blob: 5265e0ababd4965c26d2926c9bb39ff733c6d217 [file] [log] [blame]
/*
* Copyright (C) 2015 Freescale Semiconductor, Inc.
* Copyright 2017 NXP
*
* derived from the omap-rpmsg implementation.
*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/rpmsg.h>
#include <linux/slab.h>
#include <linux/virtio.h>
#include <linux/virtio_config.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
#include <linux/imx_rpmsg.h>
#include <linux/mx8_mu.h>
enum imx_rpmsg_variants {
IMX6SX,
IMX7D,
IMX7ULP,
IMX8QXP,
IMX8QM,
};
static enum imx_rpmsg_variants variant;
struct imx_virdev {
struct virtio_device vdev;
unsigned int vring[2];
struct virtqueue *vq[2];
int base_vq_id;
int num_of_vqs;
struct notifier_block nb;
};
struct imx_rpmsg_vproc {
char *rproc_name;
struct mutex lock;
int vdev_nums;
#define MAX_VDEV_NUMS 7
struct imx_virdev ivdev[MAX_VDEV_NUMS];
void __iomem *mu_base;
struct delayed_work rpmsg_work;
struct blocking_notifier_head notifier;
#define MAX_NUM 10 /* enlarge it if overflow happen */
u32 m4_message[MAX_NUM];
u32 in_idx;
u32 out_idx;
u32 core_id;
spinlock_t mu_lock;
};
/*
* For now, allocate 256 buffers of 512 bytes for each side. each buffer
* will then have 16B for the msg header and 496B for the payload.
* This will require a total space of 256KB for the buffers themselves, and
* 3 pages for every vring (the size of the vring depends on the number of
* buffers it supports).
*/
#define RPMSG_NUM_BUFS (512)
#define RPMSG_BUF_SIZE (512)
#define RPMSG_BUFS_SPACE (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE)
/*
* The alignment between the consumer and producer parts of the vring.
* Note: this is part of the "wire" protocol. If you change this, you need
* to update your BIOS image as well
*/
#define RPMSG_VRING_ALIGN (4096)
/* With 256 buffers, our vring will occupy 3 pages */
#define RPMSG_RING_SIZE ((DIV_ROUND_UP(vring_size(RPMSG_NUM_BUFS / 2, \
RPMSG_VRING_ALIGN), PAGE_SIZE)) * PAGE_SIZE)
#define to_imx_virdev(vd) container_of(vd, struct imx_virdev, vdev)
#define to_imx_rpdev(vd, id) container_of(vd, struct imx_rpmsg_vproc, ivdev[id])
struct imx_rpmsg_vq_info {
__u16 num; /* number of entries in the virtio_ring */
__u16 vq_id; /* a globaly unique index of this virtqueue */
void *addr; /* address where we mapped the virtio ring */
struct imx_rpmsg_vproc *rpdev;
};
static u64 imx_rpmsg_get_features(struct virtio_device *vdev)
{
/* VIRTIO_RPMSG_F_NS has been made private */
return 1 << 0;
}
static int imx_rpmsg_finalize_features(struct virtio_device *vdev)
{
/* Give virtio_ring a chance to accept features */
vring_transport_features(vdev);
return 0;
}
/* kick the remote processor, and let it know which virtqueue to poke at */
static bool imx_rpmsg_notify(struct virtqueue *vq)
{
unsigned int mu_rpmsg = 0;
struct imx_rpmsg_vq_info *rpvq = vq->priv;
mu_rpmsg = rpvq->vq_id << 16;
mutex_lock(&rpvq->rpdev->lock);
/* send the index of the triggered virtqueue as the mu payload */
MU_SendMessage(rpvq->rpdev->mu_base, 1, mu_rpmsg);
mutex_unlock(&rpvq->rpdev->lock);
return true;
}
static int imx_mu_rpmsg_callback(struct notifier_block *this,
unsigned long index, void *data)
{
u32 mu_msg = (phys_addr_t) data;
struct imx_virdev *virdev;
virdev = container_of(this, struct imx_virdev, nb);
pr_debug("%s mu_msg: 0x%x\n", __func__, mu_msg);
/* ignore vq indices which are clearly not for us */
mu_msg = mu_msg >> 16;
if (mu_msg < virdev->base_vq_id || mu_msg > virdev->base_vq_id + 1) {
pr_debug("mu_msg: 0x%x is invalid\n", mu_msg);
return NOTIFY_DONE;
}
mu_msg -= virdev->base_vq_id;
/*
* Currently both PENDING_MSG and explicit-virtqueue-index
* messaging are supported.
* Whatever approach is taken, at this point 'mu_msg' contains
* the index of the vring which was just triggered.
*/
if (mu_msg < virdev->num_of_vqs)
vring_interrupt(mu_msg, virdev->vq[mu_msg]);
return NOTIFY_DONE;
}
static int imx_mu_rpmsg_register_nb(struct imx_rpmsg_vproc *rpdev,
struct notifier_block *nb)
{
if ((rpdev == NULL) || (nb == NULL))
return -EINVAL;
blocking_notifier_chain_register(&(rpdev->notifier), nb);
return 0;
}
static int imx_mu_rpmsg_unregister_nb(struct imx_rpmsg_vproc *rpdev,
struct notifier_block *nb)
{
if ((rpdev == NULL) || (nb == NULL))
return -EINVAL;
blocking_notifier_chain_unregister(&(rpdev->notifier), nb);
return 0;
}
static struct virtqueue *rp_find_vq(struct virtio_device *vdev,
unsigned int index,
void (*callback)(struct virtqueue *vq),
const char *name)
{
struct imx_virdev *virdev = to_imx_virdev(vdev);
struct imx_rpmsg_vproc *rpdev = to_imx_rpdev(virdev,
virdev->base_vq_id / 2);
struct imx_rpmsg_vq_info *rpvq;
struct virtqueue *vq;
int err;
rpvq = kmalloc(sizeof(*rpvq), GFP_KERNEL);
if (!rpvq)
return ERR_PTR(-ENOMEM);
/* ioremap'ing normal memory, so we cast away sparse's complaints */
rpvq->addr = (__force void *) ioremap_nocache(virdev->vring[index],
RPMSG_RING_SIZE);
if (!rpvq->addr) {
err = -ENOMEM;
goto free_rpvq;
}
memset_io(rpvq->addr, 0, RPMSG_RING_SIZE);
pr_debug("vring%d: phys 0x%x, virt 0x%p\n", index, virdev->vring[index],
rpvq->addr);
vq = vring_new_virtqueue(index, RPMSG_NUM_BUFS / 2, RPMSG_VRING_ALIGN,
vdev, true, rpvq->addr, imx_rpmsg_notify, callback,
name);
if (!vq) {
pr_err("vring_new_virtqueue failed\n");
err = -ENOMEM;
goto unmap_vring;
}
virdev->vq[index] = vq;
vq->priv = rpvq;
/* system-wide unique id for this virtqueue */
rpvq->vq_id = virdev->base_vq_id + index;
rpvq->rpdev = rpdev;
mutex_init(&rpdev->lock);
return vq;
unmap_vring:
/* iounmap normal memory, so make sparse happy */
iounmap((__force void __iomem *) rpvq->addr);
free_rpvq:
kfree(rpvq);
return ERR_PTR(err);
}
static void imx_rpmsg_del_vqs(struct virtio_device *vdev)
{
struct virtqueue *vq, *n;
struct imx_virdev *virdev = to_imx_virdev(vdev);
struct imx_rpmsg_vproc *rpdev = to_imx_rpdev(virdev,
virdev->base_vq_id / 2);
list_for_each_entry_safe(vq, n, &vdev->vqs, list) {
struct imx_rpmsg_vq_info *rpvq = vq->priv;
iounmap(rpvq->addr);
vring_del_virtqueue(vq);
kfree(rpvq);
}
if (&virdev->nb)
imx_mu_rpmsg_unregister_nb(rpdev, &virdev->nb);
}
static int imx_rpmsg_find_vqs(struct virtio_device *vdev, unsigned int nvqs,
struct virtqueue *vqs[],
vq_callback_t *callbacks[],
const char * const names[])
{
struct imx_virdev *virdev = to_imx_virdev(vdev);
struct imx_rpmsg_vproc *rpdev = to_imx_rpdev(virdev,
virdev->base_vq_id / 2);
int i, err;
/* we maintain two virtqueues per remote processor (for RX and TX) */
if (nvqs != 2)
return -EINVAL;
for (i = 0; i < nvqs; ++i) {
vqs[i] = rp_find_vq(vdev, i, callbacks[i], names[i]);
if (IS_ERR(vqs[i])) {
err = PTR_ERR(vqs[i]);
goto error;
}
}
virdev->num_of_vqs = nvqs;
virdev->nb.notifier_call = imx_mu_rpmsg_callback;
imx_mu_rpmsg_register_nb(rpdev, &virdev->nb);
return 0;
error:
imx_rpmsg_del_vqs(vdev);
return err;
}
static void imx_rpmsg_reset(struct virtio_device *vdev)
{
dev_dbg(&vdev->dev, "reset !\n");
}
static u8 imx_rpmsg_get_status(struct virtio_device *vdev)
{
return 0;
}
static void imx_rpmsg_set_status(struct virtio_device *vdev, u8 status)
{
dev_dbg(&vdev->dev, "%s new status: %d\n", __func__, status);
}
static void imx_rpmsg_vproc_release(struct device *dev)
{
/* this handler is provided so driver core doesn't yell at us */
}
static struct virtio_config_ops imx_rpmsg_config_ops = {
.get_features = imx_rpmsg_get_features,
.finalize_features = imx_rpmsg_finalize_features,
.find_vqs = imx_rpmsg_find_vqs,
.del_vqs = imx_rpmsg_del_vqs,
.reset = imx_rpmsg_reset,
.set_status = imx_rpmsg_set_status,
.get_status = imx_rpmsg_get_status,
};
static struct imx_rpmsg_vproc imx_rpmsg_vprocs[] = {
{
.rproc_name = "m4",
},
{
.rproc_name = "m4",
},
};
static const struct of_device_id imx_rpmsg_dt_ids[] = {
{ .compatible = "fsl,imx6sx-rpmsg", .data = (void *)IMX6SX, },
{ .compatible = "fsl,imx7d-rpmsg", .data = (void *)IMX7D, },
{ .compatible = "fsl,imx7ulp-rpmsg", .data = (void *)IMX7ULP, },
{ .compatible = "fsl,imx8qxp-rpmsg", .data = (void *)IMX8QXP, },
{ .compatible = "fsl,imx8qm-rpmsg", .data = (void *)IMX8QM, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx_rpmsg_dt_ids);
static int set_vring_phy_buf(struct platform_device *pdev,
struct imx_rpmsg_vproc *rpdev, int vdev_nums)
{
struct resource *res;
resource_size_t size;
unsigned int start, end;
int i, ret = 0;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res) {
size = resource_size(res);
start = res->start;
end = res->start + size;
for (i = 0; i < vdev_nums; i++) {
rpdev->ivdev[i].vring[0] = start;
rpdev->ivdev[i].vring[1] = start +
0x8000;
start += 0x10000;
if (start > end) {
pr_err("Too small memory size %x!\n",
(u32)size);
ret = -EINVAL;
break;
}
}
} else {
return -ENOMEM;
}
return ret;
}
static void rpmsg_work_handler(struct work_struct *work)
{
u32 message;
unsigned long flags;
struct delayed_work *dwork = to_delayed_work(work);
struct imx_rpmsg_vproc *rpdev = container_of(dwork,
struct imx_rpmsg_vproc, rpmsg_work);
spin_lock_irqsave(&rpdev->mu_lock, flags);
/* handle all incoming mu message */
while (rpdev->in_idx != rpdev->out_idx) {
message = rpdev->m4_message[rpdev->out_idx % MAX_NUM];
spin_unlock_irqrestore(&rpdev->mu_lock, flags);
blocking_notifier_call_chain(&(rpdev->notifier), 4,
(void *)(phys_addr_t)message);
spin_lock_irqsave(&rpdev->mu_lock, flags);
rpdev->m4_message[rpdev->out_idx % MAX_NUM] = 0;
rpdev->out_idx++;
}
spin_unlock_irqrestore(&rpdev->mu_lock, flags);
}
static irqreturn_t imx_mu_rpmsg_isr(int irq, void *param)
{
u32 irqs, message;
unsigned long flags;
struct imx_rpmsg_vproc *rpdev = (struct imx_rpmsg_vproc *)param;
irqs = MU_ReadStatus(rpdev->mu_base);
/* RPMSG */
if (irqs & (1 << 26)) {
spin_lock_irqsave(&rpdev->mu_lock, flags);
/* get message from receive buffer */
MU_ReceiveMsg(rpdev->mu_base, 1, &message);
rpdev->m4_message[rpdev->in_idx % MAX_NUM] = message;
rpdev->in_idx++;
/*
* Too many mu message not be handled in timely, can enlarge
* MAX_NUM
*/
if (rpdev->in_idx == rpdev->out_idx) {
spin_unlock_irqrestore(&rpdev->mu_lock, flags);
pr_err("MU overflow!\n");
return IRQ_HANDLED;
}
spin_unlock_irqrestore(&rpdev->mu_lock, flags);
schedule_delayed_work(&(rpdev->rpmsg_work), 0);
}
return IRQ_HANDLED;
}
static int imx_rpmsg_probe(struct platform_device *pdev)
{
int core_id, j, ret = 0;
u32 irq;
struct clk *clk;
struct device_node *np_mu;
struct device *dev = &pdev->dev;
struct device_node *np = pdev->dev.of_node;
struct imx_rpmsg_vproc *rpdev;
variant = (enum imx_rpmsg_variants)of_device_get_match_data(dev);
if (of_property_read_u32(np, "multi-core-id", &core_id))
core_id = 0;
rpdev = &imx_rpmsg_vprocs[core_id];
rpdev->core_id = core_id;
/* Initialize the mu unit used by rpmsg */
if (rpdev->core_id == 1)
np_mu = of_find_compatible_node(NULL, NULL,
"fsl,imx-mu-rpmsg1");
else
np_mu = of_find_compatible_node(NULL, NULL, "fsl,imx6sx-mu");
if (!np_mu) {
pr_info("Cannot find MU-RPMSG entry in device tree\n");
return -EINVAL;
}
rpdev->mu_base = of_iomap(np_mu, 0);
WARN_ON(!rpdev->mu_base);
if (variant == IMX7ULP)
irq = of_irq_get(np_mu, 1);
else
irq = of_irq_get(np_mu, 0);
ret = request_irq(irq, imx_mu_rpmsg_isr,
IRQF_EARLY_RESUME | IRQF_SHARED,
"imx-mu-rpmsg", rpdev);
if (ret) {
pr_err("%s: register interrupt %d failed, rc %d\n",
__func__, irq, ret);
return ret;
}
if (variant == IMX7D || variant == IMX8QXP || variant == IMX8QM) {
clk = of_clk_get(np_mu, 0);
if (IS_ERR(clk)) {
pr_err("mu clock source missing or invalid\n");
return PTR_ERR(clk);
}
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("unable to enable mu clock\n");
return ret;
}
}
INIT_DELAYED_WORK(&(rpdev->rpmsg_work), rpmsg_work_handler);
/*
* bit26 is used by rpmsg channels.
* bit0 of MX7ULP_MU_CR used to let m4 to know MU is ready now
*/
MU_Init(rpdev->mu_base);
if (variant == IMX7ULP) {
MU_EnableRxFullInt(rpdev->mu_base, 1);
MU_SetFn(rpdev->mu_base, 1);
} else {
MU_EnableRxFullInt(rpdev->mu_base, 1);
}
BLOCKING_INIT_NOTIFIER_HEAD(&(rpdev->notifier));
pr_info("MU is ready for cross core communication!\n");
ret = of_property_read_u32(np, "vdev-nums", &rpdev->vdev_nums);
if (ret)
rpdev->vdev_nums = 1;
if (rpdev->vdev_nums > MAX_VDEV_NUMS) {
pr_err("vdev-nums exceed the max %d\n", MAX_VDEV_NUMS);
return -EINVAL;
}
if (!strcmp(rpdev->rproc_name, "m4")) {
ret = set_vring_phy_buf(pdev, rpdev,
rpdev->vdev_nums);
if (ret) {
pr_err("No vring buffer.\n");
return -ENOMEM;
}
} else {
pr_err("No remote m4 processor.\n");
return -ENODEV;
}
for (j = 0; j < rpdev->vdev_nums; j++) {
pr_debug("%s rpdev%d vdev%d: vring0 0x%x, vring1 0x%x\n",
__func__, rpdev->core_id, rpdev->vdev_nums,
rpdev->ivdev[j].vring[0],
rpdev->ivdev[j].vring[1]);
rpdev->ivdev[j].vdev.id.device = VIRTIO_ID_RPMSG;
rpdev->ivdev[j].vdev.config = &imx_rpmsg_config_ops;
rpdev->ivdev[j].vdev.dev.parent = &pdev->dev;
rpdev->ivdev[j].vdev.dev.release = imx_rpmsg_vproc_release;
rpdev->ivdev[j].base_vq_id = j * 2;
ret = register_virtio_device(&rpdev->ivdev[j].vdev);
if (ret) {
pr_err("%s failed to register rpdev: %d\n",
__func__, ret);
return ret;
}
}
return ret;
}
static struct platform_driver imx_rpmsg_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "imx-rpmsg",
.of_match_table = imx_rpmsg_dt_ids,
},
.probe = imx_rpmsg_probe,
};
static int __init imx_rpmsg_init(void)
{
int ret;
ret = platform_driver_register(&imx_rpmsg_driver);
if (ret)
pr_err("Unable to initialize rpmsg driver\n");
else
pr_info("imx rpmsg driver is registered.\n");
return ret;
}
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("iMX remote processor messaging virtio device");
MODULE_LICENSE("GPL v2");
subsys_initcall(imx_rpmsg_init);