| /* |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| |
| #ifndef __ARM_KVM_MMU_H__ |
| #define __ARM_KVM_MMU_H__ |
| |
| #include <asm/memory.h> |
| #include <asm/page.h> |
| |
| /* |
| * We directly use the kernel VA for the HYP, as we can directly share |
| * the mapping (HTTBR "covers" TTBR1). |
| */ |
| #define kern_hyp_va(kva) (kva) |
| |
| /* Contrary to arm64, there is no need to generate a PC-relative address */ |
| #define hyp_symbol_addr(s) \ |
| ({ \ |
| typeof(s) *addr = &(s); \ |
| addr; \ |
| }) |
| |
| /* |
| * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels. |
| */ |
| #define KVM_MMU_CACHE_MIN_PAGES 2 |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/highmem.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cputype.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/pgalloc.h> |
| #include <asm/stage2_pgtable.h> |
| |
| /* Ensure compatibility with arm64 */ |
| #define VA_BITS 32 |
| |
| int create_hyp_mappings(void *from, void *to, pgprot_t prot); |
| int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, |
| void __iomem **kaddr, |
| void __iomem **haddr); |
| int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, |
| void **haddr); |
| void free_hyp_pgds(void); |
| |
| void stage2_unmap_vm(struct kvm *kvm); |
| int kvm_alloc_stage2_pgd(struct kvm *kvm); |
| void kvm_free_stage2_pgd(struct kvm *kvm); |
| int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, |
| phys_addr_t pa, unsigned long size, bool writable); |
| |
| int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); |
| |
| void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); |
| |
| phys_addr_t kvm_mmu_get_httbr(void); |
| phys_addr_t kvm_get_idmap_vector(void); |
| int kvm_mmu_init(void); |
| void kvm_clear_hyp_idmap(void); |
| |
| #define kvm_mk_pmd(ptep) __pmd(__pa(ptep) | PMD_TYPE_TABLE) |
| #define kvm_mk_pud(pmdp) __pud(__pa(pmdp) | PMD_TYPE_TABLE) |
| #define kvm_mk_pgd(pudp) ({ BUILD_BUG(); 0; }) |
| |
| static inline pte_t kvm_s2pte_mkwrite(pte_t pte) |
| { |
| pte_val(pte) |= L_PTE_S2_RDWR; |
| return pte; |
| } |
| |
| static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) |
| { |
| pmd_val(pmd) |= L_PMD_S2_RDWR; |
| return pmd; |
| } |
| |
| static inline pte_t kvm_s2pte_mkexec(pte_t pte) |
| { |
| pte_val(pte) &= ~L_PTE_XN; |
| return pte; |
| } |
| |
| static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) |
| { |
| pmd_val(pmd) &= ~PMD_SECT_XN; |
| return pmd; |
| } |
| |
| static inline void kvm_set_s2pte_readonly(pte_t *pte) |
| { |
| pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY; |
| } |
| |
| static inline bool kvm_s2pte_readonly(pte_t *pte) |
| { |
| return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY; |
| } |
| |
| static inline bool kvm_s2pte_exec(pte_t *pte) |
| { |
| return !(pte_val(*pte) & L_PTE_XN); |
| } |
| |
| static inline void kvm_set_s2pmd_readonly(pmd_t *pmd) |
| { |
| pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY; |
| } |
| |
| static inline bool kvm_s2pmd_readonly(pmd_t *pmd) |
| { |
| return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY; |
| } |
| |
| static inline bool kvm_s2pmd_exec(pmd_t *pmd) |
| { |
| return !(pmd_val(*pmd) & PMD_SECT_XN); |
| } |
| |
| static inline bool kvm_page_empty(void *ptr) |
| { |
| struct page *ptr_page = virt_to_page(ptr); |
| return page_count(ptr_page) == 1; |
| } |
| |
| #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep) |
| #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp) |
| #define kvm_pud_table_empty(kvm, pudp) false |
| |
| #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) |
| #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) |
| #define hyp_pud_table_empty(pudp) false |
| |
| struct kvm; |
| |
| #define kvm_flush_dcache_to_poc(a,l) __cpuc_flush_dcache_area((a), (l)) |
| |
| static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) |
| { |
| return (vcpu_cp15(vcpu, c1_SCTLR) & 0b101) == 0b101; |
| } |
| |
| static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) |
| { |
| /* |
| * Clean the dcache to the Point of Coherency. |
| * |
| * We need to do this through a kernel mapping (using the |
| * user-space mapping has proved to be the wrong |
| * solution). For that, we need to kmap one page at a time, |
| * and iterate over the range. |
| */ |
| |
| VM_BUG_ON(size & ~PAGE_MASK); |
| |
| while (size) { |
| void *va = kmap_atomic_pfn(pfn); |
| |
| kvm_flush_dcache_to_poc(va, PAGE_SIZE); |
| |
| size -= PAGE_SIZE; |
| pfn++; |
| |
| kunmap_atomic(va); |
| } |
| } |
| |
| static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, |
| unsigned long size) |
| { |
| u32 iclsz; |
| |
| /* |
| * If we are going to insert an instruction page and the icache is |
| * either VIPT or PIPT, there is a potential problem where the host |
| * (or another VM) may have used the same page as this guest, and we |
| * read incorrect data from the icache. If we're using a PIPT cache, |
| * we can invalidate just that page, but if we are using a VIPT cache |
| * we need to invalidate the entire icache - damn shame - as written |
| * in the ARM ARM (DDI 0406C.b - Page B3-1393). |
| * |
| * VIVT caches are tagged using both the ASID and the VMID and doesn't |
| * need any kind of flushing (DDI 0406C.b - Page B3-1392). |
| */ |
| |
| VM_BUG_ON(size & ~PAGE_MASK); |
| |
| if (icache_is_vivt_asid_tagged()) |
| return; |
| |
| if (!icache_is_pipt()) { |
| /* any kind of VIPT cache */ |
| __flush_icache_all(); |
| return; |
| } |
| |
| /* |
| * CTR IminLine contains Log2 of the number of words in the |
| * cache line, so we can get the number of words as |
| * 2 << (IminLine - 1). To get the number of bytes, we |
| * multiply by 4 (the number of bytes in a 32-bit word), and |
| * get 4 << (IminLine). |
| */ |
| iclsz = 4 << (read_cpuid(CPUID_CACHETYPE) & 0xf); |
| |
| while (size) { |
| void *va = kmap_atomic_pfn(pfn); |
| void *end = va + PAGE_SIZE; |
| void *addr = va; |
| |
| do { |
| write_sysreg(addr, ICIMVAU); |
| addr += iclsz; |
| } while (addr < end); |
| |
| dsb(ishst); |
| isb(); |
| |
| size -= PAGE_SIZE; |
| pfn++; |
| |
| kunmap_atomic(va); |
| } |
| |
| /* Check if we need to invalidate the BTB */ |
| if ((read_cpuid_ext(CPUID_EXT_MMFR1) >> 28) != 4) { |
| write_sysreg(0, BPIALLIS); |
| dsb(ishst); |
| isb(); |
| } |
| } |
| |
| static inline void __kvm_flush_dcache_pte(pte_t pte) |
| { |
| void *va = kmap_atomic(pte_page(pte)); |
| |
| kvm_flush_dcache_to_poc(va, PAGE_SIZE); |
| |
| kunmap_atomic(va); |
| } |
| |
| static inline void __kvm_flush_dcache_pmd(pmd_t pmd) |
| { |
| unsigned long size = PMD_SIZE; |
| kvm_pfn_t pfn = pmd_pfn(pmd); |
| |
| while (size) { |
| void *va = kmap_atomic_pfn(pfn); |
| |
| kvm_flush_dcache_to_poc(va, PAGE_SIZE); |
| |
| pfn++; |
| size -= PAGE_SIZE; |
| |
| kunmap_atomic(va); |
| } |
| } |
| |
| static inline void __kvm_flush_dcache_pud(pud_t pud) |
| { |
| } |
| |
| #define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x)) |
| |
| void kvm_set_way_flush(struct kvm_vcpu *vcpu); |
| void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); |
| |
| static inline bool __kvm_cpu_uses_extended_idmap(void) |
| { |
| return false; |
| } |
| |
| static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) |
| { |
| return PTRS_PER_PGD; |
| } |
| |
| static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, |
| pgd_t *hyp_pgd, |
| pgd_t *merged_hyp_pgd, |
| unsigned long hyp_idmap_start) { } |
| |
| static inline unsigned int kvm_get_vmid_bits(void) |
| { |
| return 8; |
| } |
| |
| /* |
| * We are not in the kvm->srcu critical section most of the time, so we take |
| * the SRCU read lock here. Since we copy the data from the user page, we |
| * can immediately drop the lock again. |
| */ |
| static inline int kvm_read_guest_lock(struct kvm *kvm, |
| gpa_t gpa, void *data, unsigned long len) |
| { |
| int srcu_idx = srcu_read_lock(&kvm->srcu); |
| int ret = kvm_read_guest(kvm, gpa, data, len); |
| |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| |
| return ret; |
| } |
| |
| static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, |
| const void *data, unsigned long len) |
| { |
| int srcu_idx = srcu_read_lock(&kvm->srcu); |
| int ret = kvm_write_guest(kvm, gpa, data, len); |
| |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| |
| return ret; |
| } |
| |
| static inline void *kvm_get_hyp_vector(void) |
| { |
| switch(read_cpuid_part()) { |
| #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR |
| case ARM_CPU_PART_CORTEX_A12: |
| case ARM_CPU_PART_CORTEX_A17: |
| { |
| extern char __kvm_hyp_vector_bp_inv[]; |
| return kvm_ksym_ref(__kvm_hyp_vector_bp_inv); |
| } |
| |
| case ARM_CPU_PART_BRAHMA_B15: |
| case ARM_CPU_PART_CORTEX_A15: |
| { |
| extern char __kvm_hyp_vector_ic_inv[]; |
| return kvm_ksym_ref(__kvm_hyp_vector_ic_inv); |
| } |
| #endif |
| default: |
| { |
| extern char __kvm_hyp_vector[]; |
| return kvm_ksym_ref(__kvm_hyp_vector); |
| } |
| } |
| } |
| |
| static inline int kvm_map_vectors(void) |
| { |
| return 0; |
| } |
| |
| static inline int hyp_map_aux_data(void) |
| { |
| return 0; |
| } |
| |
| #define kvm_phys_to_vttbr(addr) (addr) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* __ARM_KVM_MMU_H__ */ |