blob: dbcf35b456b848e318f57a109b8674572ac89134 [file] [log] [blame]
/*
* Copyright (C) 2013-2016 Freescale Semiconductor, Inc.
* Copyright 2017 NXP.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/busfreq-imx.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/pm_opp.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/suspend.h>
#define PU_SOC_VOLTAGE_NORMAL 1250000
#define PU_SOC_VOLTAGE_HIGH 1275000
#define DC_VOLTAGE_MIN 1300000
#define DC_VOLTAGE_MAX 1400000
#define FREQ_1P2_GHZ 1200000000
#define FREQ_396_MHZ 396000
#define FREQ_528_MHZ 528000
#define FREQ_198_MHZ 198000
#define FREQ_24_MHZ 24000
struct regulator *arm_reg;
static struct regulator *pu_reg;
struct regulator *soc_reg;
static struct regulator *dc_reg;
static struct clk *arm_clk;
static struct clk *pll1_sys_clk;
static struct clk *pll1_sw_clk;
static struct clk *step_clk;
static struct clk *pll2_pfd2_396m_clk;
/* clk used by i.MX6UL */
static struct clk *pll1_bypass;
static struct clk *pll1_bypass_src;
static struct clk *pll1;
static struct clk *pll2_bus_clk;
static struct clk *secondary_sel_clk;
static struct device *cpu_dev;
static bool free_opp;
static struct cpufreq_frequency_table *freq_table;
static unsigned int transition_latency;
static struct mutex set_cpufreq_lock;
static u32 *imx6_soc_volt;
static u32 soc_opp_count;
static bool ignore_dc_reg;
static bool low_power_run_support;
static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
{
struct dev_pm_opp *opp;
unsigned long freq_hz, volt, volt_old;
unsigned int old_freq, new_freq;
int ret;
mutex_lock(&set_cpufreq_lock);
new_freq = freq_table[index].frequency;
freq_hz = new_freq * 1000;
old_freq = policy->cur;
/*
* ON i.MX6ULL, the 24MHz setpoint is not seen by cpufreq
* so we neet to prevent the cpufreq change frequency
* from 24MHz to 198Mhz directly. busfreq will handle this
* when exit from low bus mode.
*/
if (old_freq == FREQ_24_MHZ && new_freq == FREQ_198_MHZ) {
mutex_unlock(&set_cpufreq_lock);
return 0;
};
rcu_read_lock();
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
rcu_read_unlock();
dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
mutex_unlock(&set_cpufreq_lock);
return PTR_ERR(opp);
}
volt = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
volt_old = regulator_get_voltage(arm_reg);
dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
old_freq / 1000, volt_old / 1000,
new_freq / 1000, volt / 1000);
/*
* CPU freq is increasing, so need to ensure
* that bus frequency is increased too.
*/
if (low_power_run_support) {
if (old_freq == freq_table[0].frequency)
request_bus_freq(BUS_FREQ_HIGH);
} else if (old_freq <= FREQ_396_MHZ && new_freq > FREQ_396_MHZ) {
request_bus_freq(BUS_FREQ_HIGH);
}
/* scaling up? scale voltage before frequency */
if (new_freq > old_freq) {
if (!IS_ERR(pu_reg)) {
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
mutex_unlock(&set_cpufreq_lock);
return ret;
}
}
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
mutex_unlock(&set_cpufreq_lock);
return ret;
}
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret) {
dev_err(cpu_dev,
"failed to scale vddarm up: %d\n", ret);
mutex_unlock(&set_cpufreq_lock);
return ret;
}
}
/*
* The setpoints are selected per PLL/PDF frequencies, so we need to
* reprogram PLL for frequency scaling. The procedure of reprogramming
* PLL1 is as below.
* For i.MX6UL, it has a secondary clk mux, the cpu frequency change
* flow is slightly different from other i.MX6 OSC.
* The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
* - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
* - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
* - Disable pll2_pfd2_396m_clk
*/
if (of_machine_is_compatible("fsl,imx6ul") ||
of_machine_is_compatible("fsl,imx6ull")) {
/*
* When changing pll1_sw_clk's parent to pll1_sys_clk,
* CPU may run at higher than 528MHz, this will lead to
* the system unstable if the voltage is lower than the
* voltage of 528MHz, so lower the CPU frequency to one
* half before changing CPU frequency.
*/
clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
clk_set_parent(pll1_sw_clk, pll1_sys_clk);
if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
clk_set_parent(secondary_sel_clk, pll2_bus_clk);
else
clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
clk_set_parent(step_clk, secondary_sel_clk);
clk_set_parent(pll1_sw_clk, step_clk);
if (freq_hz > clk_get_rate(pll2_bus_clk)) {
clk_set_rate(pll1, new_freq * 1000);
clk_set_parent(pll1_sw_clk, pll1_sys_clk);
}
} else {
clk_set_parent(step_clk, pll2_pfd2_396m_clk);
clk_set_parent(pll1_sw_clk, step_clk);
if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
/* Ensure that pll1_bypass is set back to
* pll1. We have to do this first so that the
* change rate done to pll1_sys_clk done below
* can propagate up to pll1.
*/
clk_set_parent(pll1_bypass, pll1);
clk_set_rate(pll1_sys_clk, new_freq * 1000);
clk_set_parent(pll1_sw_clk, pll1_sys_clk);
} else {
/*
* Need to ensure that PLL1 is bypassed and enabled
* before ARM-PODF is set.
*/
clk_set_parent(pll1_bypass, pll1_bypass_src);
}
}
/* Ensure the arm clock divider is what we expect */
ret = clk_set_rate(arm_clk, new_freq * 1000);
if (ret) {
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
regulator_set_voltage_tol(arm_reg, volt_old, 0);
mutex_unlock(&set_cpufreq_lock);
return ret;
}
/* scaling down? scale voltage after frequency */
if (new_freq < old_freq) {
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret) {
dev_warn(cpu_dev,
"failed to scale vddarm down: %d\n", ret);
ret = 0;
}
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
ret = 0;
}
if (!IS_ERR(pu_reg)) {
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
ret = 0;
}
}
}
/*
* If CPU is dropped to the lowest level, release the need
* for a high bus frequency.
*/
if (low_power_run_support) {
if (new_freq == freq_table[0].frequency)
release_bus_freq(BUS_FREQ_HIGH);
} else if (old_freq > FREQ_396_MHZ && new_freq <= FREQ_396_MHZ) {
release_bus_freq(BUS_FREQ_HIGH);
}
mutex_unlock(&set_cpufreq_lock);
return 0;
}
static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
{
int ret;
policy->clk = arm_clk;
policy->cur = clk_get_rate(arm_clk) / 1000;
ret = cpufreq_generic_init(policy, freq_table, transition_latency);
if (ret) {
dev_err(cpu_dev, "imx6 cpufreq init failed!\n");
return ret;
}
if (low_power_run_support && policy->cur > freq_table[0].frequency) {
request_bus_freq(BUS_FREQ_HIGH);
} else if (policy->cur > FREQ_396_MHZ) {
request_bus_freq(BUS_FREQ_HIGH);
}
return 0;
}
static struct cpufreq_driver imx6q_cpufreq_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = imx6q_set_target,
.get = cpufreq_generic_get,
.init = imx6q_cpufreq_init,
.name = "imx6q-cpufreq",
.attr = cpufreq_generic_attr,
};
static int imx6_cpufreq_pm_notify(struct notifier_block *nb,
unsigned long event, void *dummy)
{
struct cpufreq_policy *data = cpufreq_cpu_get(0);
static u32 cpufreq_policy_min_pre_suspend;
/*
* During suspend/resume, When cpufreq driver try to increase
* voltage/freq, it needs to control I2C/SPI to communicate
* with external PMIC to adjust voltage, but these I2C/SPI
* devices may be already suspended, to avoid such scenario,
* we just increase cpufreq to highest setpoint before suspend.
*/
if (!data)
return NOTIFY_BAD;
switch (event) {
case PM_SUSPEND_PREPARE:
cpufreq_policy_min_pre_suspend = data->user_policy.min;
data->user_policy.min = data->user_policy.max;
if (!IS_ERR(dc_reg) && !ignore_dc_reg)
regulator_set_voltage_tol(dc_reg, DC_VOLTAGE_MAX, 0);
break;
case PM_POST_SUSPEND:
data->user_policy.min = cpufreq_policy_min_pre_suspend;
if (!IS_ERR(dc_reg) && !ignore_dc_reg)
regulator_set_voltage_tol(dc_reg, DC_VOLTAGE_MIN, 0);
break;
default:
break;
}
cpufreq_update_policy(0);
cpufreq_cpu_put(data);
return NOTIFY_OK;
}
static struct notifier_block imx6_cpufreq_pm_notifier = {
.notifier_call = imx6_cpufreq_pm_notify,
};
static int imx6q_cpufreq_probe(struct platform_device *pdev)
{
struct device_node *np;
struct dev_pm_opp *opp;
struct clk *vpu_axi_podf;
unsigned long min_volt, max_volt;
int num, ret;
const struct property *prop;
const __be32 *val;
u32 nr, j, i = 0;
u32 vpu_axi_rate = 0;
cpu_dev = get_cpu_device(0);
if (!cpu_dev) {
pr_err("failed to get cpu0 device\n");
return -ENODEV;
}
np = of_node_get(cpu_dev->of_node);
if (!np) {
dev_err(cpu_dev, "failed to find cpu0 node\n");
return -ENOENT;
}
arm_clk = clk_get(cpu_dev, "arm");
pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
step_clk = clk_get(cpu_dev, "step");
pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
pll1 = clk_get(cpu_dev, "pll1");
pll1_bypass = clk_get(cpu_dev, "pll1_bypass");
pll1_bypass_src = clk_get(cpu_dev, "pll1_bypass_src");
if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk) || IS_ERR(pll1) ||
IS_ERR(pll1_bypass) || IS_ERR(pll1_bypass_src)) {
dev_err(cpu_dev, "failed to get clocks\n");
ret = -ENOENT;
goto put_clk;
}
if (of_machine_is_compatible("fsl,imx6ul") ||
of_machine_is_compatible("fsl,imx6ull")) {
pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
ret = -ENOENT;
goto put_clk;
}
}
vpu_axi_podf = clk_get(cpu_dev, "vpu_axi_podf");
if (!IS_ERR(vpu_axi_podf)) {
vpu_axi_rate = clk_get_rate(vpu_axi_podf);
clk_put(vpu_axi_podf);
}
arm_reg = regulator_get(cpu_dev, "arm");
pu_reg = regulator_get_optional(cpu_dev, "pu");
soc_reg = regulator_get(cpu_dev, "soc");
if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
ret = IS_ERR(arm_reg)?PTR_ERR(arm_reg):PTR_ERR(soc_reg);
if (ret == -EPROBE_DEFER)
dev_warn(cpu_dev, "regulators not ready, retry\n");
else
dev_err(cpu_dev, "failed to get regulators: %d\n", ret);
goto put_reg;
}
dc_reg = regulator_get_optional(cpu_dev, "dc");
/*
* soc_reg sync with arm_reg if arm shares the same regulator
* with soc. Otherwise, regulator common framework will refuse to update
* this consumer's voltage right now while another consumer voltage
* still keep in old one. For example, imx6sx-sdb with pfuze200 in
* ldo-bypass mode.
*/
of_property_read_u32(np, "fsl,arm-soc-shared", &i);
if (i == 1)
soc_reg = arm_reg;
/* On i.MX6ULL, check the 24MHz low power run mode support */
low_power_run_support = of_property_read_bool(np, "fsl,low-power-run");
/*
* We expect an OPP table supplied by platform.
* Just, incase the platform did not supply the OPP
* table, it will try to get it.
*/
num = dev_pm_opp_get_opp_count(cpu_dev);
if (num < 0) {
ret = dev_pm_opp_of_add_table(cpu_dev);
if (ret < 0) {
dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
goto put_reg;
}
/* Because we have added the OPPs here, we must free them */
free_opp = true;
num = dev_pm_opp_get_opp_count(cpu_dev);
if (num < 0) {
ret = num;
dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
goto out_free_opp;
}
}
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
if (ret) {
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
goto put_reg;
}
/*
* On i.MX6UL/ULL EVK board, if the SOC is run in overide frequency,
* the dc_regulator voltage should not be touched.
*/
if (freq_table[num - 1].frequency > FREQ_528_MHZ)
ignore_dc_reg = true;
if (!IS_ERR(dc_reg) && !ignore_dc_reg)
regulator_set_voltage_tol(dc_reg, DC_VOLTAGE_MIN, 0);
/* Make imx6_soc_volt array's size same as arm opp number */
imx6_soc_volt = kzalloc(sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
if (imx6_soc_volt == NULL) {
ret = -ENOMEM;
goto free_freq_table;
}
prop = of_find_property(np, "fsl,soc-operating-points", NULL);
if (!prop || !prop->value)
goto soc_opp_out;
/*
* Each OPP is a set of tuples consisting of frequency and
* voltage like <freq-kHz vol-uV>.
*/
nr = prop->length / sizeof(u32);
if (nr % 2 || (nr / 2) < num)
goto soc_opp_out;
for (j = 0; j < num; j++) {
val = prop->value;
for (i = 0; i < nr / 2; i++) {
unsigned long freq = be32_to_cpup(val++);
unsigned long volt = be32_to_cpup(val++);
if (freq_table[j].frequency == freq) {
imx6_soc_volt[soc_opp_count++] = volt;
#ifdef CONFIG_MX6_VPU_352M
if (freq == 792000) {
pr_info("increase SOC/PU voltage for VPU352MHz\n");
imx6_soc_volt[soc_opp_count - 1] = 1250000;
}
#endif
if (vpu_axi_rate == 396000000) {
if (freq <= 996000) {
pr_info("increase SOC/PU voltage for VPU396MHz at %ld MHz\n",
freq / 1000);
imx6_soc_volt[soc_opp_count - 1] = 1275000;
}
}
break;
}
}
}
soc_opp_out:
/* use fixed soc opp volt if no valid soc opp info found in dtb */
if (soc_opp_count != num) {
dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
for (j = 0; j < num; j++)
imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
}
if (of_property_read_u32(np, "clock-latency", &transition_latency))
transition_latency = CPUFREQ_ETERNAL;
/*
* Calculate the ramp time for max voltage change in the
* VDDSOC and VDDPU regulators.
*/
ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
if (ret > 0)
transition_latency += ret * 1000;
if (!IS_ERR(pu_reg)) {
ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
if (ret > 0)
transition_latency += ret * 1000;
}
/*
* OPP is maintained in order of increasing frequency, and
* freq_table initialised from OPP is therefore sorted in the
* same order.
*/
rcu_read_lock();
opp = dev_pm_opp_find_freq_exact(cpu_dev,
freq_table[0].frequency * 1000, true);
min_volt = dev_pm_opp_get_voltage(opp);
opp = dev_pm_opp_find_freq_exact(cpu_dev,
freq_table[--num].frequency * 1000, true);
max_volt = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
if (ret > 0)
transition_latency += ret * 1000;
mutex_init(&set_cpufreq_lock);
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
if (ret) {
dev_err(cpu_dev, "failed register driver: %d\n", ret);
goto free_freq_table;
}
register_pm_notifier(&imx6_cpufreq_pm_notifier);
of_node_put(np);
dev_info(cpu_dev, "Registered imx6q-cpufreq\n");
return 0;
free_freq_table:
kfree(imx6_soc_volt);
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
out_free_opp:
if (free_opp)
dev_pm_opp_of_remove_table(cpu_dev);
put_reg:
if (!IS_ERR(arm_reg))
regulator_put(arm_reg);
if (!IS_ERR(pu_reg))
regulator_put(pu_reg);
if (!IS_ERR(soc_reg))
regulator_put(soc_reg);
if (!IS_ERR(dc_reg))
regulator_put(dc_reg);
put_clk:
if (!IS_ERR(arm_clk))
clk_put(arm_clk);
if (!IS_ERR(pll1_sys_clk))
clk_put(pll1_sys_clk);
if (!IS_ERR(pll1_sw_clk))
clk_put(pll1_sw_clk);
if (!IS_ERR(step_clk))
clk_put(step_clk);
if (!IS_ERR(pll2_pfd2_396m_clk))
clk_put(pll2_pfd2_396m_clk);
if (!IS_ERR(pll1))
clk_put(pll1);
if (!IS_ERR(pll1_bypass))
clk_put(pll1_bypass);
if (!IS_ERR(pll1_bypass_src))
clk_put(pll1_bypass_src);
if (!IS_ERR(pll2_bus_clk))
clk_put(pll2_bus_clk);
if (!IS_ERR(secondary_sel_clk))
clk_put(secondary_sel_clk);
of_node_put(np);
return ret;
}
static int imx6q_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&imx6q_cpufreq_driver);
kfree(imx6_soc_volt);
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
if (free_opp)
dev_pm_opp_of_remove_table(cpu_dev);
regulator_put(arm_reg);
if (!IS_ERR(pu_reg))
regulator_put(pu_reg);
regulator_put(soc_reg);
if (!IS_ERR(dc_reg))
regulator_put(dc_reg);
clk_put(arm_clk);
clk_put(pll1_sys_clk);
clk_put(pll1_sw_clk);
clk_put(step_clk);
clk_put(pll1);
clk_put(pll1_bypass);
clk_put(pll1_bypass_src);
clk_put(pll2_pfd2_396m_clk);
clk_put(pll2_bus_clk);
clk_put(secondary_sel_clk);
return 0;
}
static struct platform_driver imx6q_cpufreq_platdrv = {
.driver = {
.name = "imx6q-cpufreq",
},
.probe = imx6q_cpufreq_probe,
.remove = imx6q_cpufreq_remove,
};
module_platform_driver(imx6q_cpufreq_platdrv);
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
MODULE_LICENSE("GPL");