| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/bio.h> |
| #include <linux/slab.h> |
| #include <linux/buffer_head.h> |
| #include <linux/blkdev.h> |
| #include <linux/ratelimit.h> |
| #include <linux/kthread.h> |
| #include <linux/raid/pq.h> |
| #include <linux/semaphore.h> |
| #include <linux/uuid.h> |
| #include <linux/list_sort.h> |
| #include "ctree.h" |
| #include "extent_map.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "print-tree.h" |
| #include "volumes.h" |
| #include "raid56.h" |
| #include "async-thread.h" |
| #include "check-integrity.h" |
| #include "rcu-string.h" |
| #include "math.h" |
| #include "dev-replace.h" |
| #include "sysfs.h" |
| |
| const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { |
| [BTRFS_RAID_RAID10] = { |
| .sub_stripes = 2, |
| .dev_stripes = 1, |
| .devs_max = 0, /* 0 == as many as possible */ |
| .devs_min = 4, |
| .tolerated_failures = 1, |
| .devs_increment = 2, |
| .ncopies = 2, |
| .raid_name = "raid10", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID10, |
| .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_RAID1] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 2, |
| .devs_min = 2, |
| .tolerated_failures = 1, |
| .devs_increment = 2, |
| .ncopies = 2, |
| .raid_name = "raid1", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID1, |
| .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_DUP] = { |
| .sub_stripes = 1, |
| .dev_stripes = 2, |
| .devs_max = 1, |
| .devs_min = 1, |
| .tolerated_failures = 0, |
| .devs_increment = 1, |
| .ncopies = 2, |
| .raid_name = "dup", |
| .bg_flag = BTRFS_BLOCK_GROUP_DUP, |
| .mindev_error = 0, |
| }, |
| [BTRFS_RAID_RAID0] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 0, |
| .devs_min = 2, |
| .tolerated_failures = 0, |
| .devs_increment = 1, |
| .ncopies = 1, |
| .raid_name = "raid0", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID0, |
| .mindev_error = 0, |
| }, |
| [BTRFS_RAID_SINGLE] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 1, |
| .devs_min = 1, |
| .tolerated_failures = 0, |
| .devs_increment = 1, |
| .ncopies = 1, |
| .raid_name = "single", |
| .bg_flag = 0, |
| .mindev_error = 0, |
| }, |
| [BTRFS_RAID_RAID5] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 0, |
| .devs_min = 2, |
| .tolerated_failures = 1, |
| .devs_increment = 1, |
| .ncopies = 1, |
| .raid_name = "raid5", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID5, |
| .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_RAID6] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 0, |
| .devs_min = 3, |
| .tolerated_failures = 2, |
| .devs_increment = 1, |
| .ncopies = 1, |
| .raid_name = "raid6", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID6, |
| .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, |
| }, |
| }; |
| |
| const char *get_raid_name(enum btrfs_raid_types type) |
| { |
| if (type >= BTRFS_NR_RAID_TYPES) |
| return NULL; |
| |
| return btrfs_raid_array[type].raid_name; |
| } |
| |
| static int init_first_rw_device(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info); |
| static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); |
| static void __btrfs_reset_dev_stats(struct btrfs_device *dev); |
| static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); |
| static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); |
| static int __btrfs_map_block(struct btrfs_fs_info *fs_info, |
| enum btrfs_map_op op, |
| u64 logical, u64 *length, |
| struct btrfs_bio **bbio_ret, |
| int mirror_num, int need_raid_map); |
| |
| /* |
| * Device locking |
| * ============== |
| * |
| * There are several mutexes that protect manipulation of devices and low-level |
| * structures like chunks but not block groups, extents or files |
| * |
| * uuid_mutex (global lock) |
| * ------------------------ |
| * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from |
| * the SCAN_DEV ioctl registration or from mount either implicitly (the first |
| * device) or requested by the device= mount option |
| * |
| * the mutex can be very coarse and can cover long-running operations |
| * |
| * protects: updates to fs_devices counters like missing devices, rw devices, |
| * seeding, structure cloning, openning/closing devices at mount/umount time |
| * |
| * global::fs_devs - add, remove, updates to the global list |
| * |
| * does not protect: manipulation of the fs_devices::devices list! |
| * |
| * btrfs_device::name - renames (write side), read is RCU |
| * |
| * fs_devices::device_list_mutex (per-fs, with RCU) |
| * ------------------------------------------------ |
| * protects updates to fs_devices::devices, ie. adding and deleting |
| * |
| * simple list traversal with read-only actions can be done with RCU protection |
| * |
| * may be used to exclude some operations from running concurrently without any |
| * modifications to the list (see write_all_supers) |
| * |
| * balance_mutex |
| * ------------- |
| * protects balance structures (status, state) and context accessed from |
| * several places (internally, ioctl) |
| * |
| * chunk_mutex |
| * ----------- |
| * protects chunks, adding or removing during allocation, trim or when a new |
| * device is added/removed |
| * |
| * cleaner_mutex |
| * ------------- |
| * a big lock that is held by the cleaner thread and prevents running subvolume |
| * cleaning together with relocation or delayed iputs |
| * |
| * |
| * Lock nesting |
| * ============ |
| * |
| * uuid_mutex |
| * volume_mutex |
| * device_list_mutex |
| * chunk_mutex |
| * balance_mutex |
| * |
| * |
| * Exclusive operations, BTRFS_FS_EXCL_OP |
| * ====================================== |
| * |
| * Maintains the exclusivity of the following operations that apply to the |
| * whole filesystem and cannot run in parallel. |
| * |
| * - Balance (*) |
| * - Device add |
| * - Device remove |
| * - Device replace (*) |
| * - Resize |
| * |
| * The device operations (as above) can be in one of the following states: |
| * |
| * - Running state |
| * - Paused state |
| * - Completed state |
| * |
| * Only device operations marked with (*) can go into the Paused state for the |
| * following reasons: |
| * |
| * - ioctl (only Balance can be Paused through ioctl) |
| * - filesystem remounted as read-only |
| * - filesystem unmounted and mounted as read-only |
| * - system power-cycle and filesystem mounted as read-only |
| * - filesystem or device errors leading to forced read-only |
| * |
| * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. |
| * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. |
| * A device operation in Paused or Running state can be canceled or resumed |
| * either by ioctl (Balance only) or when remounted as read-write. |
| * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or |
| * completed. |
| */ |
| |
| DEFINE_MUTEX(uuid_mutex); |
| static LIST_HEAD(fs_uuids); |
| struct list_head *btrfs_get_fs_uuids(void) |
| { |
| return &fs_uuids; |
| } |
| |
| /* |
| * alloc_fs_devices - allocate struct btrfs_fs_devices |
| * @fsid: if not NULL, copy the uuid to fs_devices::fsid |
| * |
| * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). |
| * The returned struct is not linked onto any lists and can be destroyed with |
| * kfree() right away. |
| */ |
| static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) |
| { |
| struct btrfs_fs_devices *fs_devs; |
| |
| fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); |
| if (!fs_devs) |
| return ERR_PTR(-ENOMEM); |
| |
| mutex_init(&fs_devs->device_list_mutex); |
| |
| INIT_LIST_HEAD(&fs_devs->devices); |
| INIT_LIST_HEAD(&fs_devs->resized_devices); |
| INIT_LIST_HEAD(&fs_devs->alloc_list); |
| INIT_LIST_HEAD(&fs_devs->fs_list); |
| if (fsid) |
| memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); |
| |
| return fs_devs; |
| } |
| |
| void btrfs_free_device(struct btrfs_device *device) |
| { |
| rcu_string_free(device->name); |
| bio_put(device->flush_bio); |
| kfree(device); |
| } |
| |
| static void free_fs_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_device *device; |
| WARN_ON(fs_devices->opened); |
| while (!list_empty(&fs_devices->devices)) { |
| device = list_entry(fs_devices->devices.next, |
| struct btrfs_device, dev_list); |
| list_del(&device->dev_list); |
| btrfs_free_device(device); |
| } |
| kfree(fs_devices); |
| } |
| |
| static void btrfs_kobject_uevent(struct block_device *bdev, |
| enum kobject_action action) |
| { |
| int ret; |
| |
| ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); |
| if (ret) |
| pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", |
| action, |
| kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), |
| &disk_to_dev(bdev->bd_disk)->kobj); |
| } |
| |
| void __exit btrfs_cleanup_fs_uuids(void) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| while (!list_empty(&fs_uuids)) { |
| fs_devices = list_entry(fs_uuids.next, |
| struct btrfs_fs_devices, fs_list); |
| list_del(&fs_devices->fs_list); |
| free_fs_devices(fs_devices); |
| } |
| } |
| |
| /* |
| * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. |
| * Returned struct is not linked onto any lists and must be destroyed using |
| * btrfs_free_device. |
| */ |
| static struct btrfs_device *__alloc_device(void) |
| { |
| struct btrfs_device *dev; |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (!dev) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Preallocate a bio that's always going to be used for flushing device |
| * barriers and matches the device lifespan |
| */ |
| dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); |
| if (!dev->flush_bio) { |
| kfree(dev); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| INIT_LIST_HEAD(&dev->dev_list); |
| INIT_LIST_HEAD(&dev->dev_alloc_list); |
| INIT_LIST_HEAD(&dev->resized_list); |
| |
| spin_lock_init(&dev->io_lock); |
| |
| atomic_set(&dev->reada_in_flight, 0); |
| atomic_set(&dev->dev_stats_ccnt, 0); |
| btrfs_device_data_ordered_init(dev); |
| INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); |
| INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); |
| |
| return dev; |
| } |
| |
| /* |
| * Find a device specified by @devid or @uuid in the list of @fs_devices, or |
| * return NULL. |
| * |
| * If devid and uuid are both specified, the match must be exact, otherwise |
| * only devid is used. |
| */ |
| static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices, |
| u64 devid, const u8 *uuid) |
| { |
| struct btrfs_device *dev; |
| |
| list_for_each_entry(dev, &fs_devices->devices, dev_list) { |
| if (dev->devid == devid && |
| (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { |
| return dev; |
| } |
| } |
| return NULL; |
| } |
| |
| static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| list_for_each_entry(fs_devices, &fs_uuids, fs_list) { |
| if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) |
| return fs_devices; |
| } |
| return NULL; |
| } |
| |
| static int |
| btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, |
| int flush, struct block_device **bdev, |
| struct buffer_head **bh) |
| { |
| int ret; |
| |
| *bdev = blkdev_get_by_path(device_path, flags, holder); |
| |
| if (IS_ERR(*bdev)) { |
| ret = PTR_ERR(*bdev); |
| goto error; |
| } |
| |
| if (flush) |
| filemap_write_and_wait((*bdev)->bd_inode->i_mapping); |
| ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); |
| if (ret) { |
| blkdev_put(*bdev, flags); |
| goto error; |
| } |
| invalidate_bdev(*bdev); |
| *bh = btrfs_read_dev_super(*bdev); |
| if (IS_ERR(*bh)) { |
| ret = PTR_ERR(*bh); |
| blkdev_put(*bdev, flags); |
| goto error; |
| } |
| |
| return 0; |
| |
| error: |
| *bdev = NULL; |
| *bh = NULL; |
| return ret; |
| } |
| |
| static void requeue_list(struct btrfs_pending_bios *pending_bios, |
| struct bio *head, struct bio *tail) |
| { |
| |
| struct bio *old_head; |
| |
| old_head = pending_bios->head; |
| pending_bios->head = head; |
| if (pending_bios->tail) |
| tail->bi_next = old_head; |
| else |
| pending_bios->tail = tail; |
| } |
| |
| /* |
| * we try to collect pending bios for a device so we don't get a large |
| * number of procs sending bios down to the same device. This greatly |
| * improves the schedulers ability to collect and merge the bios. |
| * |
| * But, it also turns into a long list of bios to process and that is sure |
| * to eventually make the worker thread block. The solution here is to |
| * make some progress and then put this work struct back at the end of |
| * the list if the block device is congested. This way, multiple devices |
| * can make progress from a single worker thread. |
| */ |
| static noinline void run_scheduled_bios(struct btrfs_device *device) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct bio *pending; |
| struct backing_dev_info *bdi; |
| struct btrfs_pending_bios *pending_bios; |
| struct bio *tail; |
| struct bio *cur; |
| int again = 0; |
| unsigned long num_run; |
| unsigned long batch_run = 0; |
| unsigned long last_waited = 0; |
| int force_reg = 0; |
| int sync_pending = 0; |
| struct blk_plug plug; |
| |
| /* |
| * this function runs all the bios we've collected for |
| * a particular device. We don't want to wander off to |
| * another device without first sending all of these down. |
| * So, setup a plug here and finish it off before we return |
| */ |
| blk_start_plug(&plug); |
| |
| bdi = device->bdev->bd_bdi; |
| |
| loop: |
| spin_lock(&device->io_lock); |
| |
| loop_lock: |
| num_run = 0; |
| |
| /* take all the bios off the list at once and process them |
| * later on (without the lock held). But, remember the |
| * tail and other pointers so the bios can be properly reinserted |
| * into the list if we hit congestion |
| */ |
| if (!force_reg && device->pending_sync_bios.head) { |
| pending_bios = &device->pending_sync_bios; |
| force_reg = 1; |
| } else { |
| pending_bios = &device->pending_bios; |
| force_reg = 0; |
| } |
| |
| pending = pending_bios->head; |
| tail = pending_bios->tail; |
| WARN_ON(pending && !tail); |
| |
| /* |
| * if pending was null this time around, no bios need processing |
| * at all and we can stop. Otherwise it'll loop back up again |
| * and do an additional check so no bios are missed. |
| * |
| * device->running_pending is used to synchronize with the |
| * schedule_bio code. |
| */ |
| if (device->pending_sync_bios.head == NULL && |
| device->pending_bios.head == NULL) { |
| again = 0; |
| device->running_pending = 0; |
| } else { |
| again = 1; |
| device->running_pending = 1; |
| } |
| |
| pending_bios->head = NULL; |
| pending_bios->tail = NULL; |
| |
| spin_unlock(&device->io_lock); |
| |
| while (pending) { |
| |
| rmb(); |
| /* we want to work on both lists, but do more bios on the |
| * sync list than the regular list |
| */ |
| if ((num_run > 32 && |
| pending_bios != &device->pending_sync_bios && |
| device->pending_sync_bios.head) || |
| (num_run > 64 && pending_bios == &device->pending_sync_bios && |
| device->pending_bios.head)) { |
| spin_lock(&device->io_lock); |
| requeue_list(pending_bios, pending, tail); |
| goto loop_lock; |
| } |
| |
| cur = pending; |
| pending = pending->bi_next; |
| cur->bi_next = NULL; |
| |
| BUG_ON(atomic_read(&cur->__bi_cnt) == 0); |
| |
| /* |
| * if we're doing the sync list, record that our |
| * plug has some sync requests on it |
| * |
| * If we're doing the regular list and there are |
| * sync requests sitting around, unplug before |
| * we add more |
| */ |
| if (pending_bios == &device->pending_sync_bios) { |
| sync_pending = 1; |
| } else if (sync_pending) { |
| blk_finish_plug(&plug); |
| blk_start_plug(&plug); |
| sync_pending = 0; |
| } |
| |
| btrfsic_submit_bio(cur); |
| num_run++; |
| batch_run++; |
| |
| cond_resched(); |
| |
| /* |
| * we made progress, there is more work to do and the bdi |
| * is now congested. Back off and let other work structs |
| * run instead |
| */ |
| if (pending && bdi_write_congested(bdi) && batch_run > 8 && |
| fs_info->fs_devices->open_devices > 1) { |
| struct io_context *ioc; |
| |
| ioc = current->io_context; |
| |
| /* |
| * the main goal here is that we don't want to |
| * block if we're going to be able to submit |
| * more requests without blocking. |
| * |
| * This code does two great things, it pokes into |
| * the elevator code from a filesystem _and_ |
| * it makes assumptions about how batching works. |
| */ |
| if (ioc && ioc->nr_batch_requests > 0 && |
| time_before(jiffies, ioc->last_waited + HZ/50UL) && |
| (last_waited == 0 || |
| ioc->last_waited == last_waited)) { |
| /* |
| * we want to go through our batch of |
| * requests and stop. So, we copy out |
| * the ioc->last_waited time and test |
| * against it before looping |
| */ |
| last_waited = ioc->last_waited; |
| cond_resched(); |
| continue; |
| } |
| spin_lock(&device->io_lock); |
| requeue_list(pending_bios, pending, tail); |
| device->running_pending = 1; |
| |
| spin_unlock(&device->io_lock); |
| btrfs_queue_work(fs_info->submit_workers, |
| &device->work); |
| goto done; |
| } |
| } |
| |
| cond_resched(); |
| if (again) |
| goto loop; |
| |
| spin_lock(&device->io_lock); |
| if (device->pending_bios.head || device->pending_sync_bios.head) |
| goto loop_lock; |
| spin_unlock(&device->io_lock); |
| |
| done: |
| blk_finish_plug(&plug); |
| } |
| |
| static void pending_bios_fn(struct btrfs_work *work) |
| { |
| struct btrfs_device *device; |
| |
| device = container_of(work, struct btrfs_device, work); |
| run_scheduled_bios(device); |
| } |
| |
| /* |
| * Search and remove all stale (devices which are not mounted) devices. |
| * When both inputs are NULL, it will search and release all stale devices. |
| * path: Optional. When provided will it release all unmounted devices |
| * matching this path only. |
| * skip_dev: Optional. Will skip this device when searching for the stale |
| * devices. |
| */ |
| static void btrfs_free_stale_devices(const char *path, |
| struct btrfs_device *skip_device) |
| { |
| struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; |
| struct btrfs_device *device, *tmp_device; |
| |
| list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { |
| mutex_lock(&fs_devices->device_list_mutex); |
| if (fs_devices->opened) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| continue; |
| } |
| |
| list_for_each_entry_safe(device, tmp_device, |
| &fs_devices->devices, dev_list) { |
| int not_found = 0; |
| |
| if (skip_device && skip_device == device) |
| continue; |
| if (path && !device->name) |
| continue; |
| |
| rcu_read_lock(); |
| if (path) |
| not_found = strcmp(rcu_str_deref(device->name), |
| path); |
| rcu_read_unlock(); |
| if (not_found) |
| continue; |
| |
| /* delete the stale device */ |
| fs_devices->num_devices--; |
| list_del(&device->dev_list); |
| btrfs_free_device(device); |
| |
| if (fs_devices->num_devices == 0) |
| break; |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| if (fs_devices->num_devices == 0) { |
| btrfs_sysfs_remove_fsid(fs_devices); |
| list_del(&fs_devices->fs_list); |
| free_fs_devices(fs_devices); |
| } |
| } |
| } |
| |
| static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, |
| struct btrfs_device *device, fmode_t flags, |
| void *holder) |
| { |
| struct request_queue *q; |
| struct block_device *bdev; |
| struct buffer_head *bh; |
| struct btrfs_super_block *disk_super; |
| u64 devid; |
| int ret; |
| |
| if (device->bdev) |
| return -EINVAL; |
| if (!device->name) |
| return -EINVAL; |
| |
| ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, |
| &bdev, &bh); |
| if (ret) |
| return ret; |
| |
| disk_super = (struct btrfs_super_block *)bh->b_data; |
| devid = btrfs_stack_device_id(&disk_super->dev_item); |
| if (devid != device->devid) |
| goto error_brelse; |
| |
| if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) |
| goto error_brelse; |
| |
| device->generation = btrfs_super_generation(disk_super); |
| |
| if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { |
| clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| fs_devices->seeding = 1; |
| } else { |
| if (bdev_read_only(bdev)) |
| clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| else |
| set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| } |
| |
| q = bdev_get_queue(bdev); |
| if (!blk_queue_nonrot(q)) |
| fs_devices->rotating = 1; |
| |
| device->bdev = bdev; |
| clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| device->mode = flags; |
| |
| fs_devices->open_devices++; |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| device->devid != BTRFS_DEV_REPLACE_DEVID) { |
| fs_devices->rw_devices++; |
| list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); |
| } |
| brelse(bh); |
| |
| return 0; |
| |
| error_brelse: |
| brelse(bh); |
| blkdev_put(bdev, flags); |
| |
| return -EINVAL; |
| } |
| |
| /* |
| * Add new device to list of registered devices |
| * |
| * Returns: |
| * device pointer which was just added or updated when successful |
| * error pointer when failed |
| */ |
| static noinline struct btrfs_device *device_list_add(const char *path, |
| struct btrfs_super_block *disk_super, |
| bool *new_device_added) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *fs_devices; |
| struct rcu_string *name; |
| u64 found_transid = btrfs_super_generation(disk_super); |
| u64 devid = btrfs_stack_device_id(&disk_super->dev_item); |
| |
| fs_devices = find_fsid(disk_super->fsid); |
| if (!fs_devices) { |
| fs_devices = alloc_fs_devices(disk_super->fsid); |
| if (IS_ERR(fs_devices)) |
| return ERR_CAST(fs_devices); |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_add(&fs_devices->fs_list, &fs_uuids); |
| |
| device = NULL; |
| } else { |
| mutex_lock(&fs_devices->device_list_mutex); |
| device = find_device(fs_devices, devid, |
| disk_super->dev_item.uuid); |
| } |
| |
| if (!device) { |
| if (fs_devices->opened) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_PTR(-EBUSY); |
| } |
| |
| device = btrfs_alloc_device(NULL, &devid, |
| disk_super->dev_item.uuid); |
| if (IS_ERR(device)) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| /* we can safely leave the fs_devices entry around */ |
| return device; |
| } |
| |
| name = rcu_string_strdup(path, GFP_NOFS); |
| if (!name) { |
| btrfs_free_device(device); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_PTR(-ENOMEM); |
| } |
| rcu_assign_pointer(device->name, name); |
| |
| list_add_rcu(&device->dev_list, &fs_devices->devices); |
| fs_devices->num_devices++; |
| |
| device->fs_devices = fs_devices; |
| *new_device_added = true; |
| |
| if (disk_super->label[0]) |
| pr_info("BTRFS: device label %s devid %llu transid %llu %s\n", |
| disk_super->label, devid, found_transid, path); |
| else |
| pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n", |
| disk_super->fsid, devid, found_transid, path); |
| |
| } else if (!device->name || strcmp(device->name->str, path)) { |
| /* |
| * When FS is already mounted. |
| * 1. If you are here and if the device->name is NULL that |
| * means this device was missing at time of FS mount. |
| * 2. If you are here and if the device->name is different |
| * from 'path' that means either |
| * a. The same device disappeared and reappeared with |
| * different name. or |
| * b. The missing-disk-which-was-replaced, has |
| * reappeared now. |
| * |
| * We must allow 1 and 2a above. But 2b would be a spurious |
| * and unintentional. |
| * |
| * Further in case of 1 and 2a above, the disk at 'path' |
| * would have missed some transaction when it was away and |
| * in case of 2a the stale bdev has to be updated as well. |
| * 2b must not be allowed at all time. |
| */ |
| |
| /* |
| * For now, we do allow update to btrfs_fs_device through the |
| * btrfs dev scan cli after FS has been mounted. We're still |
| * tracking a problem where systems fail mount by subvolume id |
| * when we reject replacement on a mounted FS. |
| */ |
| if (!fs_devices->opened && found_transid < device->generation) { |
| /* |
| * That is if the FS is _not_ mounted and if you |
| * are here, that means there is more than one |
| * disk with same uuid and devid.We keep the one |
| * with larger generation number or the last-in if |
| * generation are equal. |
| */ |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_PTR(-EEXIST); |
| } |
| |
| /* |
| * We are going to replace the device path for a given devid, |
| * make sure it's the same device if the device is mounted |
| */ |
| if (device->bdev) { |
| struct block_device *path_bdev; |
| |
| path_bdev = lookup_bdev(path); |
| if (IS_ERR(path_bdev)) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_CAST(path_bdev); |
| } |
| |
| if (device->bdev != path_bdev) { |
| bdput(path_bdev); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| btrfs_warn_in_rcu(device->fs_info, |
| "duplicate device fsid:devid for %pU:%llu old:%s new:%s", |
| disk_super->fsid, devid, |
| rcu_str_deref(device->name), path); |
| return ERR_PTR(-EEXIST); |
| } |
| bdput(path_bdev); |
| btrfs_info_in_rcu(device->fs_info, |
| "device fsid %pU devid %llu moved old:%s new:%s", |
| disk_super->fsid, devid, |
| rcu_str_deref(device->name), path); |
| } |
| |
| name = rcu_string_strdup(path, GFP_NOFS); |
| if (!name) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_PTR(-ENOMEM); |
| } |
| rcu_string_free(device->name); |
| rcu_assign_pointer(device->name, name); |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { |
| fs_devices->missing_devices--; |
| clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); |
| } |
| } |
| |
| /* |
| * Unmount does not free the btrfs_device struct but would zero |
| * generation along with most of the other members. So just update |
| * it back. We need it to pick the disk with largest generation |
| * (as above). |
| */ |
| if (!fs_devices->opened) |
| device->generation = found_transid; |
| |
| fs_devices->total_devices = btrfs_super_num_devices(disk_super); |
| |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return device; |
| } |
| |
| static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| struct btrfs_device *device; |
| struct btrfs_device *orig_dev; |
| |
| fs_devices = alloc_fs_devices(orig->fsid); |
| if (IS_ERR(fs_devices)) |
| return fs_devices; |
| |
| mutex_lock(&orig->device_list_mutex); |
| fs_devices->total_devices = orig->total_devices; |
| |
| /* We have held the volume lock, it is safe to get the devices. */ |
| list_for_each_entry(orig_dev, &orig->devices, dev_list) { |
| struct rcu_string *name; |
| |
| device = btrfs_alloc_device(NULL, &orig_dev->devid, |
| orig_dev->uuid); |
| if (IS_ERR(device)) |
| goto error; |
| |
| /* |
| * This is ok to do without rcu read locked because we hold the |
| * uuid mutex so nothing we touch in here is going to disappear. |
| */ |
| if (orig_dev->name) { |
| name = rcu_string_strdup(orig_dev->name->str, |
| GFP_KERNEL); |
| if (!name) { |
| btrfs_free_device(device); |
| goto error; |
| } |
| rcu_assign_pointer(device->name, name); |
| } |
| |
| list_add(&device->dev_list, &fs_devices->devices); |
| device->fs_devices = fs_devices; |
| fs_devices->num_devices++; |
| } |
| mutex_unlock(&orig->device_list_mutex); |
| return fs_devices; |
| error: |
| mutex_unlock(&orig->device_list_mutex); |
| free_fs_devices(fs_devices); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * After we have read the system tree and know devids belonging to |
| * this filesystem, remove the device which does not belong there. |
| */ |
| void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) |
| { |
| struct btrfs_device *device, *next; |
| struct btrfs_device *latest_dev = NULL; |
| |
| mutex_lock(&uuid_mutex); |
| again: |
| /* This is the initialized path, it is safe to release the devices. */ |
| list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { |
| if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, |
| &device->dev_state)) { |
| if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, |
| &device->dev_state) && |
| (!latest_dev || |
| device->generation > latest_dev->generation)) { |
| latest_dev = device; |
| } |
| continue; |
| } |
| |
| if (device->devid == BTRFS_DEV_REPLACE_DEVID) { |
| /* |
| * In the first step, keep the device which has |
| * the correct fsid and the devid that is used |
| * for the dev_replace procedure. |
| * In the second step, the dev_replace state is |
| * read from the device tree and it is known |
| * whether the procedure is really active or |
| * not, which means whether this device is |
| * used or whether it should be removed. |
| */ |
| if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, |
| &device->dev_state)) { |
| continue; |
| } |
| } |
| if (device->bdev) { |
| blkdev_put(device->bdev, device->mode); |
| device->bdev = NULL; |
| fs_devices->open_devices--; |
| } |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| list_del_init(&device->dev_alloc_list); |
| clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, |
| &device->dev_state)) |
| fs_devices->rw_devices--; |
| } |
| list_del_init(&device->dev_list); |
| fs_devices->num_devices--; |
| btrfs_free_device(device); |
| } |
| |
| if (fs_devices->seed) { |
| fs_devices = fs_devices->seed; |
| goto again; |
| } |
| |
| fs_devices->latest_bdev = latest_dev->bdev; |
| |
| mutex_unlock(&uuid_mutex); |
| } |
| |
| static void free_device_rcu(struct rcu_head *head) |
| { |
| struct btrfs_device *device; |
| |
| device = container_of(head, struct btrfs_device, rcu); |
| btrfs_free_device(device); |
| } |
| |
| static void btrfs_close_bdev(struct btrfs_device *device) |
| { |
| if (!device->bdev) |
| return; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| sync_blockdev(device->bdev); |
| invalidate_bdev(device->bdev); |
| } |
| |
| blkdev_put(device->bdev, device->mode); |
| } |
| |
| static void btrfs_close_one_device(struct btrfs_device *device) |
| { |
| struct btrfs_fs_devices *fs_devices = device->fs_devices; |
| struct btrfs_device *new_device; |
| struct rcu_string *name; |
| |
| if (device->bdev) |
| fs_devices->open_devices--; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| device->devid != BTRFS_DEV_REPLACE_DEVID) { |
| list_del_init(&device->dev_alloc_list); |
| fs_devices->rw_devices--; |
| } |
| |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) |
| fs_devices->missing_devices--; |
| |
| btrfs_close_bdev(device); |
| |
| new_device = btrfs_alloc_device(NULL, &device->devid, |
| device->uuid); |
| BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ |
| |
| /* Safe because we are under uuid_mutex */ |
| if (device->name) { |
| name = rcu_string_strdup(device->name->str, GFP_NOFS); |
| BUG_ON(!name); /* -ENOMEM */ |
| rcu_assign_pointer(new_device->name, name); |
| } |
| |
| list_replace_rcu(&device->dev_list, &new_device->dev_list); |
| new_device->fs_devices = device->fs_devices; |
| |
| call_rcu(&device->rcu, free_device_rcu); |
| } |
| |
| static int close_fs_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_device *device, *tmp; |
| |
| if (--fs_devices->opened > 0) |
| return 0; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { |
| btrfs_close_one_device(device); |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| WARN_ON(fs_devices->open_devices); |
| WARN_ON(fs_devices->rw_devices); |
| fs_devices->opened = 0; |
| fs_devices->seeding = 0; |
| |
| return 0; |
| } |
| |
| int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_fs_devices *seed_devices = NULL; |
| int ret; |
| |
| mutex_lock(&uuid_mutex); |
| ret = close_fs_devices(fs_devices); |
| if (!fs_devices->opened) { |
| seed_devices = fs_devices->seed; |
| fs_devices->seed = NULL; |
| } |
| mutex_unlock(&uuid_mutex); |
| |
| while (seed_devices) { |
| fs_devices = seed_devices; |
| seed_devices = fs_devices->seed; |
| close_fs_devices(fs_devices); |
| free_fs_devices(fs_devices); |
| } |
| return ret; |
| } |
| |
| static int open_fs_devices(struct btrfs_fs_devices *fs_devices, |
| fmode_t flags, void *holder) |
| { |
| struct btrfs_device *device; |
| struct btrfs_device *latest_dev = NULL; |
| int ret = 0; |
| |
| flags |= FMODE_EXCL; |
| |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| /* Just open everything we can; ignore failures here */ |
| if (btrfs_open_one_device(fs_devices, device, flags, holder)) |
| continue; |
| |
| if (!latest_dev || |
| device->generation > latest_dev->generation) |
| latest_dev = device; |
| } |
| if (fs_devices->open_devices == 0) { |
| ret = -EINVAL; |
| goto out; |
| } |
| fs_devices->opened = 1; |
| fs_devices->latest_bdev = latest_dev->bdev; |
| fs_devices->total_rw_bytes = 0; |
| out: |
| return ret; |
| } |
| |
| static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct btrfs_device *dev1, *dev2; |
| |
| dev1 = list_entry(a, struct btrfs_device, dev_list); |
| dev2 = list_entry(b, struct btrfs_device, dev_list); |
| |
| if (dev1->devid < dev2->devid) |
| return -1; |
| else if (dev1->devid > dev2->devid) |
| return 1; |
| return 0; |
| } |
| |
| int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, |
| fmode_t flags, void *holder) |
| { |
| int ret; |
| |
| lockdep_assert_held(&uuid_mutex); |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| if (fs_devices->opened) { |
| fs_devices->opened++; |
| ret = 0; |
| } else { |
| list_sort(NULL, &fs_devices->devices, devid_cmp); |
| ret = open_fs_devices(fs_devices, flags, holder); |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| return ret; |
| } |
| |
| static void btrfs_release_disk_super(struct page *page) |
| { |
| kunmap(page); |
| put_page(page); |
| } |
| |
| static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, |
| struct page **page, |
| struct btrfs_super_block **disk_super) |
| { |
| void *p; |
| pgoff_t index; |
| |
| /* make sure our super fits in the device */ |
| if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) |
| return 1; |
| |
| /* make sure our super fits in the page */ |
| if (sizeof(**disk_super) > PAGE_SIZE) |
| return 1; |
| |
| /* make sure our super doesn't straddle pages on disk */ |
| index = bytenr >> PAGE_SHIFT; |
| if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) |
| return 1; |
| |
| /* pull in the page with our super */ |
| *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, |
| index, GFP_KERNEL); |
| |
| if (IS_ERR_OR_NULL(*page)) |
| return 1; |
| |
| p = kmap(*page); |
| |
| /* align our pointer to the offset of the super block */ |
| *disk_super = p + (bytenr & ~PAGE_MASK); |
| |
| if (btrfs_super_bytenr(*disk_super) != bytenr || |
| btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { |
| btrfs_release_disk_super(*page); |
| return 1; |
| } |
| |
| if ((*disk_super)->label[0] && |
| (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) |
| (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; |
| |
| return 0; |
| } |
| |
| /* |
| * Look for a btrfs signature on a device. This may be called out of the mount path |
| * and we are not allowed to call set_blocksize during the scan. The superblock |
| * is read via pagecache |
| */ |
| struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, |
| void *holder) |
| { |
| struct btrfs_super_block *disk_super; |
| bool new_device_added = false; |
| struct btrfs_device *device = NULL; |
| struct block_device *bdev; |
| struct page *page; |
| u64 bytenr; |
| |
| lockdep_assert_held(&uuid_mutex); |
| |
| /* |
| * we would like to check all the supers, but that would make |
| * a btrfs mount succeed after a mkfs from a different FS. |
| * So, we need to add a special mount option to scan for |
| * later supers, using BTRFS_SUPER_MIRROR_MAX instead |
| */ |
| bytenr = btrfs_sb_offset(0); |
| flags |= FMODE_EXCL; |
| |
| bdev = blkdev_get_by_path(path, flags, holder); |
| if (IS_ERR(bdev)) |
| return ERR_CAST(bdev); |
| |
| if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { |
| device = ERR_PTR(-EINVAL); |
| goto error_bdev_put; |
| } |
| |
| device = device_list_add(path, disk_super, &new_device_added); |
| if (!IS_ERR(device)) { |
| if (new_device_added) |
| btrfs_free_stale_devices(path, device); |
| } |
| |
| btrfs_release_disk_super(page); |
| |
| error_bdev_put: |
| blkdev_put(bdev, flags); |
| |
| return device; |
| } |
| |
| static int contains_pending_extent(struct btrfs_transaction *transaction, |
| struct btrfs_device *device, |
| u64 *start, u64 len) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct extent_map *em; |
| struct list_head *search_list = &fs_info->pinned_chunks; |
| int ret = 0; |
| u64 physical_start = *start; |
| |
| if (transaction) |
| search_list = &transaction->pending_chunks; |
| again: |
| list_for_each_entry(em, search_list, list) { |
| struct map_lookup *map; |
| int i; |
| |
| map = em->map_lookup; |
| for (i = 0; i < map->num_stripes; i++) { |
| u64 end; |
| |
| if (map->stripes[i].dev != device) |
| continue; |
| if (map->stripes[i].physical >= physical_start + len || |
| map->stripes[i].physical + em->orig_block_len <= |
| physical_start) |
| continue; |
| /* |
| * Make sure that while processing the pinned list we do |
| * not override our *start with a lower value, because |
| * we can have pinned chunks that fall within this |
| * device hole and that have lower physical addresses |
| * than the pending chunks we processed before. If we |
| * do not take this special care we can end up getting |
| * 2 pending chunks that start at the same physical |
| * device offsets because the end offset of a pinned |
| * chunk can be equal to the start offset of some |
| * pending chunk. |
| */ |
| end = map->stripes[i].physical + em->orig_block_len; |
| if (end > *start) { |
| *start = end; |
| ret = 1; |
| } |
| } |
| } |
| if (search_list != &fs_info->pinned_chunks) { |
| search_list = &fs_info->pinned_chunks; |
| goto again; |
| } |
| |
| return ret; |
| } |
| |
| |
| /* |
| * find_free_dev_extent_start - find free space in the specified device |
| * @device: the device which we search the free space in |
| * @num_bytes: the size of the free space that we need |
| * @search_start: the position from which to begin the search |
| * @start: store the start of the free space. |
| * @len: the size of the free space. that we find, or the size |
| * of the max free space if we don't find suitable free space |
| * |
| * this uses a pretty simple search, the expectation is that it is |
| * called very infrequently and that a given device has a small number |
| * of extents |
| * |
| * @start is used to store the start of the free space if we find. But if we |
| * don't find suitable free space, it will be used to store the start position |
| * of the max free space. |
| * |
| * @len is used to store the size of the free space that we find. |
| * But if we don't find suitable free space, it is used to store the size of |
| * the max free space. |
| */ |
| int find_free_dev_extent_start(struct btrfs_transaction *transaction, |
| struct btrfs_device *device, u64 num_bytes, |
| u64 search_start, u64 *start, u64 *len) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| struct btrfs_key key; |
| struct btrfs_dev_extent *dev_extent; |
| struct btrfs_path *path; |
| u64 hole_size; |
| u64 max_hole_start; |
| u64 max_hole_size; |
| u64 extent_end; |
| u64 search_end = device->total_bytes; |
| int ret; |
| int slot; |
| struct extent_buffer *l; |
| |
| /* |
| * We don't want to overwrite the superblock on the drive nor any area |
| * used by the boot loader (grub for example), so we make sure to start |
| * at an offset of at least 1MB. |
| */ |
| search_start = max_t(u64, search_start, SZ_1M); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| max_hole_start = search_start; |
| max_hole_size = 0; |
| |
| again: |
| if (search_start >= search_end || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| ret = -ENOSPC; |
| goto out; |
| } |
| |
| path->reada = READA_FORWARD; |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| |
| key.objectid = device->devid; |
| key.offset = search_start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = btrfs_previous_item(root, path, key.objectid, key.type); |
| if (ret < 0) |
| goto out; |
| } |
| |
| while (1) { |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(l)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| |
| break; |
| } |
| btrfs_item_key_to_cpu(l, &key, slot); |
| |
| if (key.objectid < device->devid) |
| goto next; |
| |
| if (key.objectid > device->devid) |
| break; |
| |
| if (key.type != BTRFS_DEV_EXTENT_KEY) |
| goto next; |
| |
| if (key.offset > search_start) { |
| hole_size = key.offset - search_start; |
| |
| /* |
| * Have to check before we set max_hole_start, otherwise |
| * we could end up sending back this offset anyway. |
| */ |
| if (contains_pending_extent(transaction, device, |
| &search_start, |
| hole_size)) { |
| if (key.offset >= search_start) { |
| hole_size = key.offset - search_start; |
| } else { |
| WARN_ON_ONCE(1); |
| hole_size = 0; |
| } |
| } |
| |
| if (hole_size > max_hole_size) { |
| max_hole_start = search_start; |
| max_hole_size = hole_size; |
| } |
| |
| /* |
| * If this free space is greater than which we need, |
| * it must be the max free space that we have found |
| * until now, so max_hole_start must point to the start |
| * of this free space and the length of this free space |
| * is stored in max_hole_size. Thus, we return |
| * max_hole_start and max_hole_size and go back to the |
| * caller. |
| */ |
| if (hole_size >= num_bytes) { |
| ret = 0; |
| goto out; |
| } |
| } |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| extent_end = key.offset + btrfs_dev_extent_length(l, |
| dev_extent); |
| if (extent_end > search_start) |
| search_start = extent_end; |
| next: |
| path->slots[0]++; |
| cond_resched(); |
| } |
| |
| /* |
| * At this point, search_start should be the end of |
| * allocated dev extents, and when shrinking the device, |
| * search_end may be smaller than search_start. |
| */ |
| if (search_end > search_start) { |
| hole_size = search_end - search_start; |
| |
| if (contains_pending_extent(transaction, device, &search_start, |
| hole_size)) { |
| btrfs_release_path(path); |
| goto again; |
| } |
| |
| if (hole_size > max_hole_size) { |
| max_hole_start = search_start; |
| max_hole_size = hole_size; |
| } |
| } |
| |
| /* See above. */ |
| if (max_hole_size < num_bytes) |
| ret = -ENOSPC; |
| else |
| ret = 0; |
| |
| out: |
| btrfs_free_path(path); |
| *start = max_hole_start; |
| if (len) |
| *len = max_hole_size; |
| return ret; |
| } |
| |
| int find_free_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, u64 num_bytes, |
| u64 *start, u64 *len) |
| { |
| /* FIXME use last free of some kind */ |
| return find_free_dev_extent_start(trans->transaction, device, |
| num_bytes, 0, start, len); |
| } |
| |
| static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, |
| u64 start, u64 *dev_extent_len) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf = NULL; |
| struct btrfs_dev_extent *extent = NULL; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = device->devid; |
| key.offset = start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| again: |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) { |
| ret = btrfs_previous_item(root, path, key.objectid, |
| BTRFS_DEV_EXTENT_KEY); |
| if (ret) |
| goto out; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| BUG_ON(found_key.offset > start || found_key.offset + |
| btrfs_dev_extent_length(leaf, extent) < start); |
| key = found_key; |
| btrfs_release_path(path); |
| goto again; |
| } else if (ret == 0) { |
| leaf = path->nodes[0]; |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| } else { |
| btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); |
| goto out; |
| } |
| |
| *dev_extent_len = btrfs_dev_extent_length(leaf, extent); |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret) { |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to remove dev extent item"); |
| } else { |
| set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); |
| } |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, |
| u64 chunk_offset, u64 start, u64 num_bytes) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| struct btrfs_dev_extent *extent; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); |
| WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = device->devid; |
| key.offset = start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| sizeof(*extent)); |
| if (ret) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| btrfs_set_dev_extent_chunk_tree(leaf, extent, |
| BTRFS_CHUNK_TREE_OBJECTID); |
| btrfs_set_dev_extent_chunk_objectid(leaf, extent, |
| BTRFS_FIRST_CHUNK_TREE_OBJECTID); |
| btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); |
| |
| btrfs_set_dev_extent_length(leaf, extent, num_bytes); |
| btrfs_mark_buffer_dirty(leaf); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static u64 find_next_chunk(struct btrfs_fs_info *fs_info) |
| { |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| struct rb_node *n; |
| u64 ret = 0; |
| |
| em_tree = &fs_info->mapping_tree.map_tree; |
| read_lock(&em_tree->lock); |
| n = rb_last(&em_tree->map); |
| if (n) { |
| em = rb_entry(n, struct extent_map, rb_node); |
| ret = em->start + em->len; |
| } |
| read_unlock(&em_tree->lock); |
| |
| return ret; |
| } |
| |
| static noinline int find_next_devid(struct btrfs_fs_info *fs_info, |
| u64 *devid_ret) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_path *path; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| |
| BUG_ON(ret == 0); /* Corruption */ |
| |
| ret = btrfs_previous_item(fs_info->chunk_root, path, |
| BTRFS_DEV_ITEMS_OBJECTID, |
| BTRFS_DEV_ITEM_KEY); |
| if (ret) { |
| *devid_ret = 1; |
| } else { |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| *devid_ret = found_key.offset + 1; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * the device information is stored in the chunk root |
| * the btrfs_device struct should be fully filled in |
| */ |
| static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_dev_item *dev_item; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| unsigned long ptr; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, |
| &key, sizeof(*dev_item)); |
| if (ret) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); |
| |
| btrfs_set_device_id(leaf, dev_item, device->devid); |
| btrfs_set_device_generation(leaf, dev_item, 0); |
| btrfs_set_device_type(leaf, dev_item, device->type); |
| btrfs_set_device_io_align(leaf, dev_item, device->io_align); |
| btrfs_set_device_io_width(leaf, dev_item, device->io_width); |
| btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); |
| btrfs_set_device_total_bytes(leaf, dev_item, |
| btrfs_device_get_disk_total_bytes(device)); |
| btrfs_set_device_bytes_used(leaf, dev_item, |
| btrfs_device_get_bytes_used(device)); |
| btrfs_set_device_group(leaf, dev_item, 0); |
| btrfs_set_device_seek_speed(leaf, dev_item, 0); |
| btrfs_set_device_bandwidth(leaf, dev_item, 0); |
| btrfs_set_device_start_offset(leaf, dev_item, 0); |
| |
| ptr = btrfs_device_uuid(dev_item); |
| write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
| ptr = btrfs_device_fsid(dev_item); |
| write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Function to update ctime/mtime for a given device path. |
| * Mainly used for ctime/mtime based probe like libblkid. |
| */ |
| static void update_dev_time(const char *path_name) |
| { |
| struct file *filp; |
| |
| filp = filp_open(path_name, O_RDWR, 0); |
| if (IS_ERR(filp)) |
| return; |
| file_update_time(filp); |
| filp_close(filp, NULL); |
| } |
| |
| static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info, |
| struct btrfs_device *device) |
| { |
| struct btrfs_root *root = fs_info->chunk_root; |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_trans_handle *trans; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| if (!ret) |
| ret = btrfs_commit_transaction(trans); |
| return ret; |
| } |
| |
| /* |
| * Verify that @num_devices satisfies the RAID profile constraints in the whole |
| * filesystem. It's up to the caller to adjust that number regarding eg. device |
| * replace. |
| */ |
| static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, |
| u64 num_devices) |
| { |
| u64 all_avail; |
| unsigned seq; |
| int i; |
| |
| do { |
| seq = read_seqbegin(&fs_info->profiles_lock); |
| |
| all_avail = fs_info->avail_data_alloc_bits | |
| fs_info->avail_system_alloc_bits | |
| fs_info->avail_metadata_alloc_bits; |
| } while (read_seqretry(&fs_info->profiles_lock, seq)); |
| |
| for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { |
| if (!(all_avail & btrfs_raid_array[i].bg_flag)) |
| continue; |
| |
| if (num_devices < btrfs_raid_array[i].devs_min) { |
| int ret = btrfs_raid_array[i].mindev_error; |
| |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct btrfs_device * btrfs_find_next_active_device( |
| struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) |
| { |
| struct btrfs_device *next_device; |
| |
| list_for_each_entry(next_device, &fs_devs->devices, dev_list) { |
| if (next_device != device && |
| !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) |
| && next_device->bdev) |
| return next_device; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Helper function to check if the given device is part of s_bdev / latest_bdev |
| * and replace it with the provided or the next active device, in the context |
| * where this function called, there should be always be another device (or |
| * this_dev) which is active. |
| */ |
| void btrfs_assign_next_active_device(struct btrfs_device *device, |
| struct btrfs_device *this_dev) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_device *next_device; |
| |
| if (this_dev) |
| next_device = this_dev; |
| else |
| next_device = btrfs_find_next_active_device(fs_info->fs_devices, |
| device); |
| ASSERT(next_device); |
| |
| if (fs_info->sb->s_bdev && |
| (fs_info->sb->s_bdev == device->bdev)) |
| fs_info->sb->s_bdev = next_device->bdev; |
| |
| if (fs_info->fs_devices->latest_bdev == device->bdev) |
| fs_info->fs_devices->latest_bdev = next_device->bdev; |
| } |
| |
| int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, |
| u64 devid) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *cur_devices; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| u64 num_devices; |
| int ret = 0; |
| |
| mutex_lock(&uuid_mutex); |
| |
| num_devices = fs_devices->num_devices; |
| btrfs_dev_replace_read_lock(&fs_info->dev_replace); |
| if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { |
| WARN_ON(num_devices < 1); |
| num_devices--; |
| } |
| btrfs_dev_replace_read_unlock(&fs_info->dev_replace); |
| |
| ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_find_device_by_devspec(fs_info, devid, device_path, |
| &device); |
| if (ret) |
| goto out; |
| |
| if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| ret = BTRFS_ERROR_DEV_TGT_REPLACE; |
| goto out; |
| } |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| fs_info->fs_devices->rw_devices == 1) { |
| ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; |
| goto out; |
| } |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| mutex_lock(&fs_info->chunk_mutex); |
| list_del_init(&device->dev_alloc_list); |
| device->fs_devices->rw_devices--; |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| |
| mutex_unlock(&uuid_mutex); |
| ret = btrfs_shrink_device(device, 0); |
| mutex_lock(&uuid_mutex); |
| if (ret) |
| goto error_undo; |
| |
| /* |
| * TODO: the superblock still includes this device in its num_devices |
| * counter although write_all_supers() is not locked out. This |
| * could give a filesystem state which requires a degraded mount. |
| */ |
| ret = btrfs_rm_dev_item(fs_info, device); |
| if (ret) |
| goto error_undo; |
| |
| clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| btrfs_scrub_cancel_dev(fs_info, device); |
| |
| /* |
| * the device list mutex makes sure that we don't change |
| * the device list while someone else is writing out all |
| * the device supers. Whoever is writing all supers, should |
| * lock the device list mutex before getting the number of |
| * devices in the super block (super_copy). Conversely, |
| * whoever updates the number of devices in the super block |
| * (super_copy) should hold the device list mutex. |
| */ |
| |
| /* |
| * In normal cases the cur_devices == fs_devices. But in case |
| * of deleting a seed device, the cur_devices should point to |
| * its own fs_devices listed under the fs_devices->seed. |
| */ |
| cur_devices = device->fs_devices; |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_del_rcu(&device->dev_list); |
| |
| cur_devices->num_devices--; |
| cur_devices->total_devices--; |
| /* Update total_devices of the parent fs_devices if it's seed */ |
| if (cur_devices != fs_devices) |
| fs_devices->total_devices--; |
| |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) |
| cur_devices->missing_devices--; |
| |
| btrfs_assign_next_active_device(device, NULL); |
| |
| if (device->bdev) { |
| cur_devices->open_devices--; |
| /* remove sysfs entry */ |
| btrfs_sysfs_rm_device_link(fs_devices, device); |
| } |
| |
| num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; |
| btrfs_set_super_num_devices(fs_info->super_copy, num_devices); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| /* |
| * at this point, the device is zero sized and detached from |
| * the devices list. All that's left is to zero out the old |
| * supers and free the device. |
| */ |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| btrfs_scratch_superblocks(device->bdev, device->name->str); |
| |
| btrfs_close_bdev(device); |
| call_rcu(&device->rcu, free_device_rcu); |
| |
| if (cur_devices->open_devices == 0) { |
| while (fs_devices) { |
| if (fs_devices->seed == cur_devices) { |
| fs_devices->seed = cur_devices->seed; |
| break; |
| } |
| fs_devices = fs_devices->seed; |
| } |
| cur_devices->seed = NULL; |
| close_fs_devices(cur_devices); |
| free_fs_devices(cur_devices); |
| } |
| |
| out: |
| mutex_unlock(&uuid_mutex); |
| return ret; |
| |
| error_undo: |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| mutex_lock(&fs_info->chunk_mutex); |
| list_add(&device->dev_alloc_list, |
| &fs_devices->alloc_list); |
| device->fs_devices->rw_devices++; |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| goto out; |
| } |
| |
| void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); |
| |
| /* |
| * in case of fs with no seed, srcdev->fs_devices will point |
| * to fs_devices of fs_info. However when the dev being replaced is |
| * a seed dev it will point to the seed's local fs_devices. In short |
| * srcdev will have its correct fs_devices in both the cases. |
| */ |
| fs_devices = srcdev->fs_devices; |
| |
| list_del_rcu(&srcdev->dev_list); |
| list_del(&srcdev->dev_alloc_list); |
| fs_devices->num_devices--; |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) |
| fs_devices->missing_devices--; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) |
| fs_devices->rw_devices--; |
| |
| if (srcdev->bdev) |
| fs_devices->open_devices--; |
| } |
| |
| void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, |
| struct btrfs_device *srcdev) |
| { |
| struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { |
| /* zero out the old super if it is writable */ |
| btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); |
| } |
| |
| btrfs_close_bdev(srcdev); |
| call_rcu(&srcdev->rcu, free_device_rcu); |
| |
| /* if this is no devs we rather delete the fs_devices */ |
| if (!fs_devices->num_devices) { |
| struct btrfs_fs_devices *tmp_fs_devices; |
| |
| /* |
| * On a mounted FS, num_devices can't be zero unless it's a |
| * seed. In case of a seed device being replaced, the replace |
| * target added to the sprout FS, so there will be no more |
| * device left under the seed FS. |
| */ |
| ASSERT(fs_devices->seeding); |
| |
| tmp_fs_devices = fs_info->fs_devices; |
| while (tmp_fs_devices) { |
| if (tmp_fs_devices->seed == fs_devices) { |
| tmp_fs_devices->seed = fs_devices->seed; |
| break; |
| } |
| tmp_fs_devices = tmp_fs_devices->seed; |
| } |
| fs_devices->seed = NULL; |
| close_fs_devices(fs_devices); |
| free_fs_devices(fs_devices); |
| } |
| } |
| |
| void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) |
| { |
| struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; |
| |
| WARN_ON(!tgtdev); |
| mutex_lock(&fs_devices->device_list_mutex); |
| |
| btrfs_sysfs_rm_device_link(fs_devices, tgtdev); |
| |
| if (tgtdev->bdev) |
| fs_devices->open_devices--; |
| |
| fs_devices->num_devices--; |
| |
| btrfs_assign_next_active_device(tgtdev, NULL); |
| |
| list_del_rcu(&tgtdev->dev_list); |
| |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| /* |
| * The update_dev_time() with in btrfs_scratch_superblocks() |
| * may lead to a call to btrfs_show_devname() which will try |
| * to hold device_list_mutex. And here this device |
| * is already out of device list, so we don't have to hold |
| * the device_list_mutex lock. |
| */ |
| btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); |
| |
| btrfs_close_bdev(tgtdev); |
| call_rcu(&tgtdev->rcu, free_device_rcu); |
| } |
| |
| static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info, |
| const char *device_path, |
| struct btrfs_device **device) |
| { |
| int ret = 0; |
| struct btrfs_super_block *disk_super; |
| u64 devid; |
| u8 *dev_uuid; |
| struct block_device *bdev; |
| struct buffer_head *bh; |
| |
| *device = NULL; |
| ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, |
| fs_info->bdev_holder, 0, &bdev, &bh); |
| if (ret) |
| return ret; |
| disk_super = (struct btrfs_super_block *)bh->b_data; |
| devid = btrfs_stack_device_id(&disk_super->dev_item); |
| dev_uuid = disk_super->dev_item.uuid; |
| *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid); |
| brelse(bh); |
| if (!*device) |
| ret = -ENOENT; |
| blkdev_put(bdev, FMODE_READ); |
| return ret; |
| } |
| |
| int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, |
| const char *device_path, |
| struct btrfs_device **device) |
| { |
| *device = NULL; |
| if (strcmp(device_path, "missing") == 0) { |
| struct list_head *devices; |
| struct btrfs_device *tmp; |
| |
| devices = &fs_info->fs_devices->devices; |
| list_for_each_entry(tmp, devices, dev_list) { |
| if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, |
| &tmp->dev_state) && !tmp->bdev) { |
| *device = tmp; |
| break; |
| } |
| } |
| |
| if (!*device) |
| return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; |
| |
| return 0; |
| } else { |
| return btrfs_find_device_by_path(fs_info, device_path, device); |
| } |
| } |
| |
| /* |
| * Lookup a device given by device id, or the path if the id is 0. |
| */ |
| int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, |
| const char *devpath, |
| struct btrfs_device **device) |
| { |
| int ret; |
| |
| if (devid) { |
| ret = 0; |
| *device = btrfs_find_device(fs_info, devid, NULL, NULL); |
| if (!*device) |
| ret = -ENOENT; |
| } else { |
| if (!devpath || !devpath[0]) |
| return -EINVAL; |
| |
| ret = btrfs_find_device_missing_or_by_path(fs_info, devpath, |
| device); |
| } |
| return ret; |
| } |
| |
| /* |
| * does all the dirty work required for changing file system's UUID. |
| */ |
| static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_fs_devices *old_devices; |
| struct btrfs_fs_devices *seed_devices; |
| struct btrfs_super_block *disk_super = fs_info->super_copy; |
| struct btrfs_device *device; |
| u64 super_flags; |
| |
| lockdep_assert_held(&uuid_mutex); |
| if (!fs_devices->seeding) |
| return -EINVAL; |
| |
| seed_devices = alloc_fs_devices(NULL); |
| if (IS_ERR(seed_devices)) |
| return PTR_ERR(seed_devices); |
| |
| old_devices = clone_fs_devices(fs_devices); |
| if (IS_ERR(old_devices)) { |
| kfree(seed_devices); |
| return PTR_ERR(old_devices); |
| } |
| |
| list_add(&old_devices->fs_list, &fs_uuids); |
| |
| memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); |
| seed_devices->opened = 1; |
| INIT_LIST_HEAD(&seed_devices->devices); |
| INIT_LIST_HEAD(&seed_devices->alloc_list); |
| mutex_init(&seed_devices->device_list_mutex); |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, |
| synchronize_rcu); |
| list_for_each_entry(device, &seed_devices->devices, dev_list) |
| device->fs_devices = seed_devices; |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| fs_devices->seeding = 0; |
| fs_devices->num_devices = 0; |
| fs_devices->open_devices = 0; |
| fs_devices->missing_devices = 0; |
| fs_devices->rotating = 0; |
| fs_devices->seed = seed_devices; |
| |
| generate_random_uuid(fs_devices->fsid); |
| memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| super_flags = btrfs_super_flags(disk_super) & |
| ~BTRFS_SUPER_FLAG_SEEDING; |
| btrfs_set_super_flags(disk_super, super_flags); |
| |
| return 0; |
| } |
| |
| /* |
| * Store the expected generation for seed devices in device items. |
| */ |
| static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root = fs_info->chunk_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_dev_item *dev_item; |
| struct btrfs_device *device; |
| struct btrfs_key key; |
| u8 fs_uuid[BTRFS_FSID_SIZE]; |
| u8 dev_uuid[BTRFS_UUID_SIZE]; |
| u64 devid; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.offset = 0; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| |
| while (1) { |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) |
| goto error; |
| |
| leaf = path->nodes[0]; |
| next_slot: |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret > 0) |
| break; |
| if (ret < 0) |
| goto error; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| btrfs_release_path(path); |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || |
| key.type != BTRFS_DEV_ITEM_KEY) |
| break; |
| |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_item); |
| devid = btrfs_device_id(leaf, dev_item); |
| read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), |
| BTRFS_UUID_SIZE); |
| read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), |
| BTRFS_FSID_SIZE); |
| device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); |
| BUG_ON(!device); /* Logic error */ |
| |
| if (device->fs_devices->seeding) { |
| btrfs_set_device_generation(leaf, dev_item, |
| device->generation); |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| |
| path->slots[0]++; |
| goto next_slot; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) |
| { |
| struct btrfs_root *root = fs_info->dev_root; |
| struct request_queue *q; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_device *device; |
| struct block_device *bdev; |
| struct super_block *sb = fs_info->sb; |
| struct rcu_string *name; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| u64 orig_super_total_bytes; |
| u64 orig_super_num_devices; |
| int seeding_dev = 0; |
| int ret = 0; |
| bool unlocked = false; |
| |
| if (sb_rdonly(sb) && !fs_devices->seeding) |
| return -EROFS; |
| |
| bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, |
| fs_info->bdev_holder); |
| if (IS_ERR(bdev)) |
| return PTR_ERR(bdev); |
| |
| if (fs_devices->seeding) { |
| seeding_dev = 1; |
| down_write(&sb->s_umount); |
| mutex_lock(&uuid_mutex); |
| } |
| |
| filemap_write_and_wait(bdev->bd_inode->i_mapping); |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| if (device->bdev == bdev) { |
| ret = -EEXIST; |
| mutex_unlock( |
| &fs_devices->device_list_mutex); |
| goto error; |
| } |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| device = btrfs_alloc_device(fs_info, NULL, NULL); |
| if (IS_ERR(device)) { |
| /* we can safely leave the fs_devices entry around */ |
| ret = PTR_ERR(device); |
| goto error; |
| } |
| |
| name = rcu_string_strdup(device_path, GFP_KERNEL); |
| if (!name) { |
| ret = -ENOMEM; |
| goto error_free_device; |
| } |
| rcu_assign_pointer(device->name, name); |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto error_free_device; |
| } |
| |
| q = bdev_get_queue(bdev); |
| set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| device->generation = trans->transid; |
| device->io_width = fs_info->sectorsize; |
| device->io_align = fs_info->sectorsize; |
| device->sector_size = fs_info->sectorsize; |
| device->total_bytes = round_down(i_size_read(bdev->bd_inode), |
| fs_info->sectorsize); |
| device->disk_total_bytes = device->total_bytes; |
| device->commit_total_bytes = device->total_bytes; |
| device->fs_info = fs_info; |
| device->bdev = bdev; |
| set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); |
| device->mode = FMODE_EXCL; |
| device->dev_stats_valid = 1; |
| set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); |
| |
| if (seeding_dev) { |
| sb->s_flags &= ~SB_RDONLY; |
| ret = btrfs_prepare_sprout(fs_info); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_trans; |
| } |
| } |
| |
| device->fs_devices = fs_devices; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| mutex_lock(&fs_info->chunk_mutex); |
| list_add_rcu(&device->dev_list, &fs_devices->devices); |
| list_add(&device->dev_alloc_list, &fs_devices->alloc_list); |
| fs_devices->num_devices++; |
| fs_devices->open_devices++; |
| fs_devices->rw_devices++; |
| fs_devices->total_devices++; |
| fs_devices->total_rw_bytes += device->total_bytes; |
| |
| atomic64_add(device->total_bytes, &fs_info->free_chunk_space); |
| |
| if (!blk_queue_nonrot(q)) |
| fs_devices->rotating = 1; |
| |
| orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); |
| btrfs_set_super_total_bytes(fs_info->super_copy, |
| round_down(orig_super_total_bytes + device->total_bytes, |
| fs_info->sectorsize)); |
| |
| orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); |
| btrfs_set_super_num_devices(fs_info->super_copy, |
| orig_super_num_devices + 1); |
| |
| /* add sysfs device entry */ |
| btrfs_sysfs_add_device_link(fs_devices, device); |
| |
| /* |
| * we've got more storage, clear any full flags on the space |
| * infos |
| */ |
| btrfs_clear_space_info_full(fs_info); |
| |
| mutex_unlock(&fs_info->chunk_mutex); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| if (seeding_dev) { |
| mutex_lock(&fs_info->chunk_mutex); |
| ret = init_first_rw_device(trans, fs_info); |
| mutex_unlock(&fs_info->chunk_mutex); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_sysfs; |
| } |
| } |
| |
| ret = btrfs_add_dev_item(trans, device); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_sysfs; |
| } |
| |
| if (seeding_dev) { |
| char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; |
| |
| ret = btrfs_finish_sprout(trans, fs_info); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_sysfs; |
| } |
| |
| /* Sprouting would change fsid of the mounted root, |
| * so rename the fsid on the sysfs |
| */ |
| snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", |
| fs_info->fsid); |
| if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf)) |
| btrfs_warn(fs_info, |
| "sysfs: failed to create fsid for sprout"); |
| } |
| |
| ret = btrfs_commit_transaction(trans); |
| |
| if (seeding_dev) { |
| mutex_unlock(&uuid_mutex); |
| up_write(&sb->s_umount); |
| unlocked = true; |
| |
| if (ret) /* transaction commit */ |
| return ret; |
| |
| ret = btrfs_relocate_sys_chunks(fs_info); |
| if (ret < 0) |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); |
| trans = btrfs_attach_transaction(root); |
| if (IS_ERR(trans)) { |
| if (PTR_ERR(trans) == -ENOENT) |
| return 0; |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto error_sysfs; |
| } |
| ret = btrfs_commit_transaction(trans); |
| } |
| |
| /* Update ctime/mtime for libblkid */ |
| update_dev_time(device_path); |
| return ret; |
| |
| error_sysfs: |
| btrfs_sysfs_rm_device_link(fs_devices, device); |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| mutex_lock(&fs_info->chunk_mutex); |
| list_del_rcu(&device->dev_list); |
| list_del(&device->dev_alloc_list); |
| fs_info->fs_devices->num_devices--; |
| fs_info->fs_devices->open_devices--; |
| fs_info->fs_devices->rw_devices--; |
| fs_info->fs_devices->total_devices--; |
| fs_info->fs_devices->total_rw_bytes -= device->total_bytes; |
| atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); |
| btrfs_set_super_total_bytes(fs_info->super_copy, |
| orig_super_total_bytes); |
| btrfs_set_super_num_devices(fs_info->super_copy, |
| orig_super_num_devices); |
| mutex_unlock(&fs_info->chunk_mutex); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| error_trans: |
| if (seeding_dev) |
| sb->s_flags |= SB_RDONLY; |
| if (trans) |
| btrfs_end_transaction(trans); |
| error_free_device: |
| btrfs_free_device(device); |
| error: |
| blkdev_put(bdev, FMODE_EXCL); |
| if (seeding_dev && !unlocked) { |
| mutex_unlock(&uuid_mutex); |
| up_write(&sb->s_umount); |
| } |
| return ret; |
| } |
| |
| static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_root *root = device->fs_info->chunk_root; |
| struct btrfs_dev_item *dev_item; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) |
| goto out; |
| |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); |
| |
| btrfs_set_device_id(leaf, dev_item, device->devid); |
| btrfs_set_device_type(leaf, dev_item, device->type); |
| btrfs_set_device_io_align(leaf, dev_item, device->io_align); |
| btrfs_set_device_io_width(leaf, dev_item, device->io_width); |
| btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); |
| btrfs_set_device_total_bytes(leaf, dev_item, |
| btrfs_device_get_disk_total_bytes(device)); |
| btrfs_set_device_bytes_used(leaf, dev_item, |
| btrfs_device_get_bytes_used(device)); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_grow_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, u64 new_size) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| struct btrfs_fs_devices *fs_devices; |
| u64 old_total; |
| u64 diff; |
| |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| return -EACCES; |
| |
| new_size = round_down(new_size, fs_info->sectorsize); |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| old_total = btrfs_super_total_bytes(super_copy); |
| diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); |
| |
| if (new_size <= device->total_bytes || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| return -EINVAL; |
| } |
| |
| fs_devices = fs_info->fs_devices; |
| |
| btrfs_set_super_total_bytes(super_copy, |
| round_down(old_total + diff, fs_info->sectorsize)); |
| device->fs_devices->total_rw_bytes += diff; |
| |
| btrfs_device_set_total_bytes(device, new_size); |
| btrfs_device_set_disk_total_bytes(device, new_size); |
| btrfs_clear_space_info_full(device->fs_info); |
| if (list_empty(&device->resized_list)) |
| list_add_tail(&device->resized_list, |
| &fs_devices->resized_devices); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| return btrfs_update_device(trans, device); |
| } |
| |
| static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *root = fs_info->chunk_root; |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.offset = chunk_offset; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) { /* Logic error or corruption */ |
| btrfs_handle_fs_error(fs_info, -ENOENT, |
| "Failed lookup while freeing chunk."); |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret < 0) |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to delete chunk item."); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) |
| { |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| struct btrfs_disk_key *disk_key; |
| struct btrfs_chunk *chunk; |
| u8 *ptr; |
| int ret = 0; |
| u32 num_stripes; |
| u32 array_size; |
| u32 len = 0; |
| u32 cur; |
| struct btrfs_key key; |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| array_size = btrfs_super_sys_array_size(super_copy); |
| |
| ptr = super_copy->sys_chunk_array; |
| cur = 0; |
| |
| while (cur < array_size) { |
| disk_key = (struct btrfs_disk_key *)ptr; |
| btrfs_disk_key_to_cpu(&key, disk_key); |
| |
| len = sizeof(*disk_key); |
| |
| if (key.type == BTRFS_CHUNK_ITEM_KEY) { |
| chunk = (struct btrfs_chunk *)(ptr + len); |
| num_stripes = btrfs_stack_chunk_num_stripes(chunk); |
| len += btrfs_chunk_item_size(num_stripes); |
| } else { |
| ret = -EIO; |
| break; |
| } |
| if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && |
| key.offset == chunk_offset) { |
| memmove(ptr, ptr + len, array_size - (cur + len)); |
| array_size -= len; |
| btrfs_set_super_sys_array_size(super_copy, array_size); |
| } else { |
| ptr += len; |
| cur += len; |
| } |
| } |
| mutex_unlock(&fs_info->chunk_mutex); |
| return ret; |
| } |
| |
| static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 length) |
| { |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| |
| em_tree = &fs_info->mapping_tree.map_tree; |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, logical, length); |
| read_unlock(&em_tree->lock); |
| |
| if (!em) { |
| btrfs_crit(fs_info, "unable to find logical %llu length %llu", |
| logical, length); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (em->start > logical || em->start + em->len < logical) { |
| btrfs_crit(fs_info, |
| "found a bad mapping, wanted %llu-%llu, found %llu-%llu", |
| logical, length, em->start, em->start + em->len); |
| free_extent_map(em); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* callers are responsible for dropping em's ref. */ |
| return em; |
| } |
| |
| int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct extent_map *em; |
| struct map_lookup *map; |
| u64 dev_extent_len = 0; |
| int i, ret = 0; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| |
| em = get_chunk_map(fs_info, chunk_offset, 1); |
| if (IS_ERR(em)) { |
| /* |
| * This is a logic error, but we don't want to just rely on the |
| * user having built with ASSERT enabled, so if ASSERT doesn't |
| * do anything we still error out. |
| */ |
| ASSERT(0); |
| return PTR_ERR(em); |
| } |
| map = em->map_lookup; |
| mutex_lock(&fs_info->chunk_mutex); |
| check_system_chunk(trans, map->type); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| /* |
| * Take the device list mutex to prevent races with the final phase of |
| * a device replace operation that replaces the device object associated |
| * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). |
| */ |
| mutex_lock(&fs_devices->device_list_mutex); |
| for (i = 0; i < map->num_stripes; i++) { |
| struct btrfs_device *device = map->stripes[i].dev; |
| ret = btrfs_free_dev_extent(trans, device, |
| map->stripes[i].physical, |
| &dev_extent_len); |
| if (ret) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| if (device->bytes_used > 0) { |
| mutex_lock(&fs_info->chunk_mutex); |
| btrfs_device_set_bytes_used(device, |
| device->bytes_used - dev_extent_len); |
| atomic64_add(dev_extent_len, &fs_info->free_chunk_space); |
| btrfs_clear_space_info_full(fs_info); |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| |
| if (map->stripes[i].dev) { |
| ret = btrfs_update_device(trans, map->stripes[i].dev); |
| if (ret) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| ret = btrfs_free_chunk(trans, chunk_offset); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ret = btrfs_del_sys_chunk(fs_info, chunk_offset); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| |
| ret = btrfs_remove_block_group(trans, chunk_offset, em); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| out: |
| /* once for us */ |
| free_extent_map(em); |
| return ret; |
| } |
| |
| static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) |
| { |
| struct btrfs_root *root = fs_info->chunk_root; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| /* |
| * Prevent races with automatic removal of unused block groups. |
| * After we relocate and before we remove the chunk with offset |
| * chunk_offset, automatic removal of the block group can kick in, |
| * resulting in a failure when calling btrfs_remove_chunk() below. |
| * |
| * Make sure to acquire this mutex before doing a tree search (dev |
| * or chunk trees) to find chunks. Otherwise the cleaner kthread might |
| * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after |
| * we release the path used to search the chunk/dev tree and before |
| * the current task acquires this mutex and calls us. |
| */ |
| lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); |
| |
| ret = btrfs_can_relocate(fs_info, chunk_offset); |
| if (ret) |
| return -ENOSPC; |
| |
| /* step one, relocate all the extents inside this chunk */ |
| btrfs_scrub_pause(fs_info); |
| ret = btrfs_relocate_block_group(fs_info, chunk_offset); |
| btrfs_scrub_continue(fs_info); |
| if (ret) |
| return ret; |
| |
| /* |
| * We add the kobjects here (and after forcing data chunk creation) |
| * since relocation is the only place we'll create chunks of a new |
| * type at runtime. The only place where we'll remove the last |
| * chunk of a type is the call immediately below this one. Even |
| * so, we're protected against races with the cleaner thread since |
| * we're covered by the delete_unused_bgs_mutex. |
| */ |
| btrfs_add_raid_kobjects(fs_info); |
| |
| trans = btrfs_start_trans_remove_block_group(root->fs_info, |
| chunk_offset); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| btrfs_handle_fs_error(root->fs_info, ret, NULL); |
| return ret; |
| } |
| |
| /* |
| * step two, delete the device extents and the |
| * chunk tree entries |
| */ |
| ret = btrfs_remove_chunk(trans, chunk_offset); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *chunk_root = fs_info->chunk_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_chunk *chunk; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| u64 chunk_type; |
| bool retried = false; |
| int failed = 0; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| again: |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.offset = (u64)-1; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| while (1) { |
| mutex_lock(&fs_info->delete_unused_bgs_mutex); |
| ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| goto error; |
| } |
| BUG_ON(ret == 0); /* Corruption */ |
| |
| ret = btrfs_previous_item(chunk_root, path, key.objectid, |
| key.type); |
| if (ret) |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| if (ret < 0) |
| goto error; |
| if (ret > 0) |
| break; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| chunk = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_chunk); |
| chunk_type = btrfs_chunk_type(leaf, chunk); |
| btrfs_release_path(path); |
| |
| if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ret = btrfs_relocate_chunk(fs_info, found_key.offset); |
| if (ret == -ENOSPC) |
| failed++; |
| else |
| BUG_ON(ret); |
| } |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| |
| if (found_key.offset == 0) |
| break; |
| key.offset = found_key.offset - 1; |
| } |
| ret = 0; |
| if (failed && !retried) { |
| failed = 0; |
| retried = true; |
| goto again; |
| } else if (WARN_ON(failed && retried)) { |
| ret = -ENOSPC; |
| } |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * return 1 : allocate a data chunk successfully, |
| * return <0: errors during allocating a data chunk, |
| * return 0 : no need to allocate a data chunk. |
| */ |
| static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, |
| u64 chunk_offset) |
| { |
| struct btrfs_block_group_cache *cache; |
| u64 bytes_used; |
| u64 chunk_type; |
| |
| cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| ASSERT(cache); |
| chunk_type = cache->flags; |
| btrfs_put_block_group(cache); |
| |
| if (chunk_type & BTRFS_BLOCK_GROUP_DATA) { |
| spin_lock(&fs_info->data_sinfo->lock); |
| bytes_used = fs_info->data_sinfo->bytes_used; |
| spin_unlock(&fs_info->data_sinfo->lock); |
| |
| if (!bytes_used) { |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| trans = btrfs_join_transaction(fs_info->tree_root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_force_chunk_alloc(trans, |
| BTRFS_BLOCK_GROUP_DATA); |
| btrfs_end_transaction(trans); |
| if (ret < 0) |
| return ret; |
| |
| btrfs_add_raid_kobjects(fs_info); |
| |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static int insert_balance_item(struct btrfs_fs_info *fs_info, |
| struct btrfs_balance_control *bctl) |
| { |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_balance_item *item; |
| struct btrfs_disk_balance_args disk_bargs; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| int ret, err; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| |
| key.objectid = BTRFS_BALANCE_OBJECTID; |
| key.type = BTRFS_TEMPORARY_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| sizeof(*item)); |
| if (ret) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); |
| |
| memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); |
| |
| btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); |
| btrfs_set_balance_data(leaf, item, &disk_bargs); |
| btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); |
| btrfs_set_balance_meta(leaf, item, &disk_bargs); |
| btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); |
| btrfs_set_balance_sys(leaf, item, &disk_bargs); |
| |
| btrfs_set_balance_flags(leaf, item, bctl->flags); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| out: |
| btrfs_free_path(path); |
| err = btrfs_commit_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| return ret; |
| } |
| |
| static int del_balance_item(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| int ret, err; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| |
| key.objectid = BTRFS_BALANCE_OBJECTID; |
| key.type = BTRFS_TEMPORARY_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ret = btrfs_del_item(trans, root, path); |
| out: |
| btrfs_free_path(path); |
| err = btrfs_commit_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| return ret; |
| } |
| |
| /* |
| * This is a heuristic used to reduce the number of chunks balanced on |
| * resume after balance was interrupted. |
| */ |
| static void update_balance_args(struct btrfs_balance_control *bctl) |
| { |
| /* |
| * Turn on soft mode for chunk types that were being converted. |
| */ |
| if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) |
| bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; |
| if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) |
| bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; |
| if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) |
| bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; |
| |
| /* |
| * Turn on usage filter if is not already used. The idea is |
| * that chunks that we have already balanced should be |
| * reasonably full. Don't do it for chunks that are being |
| * converted - that will keep us from relocating unconverted |
| * (albeit full) chunks. |
| */ |
| if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && |
| !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && |
| !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { |
| bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; |
| bctl->
|