| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H |
| #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H |
| |
| #define H_PTE_INDEX_SIZE 8 |
| #define H_PMD_INDEX_SIZE 10 |
| #define H_PUD_INDEX_SIZE 7 |
| #define H_PGD_INDEX_SIZE 8 |
| |
| /* |
| * 64k aligned address free up few of the lower bits of RPN for us |
| * We steal that here. For more deatils look at pte_pfn/pfn_pte() |
| */ |
| #define H_PAGE_COMBO _RPAGE_RPN0 /* this is a combo 4k page */ |
| #define H_PAGE_4K_PFN _RPAGE_RPN1 /* PFN is for a single 4k page */ |
| /* |
| * We need to differentiate between explicit huge page and THP huge |
| * page, since THP huge page also need to track real subpage details |
| */ |
| #define H_PAGE_THP_HUGE H_PAGE_4K_PFN |
| |
| /* |
| * Used to track subpage group valid if H_PAGE_COMBO is set |
| * This overloads H_PAGE_F_GIX and H_PAGE_F_SECOND |
| */ |
| #define H_PAGE_COMBO_VALID (H_PAGE_F_GIX | H_PAGE_F_SECOND) |
| |
| /* PTE flags to conserve for HPTE identification */ |
| #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_F_SECOND | \ |
| H_PAGE_F_GIX | H_PAGE_HASHPTE | H_PAGE_COMBO) |
| /* |
| * we support 16 fragments per PTE page of 64K size. |
| */ |
| #define H_PTE_FRAG_NR 16 |
| /* |
| * We use a 2K PTE page fragment and another 2K for storing |
| * real_pte_t hash index |
| */ |
| #define H_PTE_FRAG_SIZE_SHIFT 12 |
| #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) |
| |
| #ifndef __ASSEMBLY__ |
| #include <asm/errno.h> |
| |
| /* |
| * With 64K pages on hash table, we have a special PTE format that |
| * uses a second "half" of the page table to encode sub-page information |
| * in order to deal with 64K made of 4K HW pages. Thus we override the |
| * generic accessors and iterators here |
| */ |
| #define __real_pte __real_pte |
| static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep) |
| { |
| real_pte_t rpte; |
| unsigned long *hidxp; |
| |
| rpte.pte = pte; |
| rpte.hidx = 0; |
| if (pte_val(pte) & H_PAGE_COMBO) { |
| /* |
| * Make sure we order the hidx load against the H_PAGE_COMBO |
| * check. The store side ordering is done in __hash_page_4K |
| */ |
| smp_rmb(); |
| hidxp = (unsigned long *)(ptep + PTRS_PER_PTE); |
| rpte.hidx = *hidxp; |
| } |
| return rpte; |
| } |
| |
| static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index) |
| { |
| if ((pte_val(rpte.pte) & H_PAGE_COMBO)) |
| return (rpte.hidx >> (index<<2)) & 0xf; |
| return (pte_val(rpte.pte) >> H_PAGE_F_GIX_SHIFT) & 0xf; |
| } |
| |
| #define __rpte_to_pte(r) ((r).pte) |
| extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index); |
| /* |
| * Trick: we set __end to va + 64k, which happens works for |
| * a 16M page as well as we want only one iteration |
| */ |
| #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \ |
| do { \ |
| unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \ |
| unsigned __split = (psize == MMU_PAGE_4K || \ |
| psize == MMU_PAGE_64K_AP); \ |
| shift = mmu_psize_defs[psize].shift; \ |
| for (index = 0; vpn < __end; index++, \ |
| vpn += (1L << (shift - VPN_SHIFT))) { \ |
| if (!__split || __rpte_sub_valid(rpte, index)) \ |
| do { |
| |
| #define pte_iterate_hashed_end() } while(0); } } while(0) |
| |
| #define pte_pagesize_index(mm, addr, pte) \ |
| (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K) |
| |
| extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr, |
| unsigned long pfn, unsigned long size, pgprot_t); |
| static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr, |
| unsigned long pfn, pgprot_t prot) |
| { |
| if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) { |
| WARN(1, "remap_4k_pfn called with wrong pfn value\n"); |
| return -EINVAL; |
| } |
| return remap_pfn_range(vma, addr, pfn, PAGE_SIZE, |
| __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN)); |
| } |
| |
| #define H_PTE_TABLE_SIZE PTE_FRAG_SIZE |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \ |
| (sizeof(unsigned long) << PMD_INDEX_SIZE)) |
| #else |
| #define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE) |
| #endif |
| #define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE) |
| #define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline char *get_hpte_slot_array(pmd_t *pmdp) |
| { |
| /* |
| * The hpte hindex is stored in the pgtable whose address is in the |
| * second half of the PMD |
| * |
| * Order this load with the test for pmd_trans_huge in the caller |
| */ |
| smp_rmb(); |
| return *(char **)(pmdp + PTRS_PER_PMD); |
| |
| |
| } |
| /* |
| * The linux hugepage PMD now include the pmd entries followed by the address |
| * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits. |
| * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per |
| * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and |
| * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t. |
| * |
| * The top three bits are intentionally left as zero. This memory location |
| * are also used as normal page PTE pointers. So if we have any pointers |
| * left around while we collapse a hugepage, we need to make sure |
| * _PAGE_PRESENT bit of that is zero when we look at them |
| */ |
| static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index) |
| { |
| return hpte_slot_array[index] & 0x1; |
| } |
| |
| static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array, |
| int index) |
| { |
| return hpte_slot_array[index] >> 1; |
| } |
| |
| static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array, |
| unsigned int index, unsigned int hidx) |
| { |
| hpte_slot_array[index] = (hidx << 1) | 0x1; |
| } |
| |
| /* |
| * |
| * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs |
| * page. The hugetlbfs page table walking and mangling paths are totally |
| * separated form the core VM paths and they're differentiated by |
| * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run. |
| * |
| * pmd_trans_huge() is defined as false at build time if |
| * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build |
| * time in such case. |
| * |
| * For ppc64 we need to differntiate from explicit hugepages from THP, because |
| * for THP we also track the subpage details at the pmd level. We don't do |
| * that for explicit huge pages. |
| * |
| */ |
| static inline int hash__pmd_trans_huge(pmd_t pmd) |
| { |
| return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) == |
| (_PAGE_PTE | H_PAGE_THP_HUGE)); |
| } |
| |
| static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b) |
| { |
| return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0); |
| } |
| |
| static inline pmd_t hash__pmd_mkhuge(pmd_t pmd) |
| { |
| return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE)); |
| } |
| |
| extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, |
| unsigned long addr, pmd_t *pmdp, |
| unsigned long clr, unsigned long set); |
| extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| pgtable_t pgtable); |
| extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); |
| extern void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pmd_t *pmdp); |
| extern int hash__has_transparent_hugepage(void); |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */ |