blob: be3155275a6bac10b2f20a6054d8e0f8c5df9485 [file] [log] [blame]
/*
* TI CAL camera interface driver
*
* Copyright (c) 2015 Texas Instruments Inc.
* Benoit Parrot, <bparrot@ti.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation
*/
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-async.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-fh.h>
#include <media/videobuf2-core.h>
#include <media/videobuf2-dma-contig.h>
#include "cal_regs.h"
#define CAL_MODULE_NAME "cal"
#define MAX_WIDTH 1920
#define MAX_HEIGHT 1200
#define CAL_VERSION "0.1.0"
MODULE_DESCRIPTION("TI CAL driver");
MODULE_AUTHOR("Benoit Parrot, <bparrot@ti.com>");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(CAL_VERSION);
static unsigned video_nr = -1;
module_param(video_nr, uint, 0644);
MODULE_PARM_DESC(video_nr, "videoX start number, -1 is autodetect");
static unsigned debug;
module_param(debug, uint, 0644);
MODULE_PARM_DESC(debug, "activates debug info");
/* timeperframe: min/max and default */
static const struct v4l2_fract
tpf_default = {.numerator = 1001, .denominator = 30000};
#define cal_dbg(level, caldev, fmt, arg...) \
v4l2_dbg(level, debug, &caldev->v4l2_dev, fmt, ##arg)
#define cal_info(caldev, fmt, arg...) \
v4l2_info(&caldev->v4l2_dev, fmt, ##arg)
#define cal_err(caldev, fmt, arg...) \
v4l2_err(&caldev->v4l2_dev, fmt, ##arg)
#define ctx_dbg(level, ctx, fmt, arg...) \
v4l2_dbg(level, debug, &ctx->v4l2_dev, fmt, ##arg)
#define ctx_info(ctx, fmt, arg...) \
v4l2_info(&ctx->v4l2_dev, fmt, ##arg)
#define ctx_err(ctx, fmt, arg...) \
v4l2_err(&ctx->v4l2_dev, fmt, ##arg)
#define CAL_NUM_INPUT 1
#define CAL_NUM_CONTEXT 2
#define bytes_per_line(pixel, bpp) (ALIGN(pixel * bpp, 16))
#define reg_read(dev, offset) ioread32(dev->base + offset)
#define reg_write(dev, offset, val) iowrite32(val, dev->base + offset)
#define reg_read_field(dev, offset, mask) get_field(reg_read(dev, offset), \
mask)
#define reg_write_field(dev, offset, field, mask) { \
u32 val = reg_read(dev, offset); \
set_field(&val, field, mask); \
reg_write(dev, offset, val); }
/* ------------------------------------------------------------------
* Basic structures
* ------------------------------------------------------------------
*/
struct cal_fmt {
u32 fourcc;
u32 code;
u8 depth;
};
static struct cal_fmt cal_formats[] = {
{
.fourcc = V4L2_PIX_FMT_YUYV,
.code = MEDIA_BUS_FMT_YUYV8_2X8,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.code = MEDIA_BUS_FMT_UYVY8_2X8,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_YVYU,
.code = MEDIA_BUS_FMT_YVYU8_2X8,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_VYUY,
.code = MEDIA_BUS_FMT_VYUY8_2X8,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */
.code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB565X, /* rrrrrggg gggbbbbb */
.code = MEDIA_BUS_FMT_RGB565_2X8_BE,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB555, /* gggbbbbb arrrrrgg */
.code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB555X, /* arrrrrgg gggbbbbb */
.code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB24, /* rgb */
.code = MEDIA_BUS_FMT_RGB888_2X12_LE,
.depth = 24,
}, {
.fourcc = V4L2_PIX_FMT_BGR24, /* bgr */
.code = MEDIA_BUS_FMT_RGB888_2X12_BE,
.depth = 24,
}, {
.fourcc = V4L2_PIX_FMT_RGB32, /* argb */
.code = MEDIA_BUS_FMT_ARGB8888_1X32,
.depth = 32,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR8,
.code = MEDIA_BUS_FMT_SBGGR8_1X8,
.depth = 8,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.code = MEDIA_BUS_FMT_SGBRG8_1X8,
.depth = 8,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.code = MEDIA_BUS_FMT_SGRBG8_1X8,
.depth = 8,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB8,
.code = MEDIA_BUS_FMT_SRGGB8_1X8,
.depth = 8,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR10,
.code = MEDIA_BUS_FMT_SBGGR10_1X10,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG10,
.code = MEDIA_BUS_FMT_SGBRG10_1X10,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG10,
.code = MEDIA_BUS_FMT_SGRBG10_1X10,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB10,
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR12,
.code = MEDIA_BUS_FMT_SBGGR12_1X12,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG12,
.code = MEDIA_BUS_FMT_SGBRG12_1X12,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG12,
.code = MEDIA_BUS_FMT_SGRBG12_1X12,
.depth = 16,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB12,
.code = MEDIA_BUS_FMT_SRGGB12_1X12,
.depth = 16,
},
};
/* Print Four-character-code (FOURCC) */
static char *fourcc_to_str(u32 fmt)
{
static char code[5];
code[0] = (unsigned char)(fmt & 0xff);
code[1] = (unsigned char)((fmt >> 8) & 0xff);
code[2] = (unsigned char)((fmt >> 16) & 0xff);
code[3] = (unsigned char)((fmt >> 24) & 0xff);
code[4] = '\0';
return code;
}
/* buffer for one video frame */
struct cal_buffer {
/* common v4l buffer stuff -- must be first */
struct vb2_v4l2_buffer vb;
struct list_head list;
const struct cal_fmt *fmt;
};
struct cal_dmaqueue {
struct list_head active;
/* Counters to control fps rate */
int frame;
int ini_jiffies;
};
struct cm_data {
void __iomem *base;
struct resource *res;
unsigned int camerrx_control;
struct platform_device *pdev;
};
struct cc_data {
void __iomem *base;
struct resource *res;
struct platform_device *pdev;
};
/*
* there is one cal_dev structure in the driver, it is shared by
* all instances.
*/
struct cal_dev {
int irq;
void __iomem *base;
struct resource *res;
struct platform_device *pdev;
struct v4l2_device v4l2_dev;
/* Control Module handle */
struct cm_data *cm;
/* Camera Core Module handle */
struct cc_data *cc[CAL_NUM_CSI2_PORTS];
struct cal_ctx *ctx[CAL_NUM_CONTEXT];
};
/*
* There is one cal_ctx structure for each camera core context.
*/
struct cal_ctx {
struct v4l2_device v4l2_dev;
struct v4l2_ctrl_handler ctrl_handler;
struct video_device vdev;
struct v4l2_async_notifier notifier;
struct v4l2_subdev *sensor;
struct v4l2_fwnode_endpoint endpoint;
struct v4l2_async_subdev asd;
struct v4l2_async_subdev *asd_list[1];
struct v4l2_fh fh;
struct cal_dev *dev;
struct cc_data *cc;
/* v4l2_ioctl mutex */
struct mutex mutex;
/* v4l2 buffers lock */
spinlock_t slock;
/* Several counters */
unsigned long jiffies;
struct cal_dmaqueue vidq;
/* Input Number */
int input;
/* video capture */
const struct cal_fmt *fmt;
/* Used to store current pixel format */
struct v4l2_format v_fmt;
/* Used to store current mbus frame format */
struct v4l2_mbus_framefmt m_fmt;
/* Current subdev enumerated format */
struct cal_fmt *active_fmt[ARRAY_SIZE(cal_formats)];
int num_active_fmt;
struct v4l2_fract timeperframe;
unsigned int sequence;
unsigned int external_rate;
struct vb2_queue vb_vidq;
unsigned int seq_count;
unsigned int csi2_port;
unsigned int virtual_channel;
/* Pointer pointing to current v4l2_buffer */
struct cal_buffer *cur_frm;
/* Pointer pointing to next v4l2_buffer */
struct cal_buffer *next_frm;
};
static const struct cal_fmt *find_format_by_pix(struct cal_ctx *ctx,
u32 pixelformat)
{
const struct cal_fmt *fmt;
unsigned int k;
for (k = 0; k < ctx->num_active_fmt; k++) {
fmt = ctx->active_fmt[k];
if (fmt->fourcc == pixelformat)
return fmt;
}
return NULL;
}
static const struct cal_fmt *find_format_by_code(struct cal_ctx *ctx,
u32 code)
{
const struct cal_fmt *fmt;
unsigned int k;
for (k = 0; k < ctx->num_active_fmt; k++) {
fmt = ctx->active_fmt[k];
if (fmt->code == code)
return fmt;
}
return NULL;
}
static inline struct cal_ctx *notifier_to_ctx(struct v4l2_async_notifier *n)
{
return container_of(n, struct cal_ctx, notifier);
}
static inline int get_field(u32 value, u32 mask)
{
return (value & mask) >> __ffs(mask);
}
static inline void set_field(u32 *valp, u32 field, u32 mask)
{
u32 val = *valp;
val &= ~mask;
val |= (field << __ffs(mask)) & mask;
*valp = val;
}
/*
* Control Module block access
*/
static struct cm_data *cm_create(struct cal_dev *dev)
{
struct platform_device *pdev = dev->pdev;
struct cm_data *cm;
cm = devm_kzalloc(&pdev->dev, sizeof(*cm), GFP_KERNEL);
if (!cm)
return ERR_PTR(-ENOMEM);
cm->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"camerrx_control");
cm->base = devm_ioremap_resource(&pdev->dev, cm->res);
if (IS_ERR(cm->base)) {
cal_err(dev, "failed to ioremap\n");
return ERR_CAST(cm->base);
}
cal_dbg(1, dev, "ioresource %s at %pa - %pa\n",
cm->res->name, &cm->res->start, &cm->res->end);
return cm;
}
static void camerarx_phy_enable(struct cal_ctx *ctx)
{
u32 val;
if (!ctx->dev->cm->base) {
ctx_err(ctx, "cm not mapped\n");
return;
}
val = reg_read(ctx->dev->cm, CM_CTRL_CORE_CAMERRX_CONTROL);
if (ctx->csi2_port == 1) {
set_field(&val, 1, CM_CAMERRX_CTRL_CSI0_CTRLCLKEN_MASK);
set_field(&val, 0, CM_CAMERRX_CTRL_CSI0_CAMMODE_MASK);
/* enable all lanes by default */
set_field(&val, 0xf, CM_CAMERRX_CTRL_CSI0_LANEENABLE_MASK);
set_field(&val, 1, CM_CAMERRX_CTRL_CSI0_MODE_MASK);
} else if (ctx->csi2_port == 2) {
set_field(&val, 1, CM_CAMERRX_CTRL_CSI1_CTRLCLKEN_MASK);
set_field(&val, 0, CM_CAMERRX_CTRL_CSI1_CAMMODE_MASK);
/* enable all lanes by default */
set_field(&val, 0x3, CM_CAMERRX_CTRL_CSI1_LANEENABLE_MASK);
set_field(&val, 1, CM_CAMERRX_CTRL_CSI1_MODE_MASK);
}
reg_write(ctx->dev->cm, CM_CTRL_CORE_CAMERRX_CONTROL, val);
}
static void camerarx_phy_disable(struct cal_ctx *ctx)
{
u32 val;
if (!ctx->dev->cm->base) {
ctx_err(ctx, "cm not mapped\n");
return;
}
val = reg_read(ctx->dev->cm, CM_CTRL_CORE_CAMERRX_CONTROL);
if (ctx->csi2_port == 1)
set_field(&val, 0x0, CM_CAMERRX_CTRL_CSI0_CTRLCLKEN_MASK);
else if (ctx->csi2_port == 2)
set_field(&val, 0x0, CM_CAMERRX_CTRL_CSI1_CTRLCLKEN_MASK);
reg_write(ctx->dev->cm, CM_CTRL_CORE_CAMERRX_CONTROL, val);
}
/*
* Camera Instance access block
*/
static struct cc_data *cc_create(struct cal_dev *dev, unsigned int core)
{
struct platform_device *pdev = dev->pdev;
struct cc_data *cc;
cc = devm_kzalloc(&pdev->dev, sizeof(*cc), GFP_KERNEL);
if (!cc)
return ERR_PTR(-ENOMEM);
cc->res = platform_get_resource_byname(pdev,
IORESOURCE_MEM,
(core == 0) ?
"cal_rx_core0" :
"cal_rx_core1");
cc->base = devm_ioremap_resource(&pdev->dev, cc->res);
if (IS_ERR(cc->base)) {
cal_err(dev, "failed to ioremap\n");
return ERR_CAST(cc->base);
}
cal_dbg(1, dev, "ioresource %s at %pa - %pa\n",
cc->res->name, &cc->res->start, &cc->res->end);
return cc;
}
/*
* Get Revision and HW info
*/
static void cal_get_hwinfo(struct cal_dev *dev)
{
u32 revision = 0;
u32 hwinfo = 0;
revision = reg_read(dev, CAL_HL_REVISION);
cal_dbg(3, dev, "CAL_HL_REVISION = 0x%08x (expecting 0x40000200)\n",
revision);
hwinfo = reg_read(dev, CAL_HL_HWINFO);
cal_dbg(3, dev, "CAL_HL_HWINFO = 0x%08x (expecting 0xA3C90469)\n",
hwinfo);
}
static inline int cal_runtime_get(struct cal_dev *dev)
{
return pm_runtime_get_sync(&dev->pdev->dev);
}
static inline void cal_runtime_put(struct cal_dev *dev)
{
pm_runtime_put_sync(&dev->pdev->dev);
}
static void cal_quickdump_regs(struct cal_dev *dev)
{
cal_info(dev, "CAL Registers @ 0x%pa:\n", &dev->res->start);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
(__force const void *)dev->base,
resource_size(dev->res), false);
if (dev->ctx[0]) {
cal_info(dev, "CSI2 Core 0 Registers @ %pa:\n",
&dev->ctx[0]->cc->res->start);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
(__force const void *)dev->ctx[0]->cc->base,
resource_size(dev->ctx[0]->cc->res),
false);
}
if (dev->ctx[1]) {
cal_info(dev, "CSI2 Core 1 Registers @ %pa:\n",
&dev->ctx[1]->cc->res->start);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
(__force const void *)dev->ctx[1]->cc->base,
resource_size(dev->ctx[1]->cc->res),
false);
}
cal_info(dev, "CAMERRX_Control Registers @ %pa:\n",
&dev->cm->res->start);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
(__force const void *)dev->cm->base,
resource_size(dev->cm->res), false);
}
/*
* Enable the expected IRQ sources
*/
static void enable_irqs(struct cal_ctx *ctx)
{
/* Enable IRQ_WDMA_END 0/1 */
reg_write_field(ctx->dev,
CAL_HL_IRQENABLE_SET(2),
CAL_HL_IRQ_ENABLE,
CAL_HL_IRQ_MASK(ctx->csi2_port));
/* Enable IRQ_WDMA_START 0/1 */
reg_write_field(ctx->dev,
CAL_HL_IRQENABLE_SET(3),
CAL_HL_IRQ_ENABLE,
CAL_HL_IRQ_MASK(ctx->csi2_port));
/* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */
reg_write(ctx->dev, CAL_CSI2_VC_IRQENABLE(1), 0xFF000000);
}
static void disable_irqs(struct cal_ctx *ctx)
{
u32 val;
/* Disable IRQ_WDMA_END 0/1 */
val = 0;
set_field(&val, CAL_HL_IRQ_CLEAR, CAL_HL_IRQ_MASK(ctx->csi2_port));
reg_write(ctx->dev, CAL_HL_IRQENABLE_CLR(2), val);
/* Disable IRQ_WDMA_START 0/1 */
val = 0;
set_field(&val, CAL_HL_IRQ_CLEAR, CAL_HL_IRQ_MASK(ctx->csi2_port));
reg_write(ctx->dev, CAL_HL_IRQENABLE_CLR(3), val);
/* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */
reg_write(ctx->dev, CAL_CSI2_VC_IRQENABLE(1), 0);
}
static void csi2_init(struct cal_ctx *ctx)
{
int i;
u32 val;
val = reg_read(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port));
set_field(&val, CAL_GEN_ENABLE,
CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
set_field(&val, CAL_GEN_ENABLE,
CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
set_field(&val, CAL_GEN_DISABLE,
CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
set_field(&val, 407, CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
reg_write(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port), val);
ctx_dbg(3, ctx, "CAL_CSI2_TIMING(%d) = 0x%08x\n", ctx->csi2_port,
reg_read(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port)));
val = reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port));
set_field(&val, CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
set_field(&val, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON,
CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
reg_write(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), val);
for (i = 0; i < 10; i++) {
if (reg_read_field(ctx->dev,
CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port),
CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK) ==
CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_STATE_ON)
break;
usleep_range(1000, 1100);
}
ctx_dbg(3, ctx, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n", ctx->csi2_port,
reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)));
val = reg_read(ctx->dev, CAL_CTRL);
set_field(&val, CAL_CTRL_BURSTSIZE_BURST128, CAL_CTRL_BURSTSIZE_MASK);
set_field(&val, 0xF, CAL_CTRL_TAGCNT_MASK);
set_field(&val, CAL_CTRL_POSTED_WRITES_NONPOSTED,
CAL_CTRL_POSTED_WRITES_MASK);
set_field(&val, 0xFF, CAL_CTRL_MFLAGL_MASK);
set_field(&val, 0xFF, CAL_CTRL_MFLAGH_MASK);
reg_write(ctx->dev, CAL_CTRL, val);
ctx_dbg(3, ctx, "CAL_CTRL = 0x%08x\n", reg_read(ctx->dev, CAL_CTRL));
}
static void csi2_lane_config(struct cal_ctx *ctx)
{
u32 val = reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port));
u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 =
&ctx->endpoint.bus.mipi_csi2;
int lane;
set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
/*
* Every lane are one nibble apart starting with the
* clock followed by the data lanes so shift masks by 4.
*/
lane_mask <<= 4;
polarity_mask <<= 4;
set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
set_field(&val, mipi_csi2->lane_polarities[lane + 1],
polarity_mask);
}
reg_write(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), val);
ctx_dbg(3, ctx, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
ctx->csi2_port, val);
}
static void csi2_ppi_enable(struct cal_ctx *ctx)
{
reg_write_field(ctx->dev, CAL_CSI2_PPI_CTRL(ctx->csi2_port),
CAL_GEN_ENABLE, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
}
static void csi2_ppi_disable(struct cal_ctx *ctx)
{
reg_write_field(ctx->dev, CAL_CSI2_PPI_CTRL(ctx->csi2_port),
CAL_GEN_DISABLE, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
}
static void csi2_ctx_config(struct cal_ctx *ctx)
{
u32 val;
val = reg_read(ctx->dev, CAL_CSI2_CTX0(ctx->csi2_port));
set_field(&val, ctx->csi2_port, CAL_CSI2_CTX_CPORT_MASK);
/*
* DT type: MIPI CSI-2 Specs
* 0x1: All - DT filter is disabled
* 0x24: RGB888 1 pixel = 3 bytes
* 0x2B: RAW10 4 pixels = 5 bytes
* 0x2A: RAW8 1 pixel = 1 byte
* 0x1E: YUV422 2 pixels = 4 bytes
*/
set_field(&val, 0x1, CAL_CSI2_CTX_DT_MASK);
/* Virtual Channel from the CSI2 sensor usually 0! */
set_field(&val, ctx->virtual_channel, CAL_CSI2_CTX_VC_MASK);
/* NUM_LINES_PER_FRAME => 0 means auto detect */
set_field(&val, 0, CAL_CSI2_CTX_LINES_MASK);
set_field(&val, CAL_CSI2_CTX_ATT_PIX, CAL_CSI2_CTX_ATT_MASK);
set_field(&val, CAL_CSI2_CTX_PACK_MODE_LINE,
CAL_CSI2_CTX_PACK_MODE_MASK);
reg_write(ctx->dev, CAL_CSI2_CTX0(ctx->csi2_port), val);
ctx_dbg(3, ctx, "CAL_CSI2_CTX0(%d) = 0x%08x\n", ctx->csi2_port,
reg_read(ctx->dev, CAL_CSI2_CTX0(ctx->csi2_port)));
}
static void pix_proc_config(struct cal_ctx *ctx)
{
u32 val;
val = reg_read(ctx->dev, CAL_PIX_PROC(ctx->csi2_port));
set_field(&val, CAL_PIX_PROC_EXTRACT_B8, CAL_PIX_PROC_EXTRACT_MASK);
set_field(&val, CAL_PIX_PROC_DPCMD_BYPASS, CAL_PIX_PROC_DPCMD_MASK);
set_field(&val, CAL_PIX_PROC_DPCME_BYPASS, CAL_PIX_PROC_DPCME_MASK);
set_field(&val, CAL_PIX_PROC_PACK_B8, CAL_PIX_PROC_PACK_MASK);
set_field(&val, ctx->csi2_port, CAL_PIX_PROC_CPORT_MASK);
set_field(&val, CAL_GEN_ENABLE, CAL_PIX_PROC_EN_MASK);
reg_write(ctx->dev, CAL_PIX_PROC(ctx->csi2_port), val);
ctx_dbg(3, ctx, "CAL_PIX_PROC(%d) = 0x%08x\n", ctx->csi2_port,
reg_read(ctx->dev, CAL_PIX_PROC(ctx->csi2_port)));
}
static void cal_wr_dma_config(struct cal_ctx *ctx,
unsigned int width)
{
u32 val;
val = reg_read(ctx->dev, CAL_WR_DMA_CTRL(ctx->csi2_port));
set_field(&val, ctx->csi2_port, CAL_WR_DMA_CTRL_CPORT_MASK);
set_field(&val, CAL_WR_DMA_CTRL_DTAG_PIX_DAT,
CAL_WR_DMA_CTRL_DTAG_MASK);
set_field(&val, CAL_WR_DMA_CTRL_MODE_CONST,
CAL_WR_DMA_CTRL_MODE_MASK);
set_field(&val, CAL_WR_DMA_CTRL_PATTERN_LINEAR,
CAL_WR_DMA_CTRL_PATTERN_MASK);
set_field(&val, CAL_GEN_ENABLE, CAL_WR_DMA_CTRL_STALL_RD_MASK);
reg_write(ctx->dev, CAL_WR_DMA_CTRL(ctx->csi2_port), val);
ctx_dbg(3, ctx, "CAL_WR_DMA_CTRL(%d) = 0x%08x\n", ctx->csi2_port,
reg_read(ctx->dev, CAL_WR_DMA_CTRL(ctx->csi2_port)));
/*
* width/16 not sure but giving it a whirl.
* zero does not work right
*/
reg_write_field(ctx->dev,
CAL_WR_DMA_OFST(ctx->csi2_port),
(width / 16),
CAL_WR_DMA_OFST_MASK);
ctx_dbg(3, ctx, "CAL_WR_DMA_OFST(%d) = 0x%08x\n", ctx->csi2_port,
reg_read(ctx->dev, CAL_WR_DMA_OFST(ctx->csi2_port)));
val = reg_read(ctx->dev, CAL_WR_DMA_XSIZE(ctx->csi2_port));
/* 64 bit word means no skipping */
set_field(&val, 0, CAL_WR_DMA_XSIZE_XSKIP_MASK);
/*
* (width*8)/64 this should be size of an entire line
* in 64bit word but 0 means all data until the end
* is detected automagically
*/
set_field(&val, (width / 8), CAL_WR_DMA_XSIZE_MASK);
reg_write(ctx->dev, CAL_WR_DMA_XSIZE(ctx->csi2_port), val);
ctx_dbg(3, ctx, "CAL_WR_DMA_XSIZE(%d) = 0x%08x\n", ctx->csi2_port,
reg_read(ctx->dev, CAL_WR_DMA_XSIZE(ctx->csi2_port)));
}
static void cal_wr_dma_addr(struct cal_ctx *ctx, unsigned int dmaaddr)
{
reg_write(ctx->dev, CAL_WR_DMA_ADDR(ctx->csi2_port), dmaaddr);
}
/*
* TCLK values are OK at their reset values
*/
#define TCLK_TERM 0
#define TCLK_MISS 1
#define TCLK_SETTLE 14
#define THS_SETTLE 15
static void csi2_phy_config(struct cal_ctx *ctx)
{
unsigned int reg0, reg1;
unsigned int ths_term, ths_settle;
unsigned int ddrclkperiod_us;
/*
* THS_TERM: Programmed value = floor(20 ns/DDRClk period) - 2.
*/
ddrclkperiod_us = ctx->external_rate / 2000000;
ddrclkperiod_us = 1000000 / ddrclkperiod_us;
ctx_dbg(1, ctx, "ddrclkperiod_us: %d\n", ddrclkperiod_us);
ths_term = 20000 / ddrclkperiod_us;
ths_term = (ths_term >= 2) ? ths_term - 2 : ths_term;
ctx_dbg(1, ctx, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
/*
* THS_SETTLE: Programmed value = floor(176.3 ns/CtrlClk period) - 1.
* Since CtrlClk is fixed at 96Mhz then we get
* ths_settle = floor(176.3 / 10.416) - 1 = 15
* If we ever switch to a dynamic clock then this code might be useful
*
* unsigned int ctrlclkperiod_us;
* ctrlclkperiod_us = 96000000 / 1000000;
* ctrlclkperiod_us = 1000000 / ctrlclkperiod_us;
* ctx_dbg(1, ctx, "ctrlclkperiod_us: %d\n", ctrlclkperiod_us);
* ths_settle = 176300 / ctrlclkperiod_us;
* ths_settle = (ths_settle > 1) ? ths_settle - 1 : ths_settle;
*/
ths_settle = THS_SETTLE;
ctx_dbg(1, ctx, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
reg0 = reg_read(ctx->cc, CAL_CSI2_PHY_REG0);
set_field(&reg0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
set_field(&reg0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
set_field(&reg0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
ctx_dbg(1, ctx, "CSI2_%d_REG0 = 0x%08x\n", (ctx->csi2_port - 1), reg0);
reg_write(ctx->cc, CAL_CSI2_PHY_REG0, reg0);
reg1 = reg_read(ctx->cc, CAL_CSI2_PHY_REG1);
set_field(&reg1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
set_field(&reg1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
set_field(&reg1, TCLK_MISS, CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
set_field(&reg1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
ctx_dbg(1, ctx, "CSI2_%d_REG1 = 0x%08x\n", (ctx->csi2_port - 1), reg1);
reg_write(ctx->cc, CAL_CSI2_PHY_REG1, reg1);
}
static int cal_get_external_info(struct cal_ctx *ctx)
{
struct v4l2_ctrl *ctrl;
if (!ctx->sensor)
return -ENODEV;
ctrl = v4l2_ctrl_find(ctx->sensor->ctrl_handler, V4L2_CID_PIXEL_RATE);
if (!ctrl) {
ctx_err(ctx, "no pixel rate control in subdev: %s\n",
ctx->sensor->name);
return -EPIPE;
}
ctx->external_rate = v4l2_ctrl_g_ctrl_int64(ctrl);
ctx_dbg(3, ctx, "sensor Pixel Rate: %d\n", ctx->external_rate);
return 0;
}
static inline void cal_schedule_next_buffer(struct cal_ctx *ctx)
{
struct cal_dmaqueue *dma_q = &ctx->vidq;
struct cal_buffer *buf;
unsigned long addr;
buf = list_entry(dma_q->active.next, struct cal_buffer, list);
ctx->next_frm = buf;
list_del(&buf->list);
addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
cal_wr_dma_addr(ctx, addr);
}
static inline void cal_process_buffer_complete(struct cal_ctx *ctx)
{
ctx->cur_frm->vb.vb2_buf.timestamp = ktime_get_ns();
ctx->cur_frm->vb.field = ctx->m_fmt.field;
ctx->cur_frm->vb.sequence = ctx->sequence++;
vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_DONE);
ctx->cur_frm = ctx->next_frm;
}
#define isvcirqset(irq, vc, ff) (irq & \
(CAL_CSI2_VC_IRQENABLE_ ##ff ##_IRQ_##vc ##_MASK))
#define isportirqset(irq, port) (irq & CAL_HL_IRQ_MASK(port))
static irqreturn_t cal_irq(int irq_cal, void *data)
{
struct cal_dev *dev = (struct cal_dev *)data;
struct cal_ctx *ctx;
struct cal_dmaqueue *dma_q;
u32 irqst2, irqst3;
/* Check which DMA just finished */
irqst2 = reg_read(dev, CAL_HL_IRQSTATUS(2));
if (irqst2) {
/* Clear Interrupt status */
reg_write(dev, CAL_HL_IRQSTATUS(2), irqst2);
/* Need to check both port */
if (isportirqset(irqst2, 1)) {
ctx = dev->ctx[0];
if (ctx->cur_frm != ctx->next_frm)
cal_process_buffer_complete(ctx);
}
if (isportirqset(irqst2, 2)) {
ctx = dev->ctx[1];
if (ctx->cur_frm != ctx->next_frm)
cal_process_buffer_complete(ctx);
}
}
/* Check which DMA just started */
irqst3 = reg_read(dev, CAL_HL_IRQSTATUS(3));
if (irqst3) {
/* Clear Interrupt status */
reg_write(dev, CAL_HL_IRQSTATUS(3), irqst3);
/* Need to check both port */
if (isportirqset(irqst3, 1)) {
ctx = dev->ctx[0];
dma_q = &ctx->vidq;
spin_lock(&ctx->slock);
if (!list_empty(&dma_q->active) &&
ctx->cur_frm == ctx->next_frm)
cal_schedule_next_buffer(ctx);
spin_unlock(&ctx->slock);
}
if (isportirqset(irqst3, 2)) {
ctx = dev->ctx[1];
dma_q = &ctx->vidq;
spin_lock(&ctx->slock);
if (!list_empty(&dma_q->active) &&
ctx->cur_frm == ctx->next_frm)
cal_schedule_next_buffer(ctx);
spin_unlock(&ctx->slock);
}
}
return IRQ_HANDLED;
}
/*
* video ioctls
*/
static int cal_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct cal_ctx *ctx = video_drvdata(file);
strlcpy(cap->driver, CAL_MODULE_NAME, sizeof(cap->driver));
strlcpy(cap->card, CAL_MODULE_NAME, sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"platform:%s", ctx->v4l2_dev.name);
cap->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING |
V4L2_CAP_READWRITE;
cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
return 0;
}
static int cal_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct cal_ctx *ctx = video_drvdata(file);
const struct cal_fmt *fmt = NULL;
if (f->index >= ctx->num_active_fmt)
return -EINVAL;
fmt = ctx->active_fmt[f->index];
f->pixelformat = fmt->fourcc;
f->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
return 0;
}
static int __subdev_get_format(struct cal_ctx *ctx,
struct v4l2_mbus_framefmt *fmt)
{
struct v4l2_subdev_format sd_fmt;
struct v4l2_mbus_framefmt *mbus_fmt = &sd_fmt.format;
int ret;
sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
sd_fmt.pad = 0;
ret = v4l2_subdev_call(ctx->sensor, pad, get_fmt, NULL, &sd_fmt);
if (ret)
return ret;
*fmt = *mbus_fmt;
ctx_dbg(1, ctx, "%s %dx%d code:%04X\n", __func__,
fmt->width, fmt->height, fmt->code);
return 0;
}
static int __subdev_set_format(struct cal_ctx *ctx,
struct v4l2_mbus_framefmt *fmt)
{
struct v4l2_subdev_format sd_fmt;
struct v4l2_mbus_framefmt *mbus_fmt = &sd_fmt.format;
int ret;
sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
sd_fmt.pad = 0;
*mbus_fmt = *fmt;
ret = v4l2_subdev_call(ctx->sensor, pad, set_fmt, NULL, &sd_fmt);
if (ret)
return ret;
ctx_dbg(1, ctx, "%s %dx%d code:%04X\n", __func__,
fmt->width, fmt->height, fmt->code);
return 0;
}
static int cal_calc_format_size(struct cal_ctx *ctx,
const struct cal_fmt *fmt,
struct v4l2_format *f)
{
if (!fmt) {
ctx_dbg(3, ctx, "No cal_fmt provided!\n");
return -EINVAL;
}
v4l_bound_align_image(&f->fmt.pix.width, 48, MAX_WIDTH, 2,
&f->fmt.pix.height, 32, MAX_HEIGHT, 0, 0);
f->fmt.pix.bytesperline = bytes_per_line(f->fmt.pix.width,
fmt->depth >> 3);
f->fmt.pix.sizeimage = f->fmt.pix.height *
f->fmt.pix.bytesperline;
ctx_dbg(3, ctx, "%s: fourcc: %s size: %dx%d bpl:%d img_size:%d\n",
__func__, fourcc_to_str(f->fmt.pix.pixelformat),
f->fmt.pix.width, f->fmt.pix.height,
f->fmt.pix.bytesperline, f->fmt.pix.sizeimage);
return 0;
}
static int cal_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct cal_ctx *ctx = video_drvdata(file);
*f = ctx->v_fmt;
return 0;
}
static int cal_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct cal_ctx *ctx = video_drvdata(file);
const struct cal_fmt *fmt;
struct v4l2_subdev_frame_size_enum fse;
int ret, found;
fmt = find_format_by_pix(ctx, f->fmt.pix.pixelformat);
if (!fmt) {
ctx_dbg(3, ctx, "Fourcc format (0x%08x) not found.\n",
f->fmt.pix.pixelformat);
/* Just get the first one enumerated */
fmt = ctx->active_fmt[0];
f->fmt.pix.pixelformat = fmt->fourcc;
}
f->fmt.pix.field = ctx->v_fmt.fmt.pix.field;
/* check for/find a valid width/height */
ret = 0;
found = false;
fse.pad = 0;
fse.code = fmt->code;
fse.which = V4L2_SUBDEV_FORMAT_ACTIVE;
for (fse.index = 0; ; fse.index++) {
ret = v4l2_subdev_call(ctx->sensor, pad, enum_frame_size,
NULL, &fse);
if (ret)
break;
if ((f->fmt.pix.width == fse.max_width) &&
(f->fmt.pix.height == fse.max_height)) {
found = true;
break;
} else if ((f->fmt.pix.width >= fse.min_width) &&
(f->fmt.pix.width <= fse.max_width) &&
(f->fmt.pix.height >= fse.min_height) &&
(f->fmt.pix.height <= fse.max_height)) {
found = true;
break;
}
}
if (!found) {
/* use existing values as default */
f->fmt.pix.width = ctx->v_fmt.fmt.pix.width;
f->fmt.pix.height = ctx->v_fmt.fmt.pix.height;
}
/*
* Use current colorspace for now, it will get
* updated properly during s_fmt
*/
f->fmt.pix.colorspace = ctx->v_fmt.fmt.pix.colorspace;
return cal_calc_format_size(ctx, fmt, f);
}
static int cal_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct cal_ctx *ctx = video_drvdata(file);
struct vb2_queue *q = &ctx->vb_vidq;
const struct cal_fmt *fmt;
struct v4l2_mbus_framefmt mbus_fmt;
int ret;
if (vb2_is_busy(q)) {
ctx_dbg(3, ctx, "%s device busy\n", __func__);
return -EBUSY;
}
ret = cal_try_fmt_vid_cap(file, priv, f);
if (ret < 0)
return ret;
fmt = find_format_by_pix(ctx, f->fmt.pix.pixelformat);
v4l2_fill_mbus_format(&mbus_fmt, &f->fmt.pix, fmt->code);
ret = __subdev_set_format(ctx, &mbus_fmt);
if (ret)
return ret;
/* Just double check nothing has gone wrong */
if (mbus_fmt.code != fmt->code) {
ctx_dbg(3, ctx,
"%s subdev changed format on us, this should not happen\n",
__func__);
return -EINVAL;
}
v4l2_fill_pix_format(&ctx->v_fmt.fmt.pix, &mbus_fmt);
ctx->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
ctx->v_fmt.fmt.pix.pixelformat = fmt->fourcc;
cal_calc_format_size(ctx, fmt, &ctx->v_fmt);
ctx->fmt = fmt;
ctx->m_fmt = mbus_fmt;
*f = ctx->v_fmt;
return 0;
}
static int cal_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
struct cal_ctx *ctx = video_drvdata(file);
const struct cal_fmt *fmt;
struct v4l2_subdev_frame_size_enum fse;
int ret;
/* check for valid format */
fmt = find_format_by_pix(ctx, fsize->pixel_format);
if (!fmt) {
ctx_dbg(3, ctx, "Invalid pixel code: %x\n",
fsize->pixel_format);
return -EINVAL;
}
fse.index = fsize->index;
fse.pad = 0;
fse.code = fmt->code;
ret = v4l2_subdev_call(ctx->sensor, pad, enum_frame_size, NULL, &fse);
if (ret)
return ret;
ctx_dbg(1, ctx, "%s: index: %d code: %x W:[%d,%d] H:[%d,%d]\n",
__func__, fse.index, fse.code, fse.min_width, fse.max_width,
fse.min_height, fse.max_height);
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = fse.max_width;
fsize->discrete.height = fse.max_height;
return 0;
}
static int cal_enum_input(struct file *file, void *priv,
struct v4l2_input *inp)
{
if (inp->index >= CAL_NUM_INPUT)
return -EINVAL;
inp->type = V4L2_INPUT_TYPE_CAMERA;
sprintf(inp->name, "Camera %u", inp->index);
return 0;
}
static int cal_g_input(struct file *file, void *priv, unsigned int *i)
{
struct cal_ctx *ctx = video_drvdata(file);
*i = ctx->input;
return 0;
}
static int cal_s_input(struct file *file, void *priv, unsigned int i)
{
struct cal_ctx *ctx = video_drvdata(file);
if (i >= CAL_NUM_INPUT)
return -EINVAL;
ctx->input = i;
return 0;
}
/* timeperframe is arbitrary and continuous */
static int cal_enum_frameintervals(struct file *file, void *priv,
struct v4l2_frmivalenum *fival)
{
struct cal_ctx *ctx = video_drvdata(file);
const struct cal_fmt *fmt;
struct v4l2_subdev_frame_interval_enum fie = {
.index = fival->index,
.width = fival->width,
.height = fival->height,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
fmt = find_format_by_pix(ctx, fival->pixel_format);
if (!fmt)
return -EINVAL;
fie.code = fmt->code;
ret = v4l2_subdev_call(ctx->sensor, pad, enum_frame_interval,
NULL, &fie);
if (ret)
return ret;
fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
fival->discrete = fie.interval;
return 0;
}
/*
* Videobuf operations
*/
static int cal_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[], struct device *alloc_devs[])
{
struct cal_ctx *ctx = vb2_get_drv_priv(vq);
unsigned size = ctx->v_fmt.fmt.pix.sizeimage;
if (vq->num_buffers + *nbuffers < 3)
*nbuffers = 3 - vq->num_buffers;
if (*nplanes) {
if (sizes[0] < size)
return -EINVAL;
size = sizes[0];
}
*nplanes = 1;
sizes[0] = size;
ctx_dbg(3, ctx, "nbuffers=%d, size=%d\n", *nbuffers, sizes[0]);
return 0;
}
static int cal_buffer_prepare(struct vb2_buffer *vb)
{
struct cal_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct cal_buffer *buf = container_of(vb, struct cal_buffer,
vb.vb2_buf);
unsigned long size;
if (WARN_ON(!ctx->fmt))
return -EINVAL;
size = ctx->v_fmt.fmt.pix.sizeimage;
if (vb2_plane_size(vb, 0) < size) {
ctx_err(ctx,
"data will not fit into plane (%lu < %lu)\n",
vb2_plane_size(vb, 0), size);
return -EINVAL;
}
vb2_set_plane_payload(&buf->vb.vb2_buf, 0, size);
return 0;
}
static void cal_buffer_queue(struct vb2_buffer *vb)
{
struct cal_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct cal_buffer *buf = container_of(vb, struct cal_buffer,
vb.vb2_buf);
struct cal_dmaqueue *vidq = &ctx->vidq;
unsigned long flags = 0;
/* recheck locking */
spin_lock_irqsave(&ctx->slock, flags);
list_add_tail(&buf->list, &vidq->active);
spin_unlock_irqrestore(&ctx->slock, flags);
}
static int cal_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct cal_ctx *ctx = vb2_get_drv_priv(vq);
struct cal_dmaqueue *dma_q = &ctx->vidq;
struct cal_buffer *buf, *tmp;
unsigned long addr = 0;
unsigned long flags;
int ret;
spin_lock_irqsave(&ctx->slock, flags);
if (list_empty(&dma_q->active)) {
spin_unlock_irqrestore(&ctx->slock, flags);
ctx_dbg(3, ctx, "buffer queue is empty\n");
return -EIO;
}
buf = list_entry(dma_q->active.next, struct cal_buffer, list);
ctx->cur_frm = buf;
ctx->next_frm = buf;
list_del(&buf->list);
spin_unlock_irqrestore(&ctx->slock, flags);
addr = vb2_dma_contig_plane_dma_addr(&ctx->cur_frm->vb.vb2_buf, 0);
ctx->sequence = 0;
ret = cal_get_external_info(ctx);
if (ret < 0)
goto err;
cal_runtime_get(ctx->dev);
enable_irqs(ctx);
camerarx_phy_enable(ctx);
csi2_init(ctx);
csi2_phy_config(ctx);
csi2_lane_config(ctx);
csi2_ctx_config(ctx);
pix_proc_config(ctx);
cal_wr_dma_config(ctx, ctx->v_fmt.fmt.pix.bytesperline);
cal_wr_dma_addr(ctx, addr);
csi2_ppi_enable(ctx);
ret = v4l2_subdev_call(ctx->sensor, video, s_stream, 1);
if (ret) {
ctx_err(ctx, "stream on failed in subdev\n");
cal_runtime_put(ctx->dev);
goto err;
}
if (debug >= 4)
cal_quickdump_regs(ctx->dev);
return 0;
err:
list_for_each_entry_safe(buf, tmp, &dma_q->active, list) {
list_del(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
}
return ret;
}
static void cal_stop_streaming(struct vb2_queue *vq)
{
struct cal_ctx *ctx = vb2_get_drv_priv(vq);
struct cal_dmaqueue *dma_q = &ctx->vidq;
struct cal_buffer *buf, *tmp;
unsigned long flags;
if (v4l2_subdev_call(ctx->sensor, video, s_stream, 0))
ctx_err(ctx, "stream off failed in subdev\n");
csi2_ppi_disable(ctx);
disable_irqs(ctx);
/* Release all active buffers */
spin_lock_irqsave(&ctx->slock, flags);
list_for_each_entry_safe(buf, tmp, &dma_q->active, list) {
list_del(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
}
if (ctx->cur_frm == ctx->next_frm) {
vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_ERROR);
} else {
vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_ERROR);
vb2_buffer_done(&ctx->next_frm->vb.vb2_buf,
VB2_BUF_STATE_ERROR);
}
ctx->cur_frm = NULL;
ctx->next_frm = NULL;
spin_unlock_irqrestore(&ctx->slock, flags);
cal_runtime_put(ctx->dev);
}
static const struct vb2_ops cal_video_qops = {
.queue_setup = cal_queue_setup,
.buf_prepare = cal_buffer_prepare,
.buf_queue = cal_buffer_queue,
.start_streaming = cal_start_streaming,
.stop_streaming = cal_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
static const struct v4l2_file_operations cal_fops = {
.owner = THIS_MODULE,
.open = v4l2_fh_open,
.release = vb2_fop_release,
.read = vb2_fop_read,
.poll = vb2_fop_poll,
.unlocked_ioctl = video_ioctl2, /* V4L2 ioctl handler */
.mmap = vb2_fop_mmap,
};
static const struct v4l2_ioctl_ops cal_ioctl_ops = {
.vidioc_querycap = cal_querycap,
.vidioc_enum_fmt_vid_cap = cal_enum_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = cal_g_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = cal_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = cal_s_fmt_vid_cap,
.vidioc_enum_framesizes = cal_enum_framesizes,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_enum_input = cal_enum_input,
.vidioc_g_input = cal_g_input,
.vidioc_s_input = cal_s_input,
.vidioc_enum_frameintervals = cal_enum_frameintervals,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_log_status = v4l2_ctrl_log_status,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
static const struct video_device cal_videodev = {
.name = CAL_MODULE_NAME,
.fops = &cal_fops,
.ioctl_ops = &cal_ioctl_ops,
.minor = -1,
.release = video_device_release_empty,
};
/* -----------------------------------------------------------------
* Initialization and module stuff
* ------------------------------------------------------------------
*/
static int cal_complete_ctx(struct cal_ctx *ctx);
static int cal_async_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct cal_ctx *ctx = notifier_to_ctx(notifier);
struct v4l2_subdev_mbus_code_enum mbus_code;
int ret = 0;
int i, j, k;
if (ctx->sensor) {
ctx_info(ctx, "Rejecting subdev %s (Already set!!)",
subdev->name);
return 0;
}
ctx->sensor = subdev;
ctx_dbg(1, ctx, "Using sensor %s for capture\n", subdev->name);
/* Enumerate sub device formats and enable all matching local formats */
ctx->num_active_fmt = 0;
for (j = 0, i = 0; ret != -EINVAL; ++j) {
struct cal_fmt *fmt;
memset(&mbus_code, 0, sizeof(mbus_code));
mbus_code.index = j;
ret = v4l2_subdev_call(subdev, pad, enum_mbus_code,
NULL, &mbus_code);
if (ret)
continue;
ctx_dbg(2, ctx,
"subdev %s: code: %04x idx: %d\n",
subdev->name, mbus_code.code, j);
for (k = 0; k < ARRAY_SIZE(cal_formats); k++) {
fmt = &cal_formats[k];
if (mbus_code.code == fmt->code) {
ctx->active_fmt[i] = fmt;
ctx_dbg(2, ctx,
"matched fourcc: %s: code: %04x idx: %d\n",
fourcc_to_str(fmt->fourcc),
fmt->code, i);
ctx->num_active_fmt = ++i;
}
}
}
if (i == 0) {
ctx_err(ctx, "No suitable format reported by subdev %s\n",
subdev->name);
return -EINVAL;
}
cal_complete_ctx(ctx);
return 0;
}
static int cal_async_complete(struct v4l2_async_notifier *notifier)
{
struct cal_ctx *ctx = notifier_to_ctx(notifier);
const struct cal_fmt *fmt;
struct v4l2_mbus_framefmt mbus_fmt;
int ret;
ret = __subdev_get_format(ctx, &mbus_fmt);
if (ret)
return ret;
fmt = find_format_by_code(ctx, mbus_fmt.code);
if (!fmt) {
ctx_dbg(3, ctx, "mbus code format (0x%08x) not found.\n",
mbus_fmt.code);
return -EINVAL;
}
/* Save current subdev format */
v4l2_fill_pix_format(&ctx->v_fmt.fmt.pix, &mbus_fmt);
ctx->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
ctx->v_fmt.fmt.pix.pixelformat = fmt->fourcc;
cal_calc_format_size(ctx, fmt, &ctx->v_fmt);
ctx->fmt = fmt;
ctx->m_fmt = mbus_fmt;
return 0;
}
static const struct v4l2_async_notifier_operations cal_async_ops = {
.bound = cal_async_bound,
.complete = cal_async_complete,
};
static int cal_complete_ctx(struct cal_ctx *ctx)
{
struct video_device *vfd;
struct vb2_queue *q;
int ret;
ctx->timeperframe = tpf_default;
ctx->external_rate = 192000000;
/* initialize locks */
spin_lock_init(&ctx->slock);
mutex_init(&ctx->mutex);
/* initialize queue */
q = &ctx->vb_vidq;
q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
q->io_modes = VB2_MMAP | VB2_DMABUF | VB2_READ;
q->drv_priv = ctx;
q->buf_struct_size = sizeof(struct cal_buffer);
q->ops = &cal_video_qops;
q->mem_ops = &vb2_dma_contig_memops;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->lock = &ctx->mutex;
q->min_buffers_needed = 3;
q->dev = ctx->v4l2_dev.dev;
ret = vb2_queue_init(q);
if (ret)
return ret;
/* init video dma queues */
INIT_LIST_HEAD(&ctx->vidq.active);
vfd = &ctx->vdev;
*vfd = cal_videodev;
vfd->v4l2_dev = &ctx->v4l2_dev;
vfd->queue = q;
/*
* Provide a mutex to v4l2 core. It will be used to protect
* all fops and v4l2 ioctls.
*/
vfd->lock = &ctx->mutex;
video_set_drvdata(vfd, ctx);
ret = video_register_device(vfd, VFL_TYPE_GRABBER, video_nr);
if (ret < 0)
return ret;
v4l2_info(&ctx->v4l2_dev, "V4L2 device registered as %s\n",
video_device_node_name(vfd));
return 0;
}
static struct device_node *
of_get_next_port(const struct device_node *parent,
struct device_node *prev)
{
struct device_node *port = NULL;
if (!parent)
return NULL;
if (!prev) {
struct device_node *ports;
/*
* It's the first call, we have to find a port subnode
* within this node or within an optional 'ports' node.
*/
ports = of_get_child_by_name(parent, "ports");
if (ports)
parent = ports;
port = of_get_child_by_name(parent, "port");
/* release the 'ports' node */
of_node_put(ports);
} else {
struct device_node *ports;
ports = of_get_parent(prev);
if (!ports)
return NULL;
do {
port = of_get_next_child(ports, prev);
if (!port) {
of_node_put(ports);
return NULL;
}
prev = port;
} while (of_node_cmp(port->name, "port") != 0);
}
return port;
}
static struct device_node *
of_get_next_endpoint(const struct device_node *parent,
struct device_node *prev)
{
struct device_node *ep = NULL;
if (!parent)
return NULL;
do {
ep = of_get_next_child(parent, prev);
if (!ep)
return NULL;
prev = ep;
} while (of_node_cmp(ep->name, "endpoint") != 0);
return ep;
}
static int of_cal_create_instance(struct cal_ctx *ctx, int inst)
{
struct platform_device *pdev = ctx->dev->pdev;
struct device_node *ep_node, *port, *remote_ep,
*sensor_node, *parent;
struct v4l2_fwnode_endpoint *endpoint;
struct v4l2_async_subdev *asd;
u32 regval = 0;
int ret, index, found_port = 0, lane;
parent = pdev->dev.of_node;
asd = &ctx->asd;
endpoint = &ctx->endpoint;
ep_node = NULL;
port = NULL;
remote_ep = NULL;
sensor_node = NULL;
ret = -EINVAL;
ctx_dbg(3, ctx, "Scanning Port node for csi2 port: %d\n", inst);
for (index = 0; index < CAL_NUM_CSI2_PORTS; index++) {
port = of_get_next_port(parent, port);
if (!port) {
ctx_dbg(1, ctx, "No port node found for csi2 port:%d\n",
index);
goto cleanup_exit;
}
/* Match the slice number with <REG> */
of_property_read_u32(port, "reg", &regval);
ctx_dbg(3, ctx, "port:%d inst:%d <reg>:%d\n",
index, inst, regval);
if ((regval == inst) && (index == inst)) {
found_port = 1;
break;
}
}
if (!found_port) {
ctx_dbg(1, ctx, "No port node matches csi2 port:%d\n",
inst);
goto cleanup_exit;
}
ctx_dbg(3, ctx, "Scanning sub-device for csi2 port: %d\n",
inst);
ep_node = of_get_next_endpoint(port, ep_node);
if (!ep_node) {
ctx_dbg(3, ctx, "can't get next endpoint\n");
goto cleanup_exit;
}
sensor_node = of_graph_get_remote_port_parent(ep_node);
if (!sensor_node) {
ctx_dbg(3, ctx, "can't get remote parent\n");
goto cleanup_exit;
}
asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
asd->match.fwnode = of_fwnode_handle(sensor_node);
remote_ep = of_graph_get_remote_endpoint(ep_node);
if (!remote_ep) {
ctx_dbg(3, ctx, "can't get remote-endpoint\n");
goto cleanup_exit;
}
v4l2_fwnode_endpoint_parse(of_fwnode_handle(remote_ep), endpoint);
if (endpoint->bus_type != V4L2_MBUS_CSI2) {
ctx_err(ctx, "Port:%d sub-device %s is not a CSI2 device\n",
inst, sensor_node->name);
goto cleanup_exit;
}
/* Store Virtual Channel number */
ctx->virtual_channel = endpoint->base.id;
ctx_dbg(3, ctx, "Port:%d v4l2-endpoint: CSI2\n", inst);
ctx_dbg(3, ctx, "Virtual Channel=%d\n", ctx->virtual_channel);
ctx_dbg(3, ctx, "flags=0x%08x\n", endpoint->bus.mipi_csi2.flags);
ctx_dbg(3, ctx, "clock_lane=%d\n", endpoint->bus.mipi_csi2.clock_lane);
ctx_dbg(3, ctx, "num_data_lanes=%d\n",
endpoint->bus.mipi_csi2.num_data_lanes);
ctx_dbg(3, ctx, "data_lanes= <\n");
for (lane = 0; lane < endpoint->bus.mipi_csi2.num_data_lanes; lane++)
ctx_dbg(3, ctx, "\t%d\n",
endpoint->bus.mipi_csi2.data_lanes[lane]);
ctx_dbg(3, ctx, "\t>\n");
ctx_dbg(1, ctx, "Port: %d found sub-device %s\n",
inst, sensor_node->name);
ctx->asd_list[0] = asd;
ctx->notifier.subdevs = ctx->asd_list;
ctx->notifier.num_subdevs = 1;
ctx->notifier.ops = &cal_async_ops;
ret = v4l2_async_notifier_register(&ctx->v4l2_dev,
&ctx->notifier);
if (ret) {
ctx_err(ctx, "Error registering async notifier\n");
ret = -EINVAL;
}
cleanup_exit:
if (remote_ep)
of_node_put(remote_ep);
if (sensor_node)
of_node_put(sensor_node);
if (ep_node)
of_node_put(ep_node);
if (port)
of_node_put(port);
return ret;
}
static struct cal_ctx *cal_create_instance(struct cal_dev *dev, int inst)
{
struct cal_ctx *ctx;
struct v4l2_ctrl_handler *hdl;
int ret;
ctx = devm_kzalloc(&dev->pdev->dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
/* save the cal_dev * for future ref */
ctx->dev = dev;
snprintf(ctx->v4l2_dev.name, sizeof(ctx->v4l2_dev.name),
"%s-%03d", CAL_MODULE_NAME, inst);
ret = v4l2_device_register(&dev->pdev->dev, &ctx->v4l2_dev);
if (ret)
goto err_exit;
hdl = &ctx->ctrl_handler;
ret = v4l2_ctrl_handler_init(hdl, 11);
if (ret) {
ctx_err(ctx, "Failed to init ctrl handler\n");
goto unreg_dev;
}
ctx->v4l2_dev.ctrl_handler = hdl;
/* Make sure Camera Core H/W register area is available */
ctx->cc = dev->cc[inst];
/* Store the instance id */
ctx->csi2_port = inst + 1;
ret = of_cal_create_instance(ctx, inst);
if (ret) {
ret = -EINVAL;
goto free_hdl;
}
return ctx;
free_hdl:
v4l2_ctrl_handler_free(hdl);
unreg_dev:
v4l2_device_unregister(&ctx->v4l2_dev);
err_exit:
return NULL;
}
static int cal_probe(struct platform_device *pdev)
{
struct cal_dev *dev;
int ret;
int irq;
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
/* set pseudo v4l2 device name so we can use v4l2_printk */
strlcpy(dev->v4l2_dev.name, CAL_MODULE_NAME,
sizeof(dev->v4l2_dev.name));
/* save pdev pointer */
dev->pdev = pdev;
dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"cal_top");
dev->base = devm_ioremap_resource(&pdev->dev, dev->res);
if (IS_ERR(dev->base))
return PTR_ERR(dev->base);
cal_dbg(1, dev, "ioresource %s at %pa - %pa\n",
dev->res->name, &dev->res->start, &dev->res->end);
irq = platform_get_irq(pdev, 0);
cal_dbg(1, dev, "got irq# %d\n", irq);
ret = devm_request_irq(&pdev->dev, irq, cal_irq, 0, CAL_MODULE_NAME,
dev);
if (ret)
return ret;
platform_set_drvdata(pdev, dev);
dev->cm = cm_create(dev);
if (IS_ERR(dev->cm))
return PTR_ERR(dev->cm);
dev->cc[0] = cc_create(dev, 0);
if (IS_ERR(dev->cc[0]))
return PTR_ERR(dev->cc[0]);
dev->cc[1] = cc_create(dev, 1);
if (IS_ERR(dev->cc[1]))
return PTR_ERR(dev->cc[1]);
dev->ctx[0] = NULL;
dev->ctx[1] = NULL;
dev->ctx[0] = cal_create_instance(dev, 0);
dev->ctx[1] = cal_create_instance(dev, 1);
if (!dev->ctx[0] && !dev->ctx[1]) {
cal_err(dev, "Neither port is configured, no point in staying up\n");
return -ENODEV;
}
pm_runtime_enable(&pdev->dev);
ret = cal_runtime_get(dev);
if (ret)
goto runtime_disable;
/* Just check we can actually access the module */
cal_get_hwinfo(dev);
cal_runtime_put(dev);
return 0;
runtime_disable:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int cal_remove(struct platform_device *pdev)
{
struct cal_dev *dev =
(struct cal_dev *)platform_get_drvdata(pdev);
struct cal_ctx *ctx;
int i;
cal_dbg(1, dev, "Removing %s\n", CAL_MODULE_NAME);
cal_runtime_get(dev);
for (i = 0; i < CAL_NUM_CONTEXT; i++) {
ctx = dev->ctx[i];
if (ctx) {
ctx_dbg(1, ctx, "unregistering %s\n",
video_device_node_name(&ctx->vdev));
camerarx_phy_disable(ctx);
v4l2_async_notifier_unregister(&ctx->notifier);
v4l2_ctrl_handler_free(&ctx->ctrl_handler);
v4l2_device_unregister(&ctx->v4l2_dev);
video_unregister_device(&ctx->vdev);
}
}
cal_runtime_put(dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#if defined(CONFIG_OF)
static const struct of_device_id cal_of_match[] = {
{ .compatible = "ti,dra72-cal", },
{},
};
MODULE_DEVICE_TABLE(of, cal_of_match);
#endif
static struct platform_driver cal_pdrv = {
.probe = cal_probe,
.remove = cal_remove,
.driver = {
.name = CAL_MODULE_NAME,
.of_match_table = of_match_ptr(cal_of_match),
},
};
module_platform_driver(cal_pdrv);