;
}
static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg)
{
unsigned long flags;
u32 val;
int i;
/* stop the dma enfine */
spin_lock_irqsave(&eth->page_lock, flags);
val = mtk_r32(eth, glo_cfg);
mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN),
glo_cfg);
spin_unlock_irqrestore(&eth->page_lock, flags);
/* wait for dma stop */
for (i = 0; i < 10; i++) {
val = mtk_r32(eth, glo_cfg);
if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) {
msleep(20);
continue;
}
break;
}
}
static int mtk_stop(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
netif_tx_disable(dev);
if (eth->phy)
eth->phy->stop(mac);
if (!atomic_dec_and_test(&eth->dma_refcnt))
return 0;
mtk_irq_disable(eth, eth->soc->tx_int | eth->soc->rx_int);
napi_disable(&eth->rx_napi);
if (eth->soc->dma_type & MTK_PDMA)
mtk_stop_dma(eth, mtk_reg_table[MTK_REG_PDMA_GLO_CFG]);
if (eth->soc->dma_type & MTK_QDMA)
mtk_stop_dma(eth, MTK_QDMA_GLO_CFG);
mtk_dma_free(eth);
return 0;
}
static int __init mtk_init_hw(struct mtk_eth *eth)
{
int i, err;
eth->soc->reset_fe(eth);
if (eth->soc->switch_init)
if (eth->soc->switch_init(eth)) {
dev_err(eth->dev, "failed to initialize switch core\n");
return -ENODEV;
}
err = devm_request_irq(eth->dev, eth->irq, mtk_handle_irq, 0,
dev_name(eth->dev), eth);
if (err)
return err;
err = mtk_mdio_init(eth);
if (err)
return err;
/* disable delay and normal interrupt */
mtk_reg_w32(eth, 0, MTK_REG_DLY_INT_CFG);
if (eth->soc->dma_type & MTK_QDMA)
mtk_w32(eth, 0, MTK_QDMA_DELAY_INT);
mtk_irq_disable(eth, eth->soc->tx_int | eth->soc->rx_int);
/* frame engine will push VLAN tag regarding to VIDX field in Tx desc */
if (mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE])
for (i = 0; i < 16; i += 2)
mtk_w32(eth, ((i + 1) << 16) + i,
mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE] +
(i * 2));
if (eth->soc->fwd_config(eth))
dev_err(eth->dev, "unable to get clock\n");
if (mtk_reg_table[MTK_REG_MTK_RST_GL]) {
mtk_reg_w32(eth, 1, MTK_REG_MTK_RST_GL);
mtk_reg_w32(eth, 0, MTK_REG_MTK_RST_GL);
}
return 0;
}
static int __init mtk_init(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct device_node *port;
const char *mac_addr;
int err;
mac_addr = of_get_mac_address(mac->of_node);
if (mac_addr)
ether_addr_copy(dev->dev_addr, mac_addr);
/* If the mac address is invalid, use random mac address */
if (!is_valid_ether_addr(dev->dev_addr)) {
eth_hw_addr_random(dev);
dev_err(eth->dev, "generated random MAC address %pM\n",
dev->dev_addr);
}
mac->hw->soc->set_mac(mac, dev->dev_addr);
if (eth->soc->port_init)
for_each_child_of_node(mac->of_node, port)
if (of_device_is_compatible(port,
"mediatek,eth-port") &&
of_device_is_available(port))
eth->soc->port_init(eth, mac, port);
if (eth->phy) {
err = eth->phy->connect(mac);
if (err)
return err;
}
return 0;
}
static void mtk_uninit(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
if (eth->phy)
eth->phy->disconnect(mac);
mtk_mdio_cleanup(eth);
mtk_irq_disable(eth, ~0);
free_irq(dev->irq, dev);
}
static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
if (!mac->phy_dev)
return -ENODEV;
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return phy_mii_ioctl(mac->phy_dev, ifr, cmd);
default:
break;
}
return -EOPNOTSUPP;
}
static int mtk_change_mtu(struct net_device *dev, int new_mtu)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
int frag_size, old_mtu;
u32 fwd_cfg;
if (!eth->soc->jumbo_frame)
return eth_change_mtu(dev, new_mtu);
frag_size = mtk_max_frag_size(new_mtu);
if (new_mtu < 68 || frag_size > PAGE_SIZE)
return -EINVAL;
old_mtu = dev->mtu;
dev->mtu = new_mtu;
/* return early if the buffer sizes will not change */
if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
return 0;
if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
return 0;
if (new_mtu <= ETH_DATA_LEN)
eth->rx_ring[0].frag_size = mtk_max_frag_size(ETH_DATA_LEN);
else
eth->rx_ring[0].frag_size = PAGE_SIZE;
eth->rx_ring[0].rx_buf_size =
mtk_max_buf_size(eth->rx_ring[0].frag_size);
if (!netif_running(dev))
return 0;
mtk_stop(dev);
fwd_cfg = mtk_r32(eth, MTK_GDMA1_FWD_CFG);
if (new_mtu <= ETH_DATA_LEN) {
fwd_cfg &= ~MTK_GDM1_JMB_EN;
} else {
fwd_cfg &= ~(MTK_GDM1_JMB_LEN_MASK << MTK_GDM1_JMB_LEN_SHIFT);
fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
MTK_GDM1_JMB_LEN_SHIFT) | MTK_GDM1_JMB_EN;
}
mtk_w32(eth, fwd_cfg, MTK_GDMA1_FWD_CFG);
return mtk_open(dev);
}
static void mtk_pending_work(struct work_struct *work)
{
struct mtk_mac *mac = container_of(work, struct mtk_mac, pending_work);
struct mtk_eth *eth = mac->hw;
struct net_device *dev = eth->netdev[mac->id];
int err;
rtnl_lock();
mtk_stop(dev);
err = mtk_open(dev);
if (err) {
netif_alert(eth, ifup, dev,
"Driver up/down cycle failed, closing device.\n");
dev_close(dev);
}
rtnl_unlock();
}
static int mtk_cleanup(struct mtk_eth *eth)
{
int i;
for (i = 0; i < eth->soc->mac_count; i++) {
struct mtk_mac *mac = netdev_priv(eth->netdev[i]);
if (!eth->netdev[i])
continue;
unregister_netdev(eth->netdev[i]);
free_netdev(eth->netdev[i]);
cancel_work_sync(&mac->pending_work);
}
return 0;
}
static const struct net_device_ops mtk_netdev_ops = {
.ndo_init = mtk_init,
.ndo_uninit = mtk_uninit,
.ndo_open = mtk_open,
.ndo_stop = mtk_stop,
.ndo_start_xmit = mtk_start_xmit,
.ndo_set_mac_address = mtk_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = mtk_do_ioctl,
.ndo_change_mtu = mtk_change_mtu,
.ndo_tx_timeout = mtk_tx_timeout,
.ndo_get_stats64 = mtk_get_stats64,
.ndo_vlan_rx_add_vid = mtk_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = mtk_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = mtk_poll_controller,
#endif
};
static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np)
{
struct mtk_mac *mac;
const __be32 *_id = of_get_property(np, "reg", NULL);
int id, err;
if (!_id) {
dev_err(eth->dev, "missing mac id\n");
return -EINVAL;
}
id = be32_to_cpup(_id);
if (id >= eth->soc->mac_count || eth->netdev[id]) {
dev_err(eth->dev, "%d is not a valid mac id\n", id);
return -EINVAL;
}
eth->netdev[id] = alloc_etherdev(sizeof(*mac));
if (!eth->netdev[id]) {
dev_err(eth->dev, "alloc_etherdev failed\n");
return -ENOMEM;
}
mac = netdev_priv(eth->netdev[id]);
eth->mac[id] = mac;
mac->id = id;
mac->hw = eth;
mac->of_node = np;
INIT_WORK(&mac->pending_work, mtk_pending_work);
if (mtk_reg_table[MTK_REG_MTK_COUNTER_BASE]) {
mac->hw_stats = devm_kzalloc(eth->dev,
sizeof(*mac->hw_stats),
GFP_KERNEL);
if (!mac->hw_stats) {
err = -ENOMEM;
goto free_netdev;
}
spin_lock_init(&mac->hw_stats->stats_lock);
mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET;
}
SET_NETDEV_DEV(eth->netdev[id], eth->dev);
eth->netdev[id]->netdev_ops = &mtk_netdev_ops;
eth->netdev[id]->base_addr = (unsigned long)eth->base;
if (eth->soc->init_data)
eth->soc->init_data(eth->soc, eth->netdev[id]);
eth->netdev[id]->vlan_features = eth->soc->hw_features &
~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
eth->netdev[id]->features |= eth->soc->hw_features;
if (mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE])
eth->netdev[id]->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
mtk_set_ethtool_ops(eth->netdev[id]);
err = register_netdev(eth->netdev[id]);
if (err) {
dev_err(eth->dev, "error bringing up device\n");
err = -ENOMEM;
goto free_netdev;
}
eth->netdev[id]->irq = eth->irq;
netif_info(eth, probe, eth->netdev[id],
"mediatek frame engine at 0x%08lx, irq %d\n",
eth->netdev[id]->base_addr, eth->netdev[id]->irq);
return 0;
free_netdev:
free_netdev(eth->netdev[id]);
return err;
}
static int mtk_probe(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
const struct of_device_id *match;
struct device_node *mac_np;
struct mtk_soc_data *soc;
struct mtk_eth *eth;
struct clk *sysclk;
int err;
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask;
device_reset(&pdev->dev);
match = of_match_device(of_mtk_match, &pdev->dev);
soc = (struct mtk_soc_data *)match->data;
if (soc->reg_table)
mtk_reg_table = soc->reg_table;
eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL);
if (!eth)
return -ENOMEM;
eth->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(eth->base))
return PTR_ERR(eth->base);
spin_lock_init(&eth->page_lock);
eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,ethsys");
if (IS_ERR(eth->ethsys))
return PTR_ERR(eth->ethsys);
eth->irq = platform_get_irq(pdev, 0);
if (eth->irq < 0) {
dev_err(&pdev->dev, "no IRQ resource found\n");
return -ENXIO;
}
sysclk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(sysclk)) {
dev_err(&pdev->dev,
"the clock is not defined in the devicetree\n");
return -ENXIO;
}
eth->sysclk = clk_get_rate(sysclk);
eth->switch_np = of_parse_phandle(pdev->dev.of_node,
"mediatek,switch", 0);
if (soc->has_switch && !eth->switch_np) {
dev_err(&pdev->dev, "failed to read switch phandle\n");
return -ENODEV;
}
eth->dev = &pdev->dev;
eth->soc = soc;
eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE);
err = mtk_init_hw(eth);
if (err)
return err;
if (eth->soc->mac_count > 1) {
for_each_child_of_node(pdev->dev.of_node, mac_np) {
if (!of_device_is_compatible(mac_np,
"mediatek,eth-mac"))
continue;
if (!of_device_is_available(mac_np))
continue;
err = mtk_add_mac(eth, mac_np);
if (err)
goto err_free_dev;
}
init_dummy_netdev(&eth->dummy_dev);
netif_napi_add(&eth->dummy_dev, &eth->rx_napi, mtk_poll,
soc->napi_weight);
} else {
err = mtk_add_mac(eth, pdev->dev.of_node);
if (err)
goto err_free_dev;
netif_napi_add(eth->netdev[0], &eth->rx_napi, mtk_poll,
soc->napi_weight);
}
platform_set_drvdata(pdev, eth);
return 0;
err_free_dev:
mtk_cleanup(eth);
return err;
}
static int mtk_remove(struct platform_device *pdev)
{
struct mtk_eth *eth = platform_get_drvdata(pdev);
netif_napi_del(&eth->rx_napi);
mtk_cleanup(eth);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver mtk_driver = {
.probe = mtk_probe,
.remove = mtk_remove,
.driver = {
.name = "mtk_soc_eth",
.owner = THIS_MODULE,
.of_match_table = of_mtk_match,
},
};
module_platform_driver(mtk_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");