blob: 25842b566c39c1497d1cecd91b6af8a079492185 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#define pr_fmt(fmt) "DMAR-IR: " fmt
#include <linux/interrupt.h>
#include <linux/dmar.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/hpet.h>
#include <linux/pci.h>
#include <linux/irq.h>
#include <linux/intel-iommu.h>
#include <linux/acpi.h>
#include <linux/irqdomain.h>
#include <linux/crash_dump.h>
#include <asm/io_apic.h>
#include <asm/smp.h>
#include <asm/cpu.h>
#include <asm/irq_remapping.h>
#include <asm/pci-direct.h>
#include <asm/msidef.h>
#include "irq_remapping.h"
enum irq_mode {
IRQ_REMAPPING,
IRQ_POSTING,
};
struct ioapic_scope {
struct intel_iommu *iommu;
unsigned int id;
unsigned int bus; /* PCI bus number */
unsigned int devfn; /* PCI devfn number */
};
struct hpet_scope {
struct intel_iommu *iommu;
u8 id;
unsigned int bus;
unsigned int devfn;
};
struct irq_2_iommu {
struct intel_iommu *iommu;
u16 irte_index;
u16 sub_handle;
u8 irte_mask;
enum irq_mode mode;
};
struct intel_ir_data {
struct irq_2_iommu irq_2_iommu;
struct irte irte_entry;
union {
struct msi_msg msi_entry;
};
};
#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
static int __read_mostly eim_mode;
static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
static struct hpet_scope ir_hpet[MAX_HPET_TBS];
/*
* Lock ordering:
* ->dmar_global_lock
* ->irq_2_ir_lock
* ->qi->q_lock
* ->iommu->register_lock
* Note:
* intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
* in single-threaded environment with interrupt disabled, so no need to tabke
* the dmar_global_lock.
*/
static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
static const struct irq_domain_ops intel_ir_domain_ops;
static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
static int __init parse_ioapics_under_ir(void);
static bool ir_pre_enabled(struct intel_iommu *iommu)
{
return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
}
static void clear_ir_pre_enabled(struct intel_iommu *iommu)
{
iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}
static void init_ir_status(struct intel_iommu *iommu)
{
u32 gsts;
gsts = readl(iommu->reg + DMAR_GSTS_REG);
if (gsts & DMA_GSTS_IRES)
iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}
static int alloc_irte(struct intel_iommu *iommu, int irq,
struct irq_2_iommu *irq_iommu, u16 count)
{
struct ir_table *table = iommu->ir_table;
unsigned int mask = 0;
unsigned long flags;
int index;
if (!count || !irq_iommu)
return -1;
if (count > 1) {
count = __roundup_pow_of_two(count);
mask = ilog2(count);
}
if (mask > ecap_max_handle_mask(iommu->ecap)) {
pr_err("Requested mask %x exceeds the max invalidation handle"
" mask value %Lx\n", mask,
ecap_max_handle_mask(iommu->ecap));
return -1;
}
raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
index = bitmap_find_free_region(table->bitmap,
INTR_REMAP_TABLE_ENTRIES, mask);
if (index < 0) {
pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
} else {
irq_iommu->iommu = iommu;
irq_iommu->irte_index = index;
irq_iommu->sub_handle = 0;
irq_iommu->irte_mask = mask;
irq_iommu->mode = IRQ_REMAPPING;
}
raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
return index;
}
static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
{
struct qi_desc desc;
desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
| QI_IEC_SELECTIVE;
desc.high = 0;
return qi_submit_sync(&desc, iommu);
}
static int modify_irte(struct irq_2_iommu *irq_iommu,
struct irte *irte_modified)
{
struct intel_iommu *iommu;
unsigned long flags;
struct irte *irte;
int rc, index;
if (!irq_iommu)
return -1;
raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
iommu = irq_iommu->iommu;
index = irq_iommu->irte_index + irq_iommu->sub_handle;
irte = &iommu->ir_table->base[index];
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
if ((irte->pst == 1) || (irte_modified->pst == 1)) {
bool ret;
ret = cmpxchg_double(&irte->low, &irte->high,
irte->low, irte->high,
irte_modified->low, irte_modified->high);
/*
* We use cmpxchg16 to atomically update the 128-bit IRTE,
* and it cannot be updated by the hardware or other processors
* behind us, so the return value of cmpxchg16 should be the
* same as the old value.
*/
WARN_ON(!ret);
} else
#endif
{
set_64bit(&irte->low, irte_modified->low);
set_64bit(&irte->high, irte_modified->high);
}
__iommu_flush_cache(iommu, irte, sizeof(*irte));
rc = qi_flush_iec(iommu, index, 0);
/* Update iommu mode according to the IRTE mode */
irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
return rc;
}
static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
{
int i;
for (i = 0; i < MAX_HPET_TBS; i++)
if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
return ir_hpet[i].iommu;
return NULL;
}
static struct intel_iommu *map_ioapic_to_ir(int apic)
{
int i;
for (i = 0; i < MAX_IO_APICS; i++)
if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
return ir_ioapic[i].iommu;
return NULL;
}
static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
{
struct dmar_drhd_unit *drhd;
drhd = dmar_find_matched_drhd_unit(dev);
if (!drhd)
return NULL;
return drhd->iommu;
}
static int clear_entries(struct irq_2_iommu *irq_iommu)
{
struct irte *start, *entry, *end;
struct intel_iommu *iommu;
int index;
if (irq_iommu->sub_handle)
return 0;
iommu = irq_iommu->iommu;
index = irq_iommu->irte_index;
start = iommu->ir_table->base + index;
end = start + (1 << irq_iommu->irte_mask);
for (entry = start; entry < end; entry++) {
set_64bit(&entry->low, 0);
set_64bit(&entry->high, 0);
}
bitmap_release_region(iommu->ir_table->bitmap, index,
irq_iommu->irte_mask);
return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
}
/*
* source validation type
*/
#define SVT_NO_VERIFY 0x0 /* no verification is required */
#define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
#define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
/*
* source-id qualifier
*/
#define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
#define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
* the third least significant bit
*/
#define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
* the second and third least significant bits
*/
#define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
* the least three significant bits
*/
/*
* set SVT, SQ and SID fields of irte to verify
* source ids of interrupt requests
*/
static void set_irte_sid(struct irte *irte, unsigned int svt,
unsigned int sq, unsigned int sid)
{
if (disable_sourceid_checking)
svt = SVT_NO_VERIFY;
irte->svt = svt;
irte->sq = sq;
irte->sid = sid;
}
static int set_ioapic_sid(struct irte *irte, int apic)
{
int i;
u16 sid = 0;
if (!irte)
return -1;
down_read(&dmar_global_lock);
for (i = 0; i < MAX_IO_APICS; i++) {
if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
break;
}
}
up_read(&dmar_global_lock);
if (sid == 0) {
pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
return -1;
}
set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
return 0;
}
static int set_hpet_sid(struct irte *irte, u8 id)
{
int i;
u16 sid = 0;
if (!irte)
return -1;
down_read(&dmar_global_lock);
for (i = 0; i < MAX_HPET_TBS; i++) {
if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
break;
}
}
up_read(&dmar_global_lock);
if (sid == 0) {
pr_warn("Failed to set source-id of HPET block (%d)\n", id);
return -1;
}
/*
* Should really use SQ_ALL_16. Some platforms are broken.
* While we figure out the right quirks for these broken platforms, use
* SQ_13_IGNORE_3 for now.
*/
set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
return 0;
}
struct set_msi_sid_data {
struct pci_dev *pdev;
u16 alias;
};
static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
struct set_msi_sid_data *data = opaque;
data->pdev = pdev;
data->alias = alias;
return 0;
}
static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
{
struct set_msi_sid_data data;
if (!irte || !dev)
return -1;
pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
/*
* DMA alias provides us with a PCI device and alias. The only case
* where the it will return an alias on a different bus than the
* device is the case of a PCIe-to-PCI bridge, where the alias is for
* the subordinate bus. In this case we can only verify the bus.
*
* If the alias device is on a different bus than our source device
* then we have a topology based alias, use it.
*
* Otherwise, the alias is for a device DMA quirk and we cannot
* assume that MSI uses the same requester ID. Therefore use the
* original device.
*/
if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
PCI_DEVID(PCI_BUS_NUM(data.alias),
dev->bus->number));
else if (data.pdev->bus->number != dev->bus->number)
set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
else
set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
PCI_DEVID(dev->bus->number, dev->devfn));
return 0;
}
static int iommu_load_old_irte(struct intel_iommu *iommu)
{
struct irte *old_ir_table;
phys_addr_t irt_phys;
unsigned int i;
size_t size;
u64 irta;
/* Check whether the old ir-table has the same size as ours */
irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
!= INTR_REMAP_TABLE_REG_SIZE)
return -EINVAL;
irt_phys = irta & VTD_PAGE_MASK;
size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
/* Map the old IR table */
old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
if (!old_ir_table)
return -ENOMEM;
/* Copy data over */
memcpy(iommu->ir_table->base, old_ir_table, size);
__iommu_flush_cache(iommu, iommu->ir_table->base, size);
/*
* Now check the table for used entries and mark those as
* allocated in the bitmap
*/
for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
if (iommu->ir_table->base[i].present)
bitmap_set(iommu->ir_table->bitmap, i, 1);
}
memunmap(old_ir_table);
return 0;
}
static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
{
unsigned long flags;
u64 addr;
u32 sts;
addr = virt_to_phys((void *)iommu->ir_table->base);
raw_spin_lock_irqsave(&iommu->register_lock, flags);
dmar_writeq(iommu->reg + DMAR_IRTA_REG,
(addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
/* Set interrupt-remapping table pointer */
writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, (sts & DMA_GSTS_IRTPS), sts);
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
/*
* Global invalidation of interrupt entry cache to make sure the
* hardware uses the new irq remapping table.
*/
qi_global_iec(iommu);
}
static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
{
unsigned long flags;
u32 sts;
raw_spin_lock_irqsave(&iommu->register_lock, flags);
/* Enable interrupt-remapping */
iommu->gcmd |= DMA_GCMD_IRE;
iommu->gcmd &= ~DMA_GCMD_CFI; /* Block compatibility-format MSIs */
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, (sts & DMA_GSTS_IRES), sts);
/*
* With CFI clear in the Global Command register, we should be
* protected from dangerous (i.e. compatibility) interrupts
* regardless of x2apic status. Check just to be sure.
*/
if (sts & DMA_GSTS_CFIS)
WARN(1, KERN_WARNING
"Compatibility-format IRQs enabled despite intr remapping;\n"
"you are vulnerable to IRQ injection.\n");
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
}
static int intel_setup_irq_remapping(struct intel_iommu *iommu)
{
struct ir_table *ir_table;
struct fwnode_handle *fn;
unsigned long *bitmap;
struct page *pages;
if (iommu->ir_table)
return 0;
ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
if (!ir_table)
return -ENOMEM;
pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
INTR_REMAP_PAGE_ORDER);
if (!pages) {
pr_err("IR%d: failed to allocate pages of order %d\n",
iommu->seq_id, INTR_REMAP_PAGE_ORDER);
goto out_free_table;
}
bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES),
sizeof(long), GFP_ATOMIC);
if (bitmap == NULL) {
pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
goto out_free_pages;
}
fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
if (!fn)
goto out_free_bitmap;
iommu->ir_domain =
irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
0, INTR_REMAP_TABLE_ENTRIES,
fn, &intel_ir_domain_ops,
iommu);
irq_domain_free_fwnode(fn);
if (!iommu->ir_domain) {
pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
goto out_free_bitmap;
}
iommu->ir_msi_domain =
arch_create_remap_msi_irq_domain(iommu->ir_domain,
"INTEL-IR-MSI",
iommu->seq_id);
ir_table->base = page_address(pages);
ir_table->bitmap = bitmap;
iommu->ir_table = ir_table;
/*
* If the queued invalidation is already initialized,
* shouldn't disable it.
*/
if (!iommu->qi) {
/*
* Clear previous faults.
*/
dmar_fault(-1, iommu);
dmar_disable_qi(iommu);
if (dmar_enable_qi(iommu)) {
pr_err("Failed to enable queued invalidation\n");
goto out_free_bitmap;
}
}
init_ir_status(iommu);
if (ir_pre_enabled(iommu)) {
if (!is_kdump_kernel()) {
pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
iommu->name);
clear_ir_pre_enabled(iommu);
iommu_disable_irq_remapping(iommu);
} else if (iommu_load_old_irte(iommu))
pr_err("Failed to copy IR table for %s from previous kernel\n",
iommu->name);
else
pr_info("Copied IR table for %s from previous kernel\n",
iommu->name);
}
iommu_set_irq_remapping(iommu, eim_mode);
return 0;
out_free_bitmap:
kfree(bitmap);
out_free_pages:
__free_pages(pages, INTR_REMAP_PAGE_ORDER);
out_free_table:
kfree(ir_table);
iommu->ir_table = NULL;
return -ENOMEM;
}
static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
{
if (iommu && iommu->ir_table) {
if (iommu->ir_msi_domain) {
irq_domain_remove(iommu->ir_msi_domain);
iommu->ir_msi_domain = NULL;
}
if (iommu->ir_domain) {
irq_domain_remove(iommu->ir_domain);
iommu->ir_domain = NULL;
}
free_pages((unsigned long)iommu->ir_table->base,
INTR_REMAP_PAGE_ORDER);
kfree(iommu->ir_table->bitmap);
kfree(iommu->ir_table);
iommu->ir_table = NULL;
}
}
/*
* Disable Interrupt Remapping.
*/
static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
{
unsigned long flags;
u32 sts;
if (!ecap_ir_support(iommu->ecap))
return;
/*
* global invalidation of interrupt entry cache before disabling
* interrupt-remapping.
*/
qi_global_iec(iommu);
raw_spin_lock_irqsave(&iommu->register_lock, flags);
sts = readl(iommu->reg + DMAR_GSTS_REG);
if (!(sts & DMA_GSTS_IRES))
goto end;
iommu->gcmd &= ~DMA_GCMD_IRE;
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, !(sts & DMA_GSTS_IRES), sts);
end:
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
}
static int __init dmar_x2apic_optout(void)
{
struct acpi_table_dmar *dmar;
dmar = (struct acpi_table_dmar *)dmar_tbl;
if (!dmar || no_x2apic_optout)
return 0;
return dmar->flags & DMAR_X2APIC_OPT_OUT;
}
static void __init intel_cleanup_irq_remapping(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
for_each_iommu(iommu, drhd) {
if (ecap_ir_support(iommu->ecap)) {
iommu_disable_irq_remapping(iommu);
intel_teardown_irq_remapping(iommu);
}
}
if (x2apic_supported())
pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
}
static int __init intel_prepare_irq_remapping(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
int eim = 0;
if (irq_remap_broken) {
pr_warn("This system BIOS has enabled interrupt remapping\n"
"on a chipset that contains an erratum making that\n"
"feature unstable. To maintain system stability\n"
"interrupt remapping is being disabled. Please\n"
"contact your BIOS vendor for an update\n");
add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
return -ENODEV;
}
if (dmar_table_init() < 0)
return -ENODEV;
if (!dmar_ir_support())
return -ENODEV;
if (parse_ioapics_under_ir()) {
pr_info("Not enabling interrupt remapping\n");
goto error;
}
/* First make sure all IOMMUs support IRQ remapping */
for_each_iommu(iommu, drhd)
if (!ecap_ir_support(iommu->ecap))
goto error;
/* Detect remapping mode: lapic or x2apic */
if (x2apic_supported()) {
eim = !dmar_x2apic_optout();
if (!eim) {
pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
}
}
for_each_iommu(iommu, drhd) {
if (eim && !ecap_eim_support(iommu->ecap)) {
pr_info("%s does not support EIM\n", iommu->name);
eim = 0;
}
}
eim_mode = eim;
if (eim)
pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
/* Do the initializations early */
for_each_iommu(iommu, drhd) {
if (intel_setup_irq_remapping(iommu)) {
pr_err("Failed to setup irq remapping for %s\n",
iommu->name);
goto error;
}
}
return 0;
error:
intel_cleanup_irq_remapping();
return -ENODEV;
}
/*
* Set Posted-Interrupts capability.
*/
static inline void set_irq_posting_cap(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
if (!disable_irq_post) {
/*
* If IRTE is in posted format, the 'pda' field goes across the
* 64-bit boundary, we need use cmpxchg16b to atomically update
* it. We only expose posted-interrupt when X86_FEATURE_CX16
* is supported. Actually, hardware platforms supporting PI
* should have X86_FEATURE_CX16 support, this has been confirmed
* with Intel hardware guys.
*/
if (boot_cpu_has(X86_FEATURE_CX16))
intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
for_each_iommu(iommu, drhd)
if (!cap_pi_support(iommu->cap)) {
intel_irq_remap_ops.capability &=
~(1 << IRQ_POSTING_CAP);
break;
}
}
}
static int __init intel_enable_irq_remapping(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
bool setup = false;
/*
* Setup Interrupt-remapping for all the DRHD's now.
*/
for_each_iommu(iommu, drhd) {
if (!ir_pre_enabled(iommu))
iommu_enable_irq_remapping(iommu);
setup = true;
}
if (!setup)
goto error;
irq_remapping_enabled = 1;
set_irq_posting_cap();
pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
error:
intel_cleanup_irq_remapping();
return -1;
}
static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
struct intel_iommu *iommu,
struct acpi_dmar_hardware_unit *drhd)
{
struct acpi_dmar_pci_path *path;
u8 bus;
int count, free = -1;
bus = scope->bus;
path = (struct acpi_dmar_pci_path *)(scope + 1);
count = (scope->length - sizeof(struct acpi_dmar_device_scope))
/ sizeof(struct acpi_dmar_pci_path);
while (--count > 0) {
/*
* Access PCI directly due to the PCI
* subsystem isn't initialized yet.
*/
bus = read_pci_config_byte(bus, path->device, path->function,
PCI_SECONDARY_BUS);
path++;
}
for (count = 0; count < MAX_HPET_TBS; count++) {
if (ir_hpet[count].iommu == iommu &&
ir_hpet[count].id == scope->enumeration_id)
return 0;
else if (ir_hpet[count].iommu == NULL && free == -1)
free = count;
}
if (free == -1) {
pr_warn("Exceeded Max HPET blocks\n");
return -ENOSPC;
}
ir_hpet[free].iommu = iommu;
ir_hpet[free].id = scope->enumeration_id;
ir_hpet[free].bus = bus;
ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
pr_info("HPET id %d under DRHD base 0x%Lx\n",
scope->enumeration_id, drhd->address);
return 0;
}
static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
struct intel_iommu *iommu,
struct acpi_dmar_hardware_unit *drhd)
{
struct acpi_dmar_pci_path *path;
u8 bus;
int count, free = -1;
bus = scope->bus;
path = (struct acpi_dmar_pci_path *)(scope + 1);
count = (scope->length - sizeof(struct acpi_dmar_device_scope))
/ sizeof(struct acpi_dmar_pci_path);
while (--count > 0) {
/*
* Access PCI directly due to the PCI
* subsystem isn't initialized yet.
*/
bus = read_pci_config_byte(bus, path->device, path->function,
PCI_SECONDARY_BUS);
path++;
}
for (count = 0; count < MAX_IO_APICS; count++) {
if (ir_ioapic[count].iommu == iommu &&
ir_ioapic[count].id == scope->enumeration_id)
return 0;
else if (ir_ioapic[count].iommu == NULL && free == -1)
free = count;
}
if (free == -1) {
pr_warn("Exceeded Max IO APICS\n");
return -ENOSPC;
}
ir_ioapic[free].bus = bus;
ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
ir_ioapic[free].iommu = iommu;
ir_ioapic[free].id = scope->enumeration_id;
pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
scope->enumeration_id, drhd->address, iommu->seq_id);
return 0;
}
static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
struct intel_iommu *iommu)
{
int ret = 0;
struct acpi_dmar_hardware_unit *drhd;
struct acpi_dmar_device_scope *scope;
void *start, *end;
drhd = (struct acpi_dmar_hardware_unit *)header;
start = (void *)(drhd + 1);
end = ((void *)drhd) + header->length;
while (start < end && ret == 0) {
scope = start;
if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
start += scope->length;
}
return ret;
}
static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
{
int i;
for (i = 0; i < MAX_HPET_TBS; i++)
if (ir_hpet[i].iommu == iommu)
ir_hpet[i].iommu = NULL;
for (i = 0; i < MAX_IO_APICS; i++)
if (ir_ioapic[i].iommu == iommu)
ir_ioapic[i].iommu = NULL;
}
/*
* Finds the assocaition between IOAPIC's and its Interrupt-remapping
* hardware unit.
*/
static int __init parse_ioapics_under_ir(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
bool ir_supported = false;
int ioapic_idx;
for_each_iommu(iommu, drhd) {
int ret;
if (!ecap_ir_support(iommu->ecap))
continue;
ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
if (ret)
return ret;
ir_supported = true;
}
if (!ir_supported)
return -ENODEV;
for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
int ioapic_id = mpc_ioapic_id(ioapic_idx);
if (!map_ioapic_to_ir(ioapic_id)) {
pr_err(FW_BUG "ioapic %d has no mapping iommu, "
"interrupt remapping will be disabled\n",
ioapic_id);
return -1;
}
}
return 0;
}
static int __init ir_dev_scope_init(void)
{
int ret;
if (!irq_remapping_enabled)
return 0;
down_write(&dmar_global_lock);
ret = dmar_dev_scope_init();
up_write(&dmar_global_lock);
return ret;
}
rootfs_initcall(ir_dev_scope_init);
static void disable_irq_remapping(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu = NULL;
/*
* Disable Interrupt-remapping for all the DRHD's now.
*/
for_each_iommu(iommu, drhd) {
if (!ecap_ir_support(iommu->ecap))
continue;
iommu_disable_irq_remapping(iommu);
}
/*
* Clear Posted-Interrupts capability.
*/
if (!disable_irq_post)
intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
}
static int reenable_irq_remapping(int eim)
{
struct dmar_drhd_unit *drhd;
bool setup = false;
struct intel_iommu *iommu = NULL;
for_each_iommu(iommu, drhd)
if (iommu->qi)
dmar_reenable_qi(iommu);
/*
* Setup Interrupt-remapping for all the DRHD's now.
*/
for_each_iommu(iommu, drhd) {
if (!ecap_ir_support(iommu->ecap))
continue;
/* Set up interrupt remapping for iommu.*/
iommu_set_irq_remapping(iommu, eim);
iommu_enable_irq_remapping(iommu);
setup = true;
}
if (!setup)
goto error;
set_irq_posting_cap();
return 0;
error:
/*
* handle error condition gracefully here!
*/
return -1;
}
static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
{
memset(irte, 0, sizeof(*irte));
irte->present = 1;
irte->dst_mode = apic->irq_dest_mode;
/*
* Trigger mode in the IRTE will always be edge, and for IO-APIC, the
* actual level or edge trigger will be setup in the IO-APIC
* RTE. This will help simplify level triggered irq migration.
* For more details, see the comments (in io_apic.c) explainig IO-APIC
* irq migration in the presence of interrupt-remapping.
*/
irte->trigger_mode = 0;
irte->dlvry_mode = apic->irq_delivery_mode;
irte->vector = vector;
irte->dest_id = IRTE_DEST(dest);
irte->redir_hint = 1;
}
static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
{
struct intel_iommu *iommu = NULL;
if (!info)
return NULL;
switch (info->type) {
case X86_IRQ_ALLOC_TYPE_IOAPIC:
iommu = map_ioapic_to_ir(info->ioapic_id);
break;
case X86_IRQ_ALLOC_TYPE_HPET:
iommu = map_hpet_to_ir(info->hpet_id);
break;
case X86_IRQ_ALLOC_TYPE_MSI:
case X86_IRQ_ALLOC_TYPE_MSIX:
iommu = map_dev_to_ir(info->msi_dev);
break;
default:
BUG_ON(1);
break;
}
return iommu ? iommu->ir_domain : NULL;
}
static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
{
struct intel_iommu *iommu;
if (!info)
return NULL;
switch (info->type) {
case X86_IRQ_ALLOC_TYPE_MSI:
case X86_IRQ_ALLOC_TYPE_MSIX:
iommu = map_dev_to_ir(info->msi_dev);
if (iommu)
return iommu->ir_msi_domain;
break;
default:
break;
}
return NULL;
}
struct irq_remap_ops intel_irq_remap_ops = {
.prepare = intel_prepare_irq_remapping,
.enable = intel_enable_irq_remapping,
.disable = disable_irq_remapping,
.reenable = reenable_irq_remapping,
.enable_faulting = enable_drhd_fault_handling,
.get_ir_irq_domain = intel_get_ir_irq_domain,
.get_irq_domain = intel_get_irq_domain,
};
/*
* Migrate the IO-APIC irq in the presence of intr-remapping.
*
* For both level and edge triggered, irq migration is a simple atomic
* update(of vector and cpu destination) of IRTE and flush the hardware cache.
*
* For level triggered, we eliminate the io-apic RTE modification (with the
* updated vector information), by using a virtual vector (io-apic pin number).
* Real vector that is used for interrupting cpu will be coming from
* the interrupt-remapping table entry.
*
* As the migration is a simple atomic update of IRTE, the same mechanism
* is used to migrate MSI irq's in the presence of interrupt-remapping.
*/
static int
intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
bool force)
{
struct intel_ir_data *ir_data = data->chip_data;
struct irte *irte = &ir_data->irte_entry;
struct irq_cfg *cfg = irqd_cfg(data);
struct irq_data *parent = data->parent_data;
int ret;
ret = parent->chip->irq_set_affinity(parent, mask, force);
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
return ret;
/*
* Atomically updates the IRTE with the new destination, vector
* and flushes the interrupt entry cache.
*/
irte->vector = cfg->vector;
irte->dest_id = IRTE_DEST(cfg->dest_apicid);
/* Update the hardware only if the interrupt is in remapped mode. */
if (ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
modify_irte(&ir_data->irq_2_iommu, irte);
/*
* After this point, all the interrupts will start arriving
* at the new destination. So, time to cleanup the previous
* vector allocation.
*/
send_cleanup_vector(cfg);
return IRQ_SET_MASK_OK_DONE;
}
static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
struct msi_msg *msg)
{
struct intel_ir_data *ir_data = irq_data->chip_data;
*msg = ir_data->msi_entry;
}
static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
{
struct intel_ir_data *ir_data = data->chip_data;
struct vcpu_data *vcpu_pi_info = info;
/* stop posting interrupts, back to remapping mode */
if (!vcpu_pi_info) {
modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
} else {
struct irte irte_pi;
/*
* We are not caching the posted interrupt entry. We
* copy the data from the remapped entry and modify
* the fields which are relevant for posted mode. The
* cached remapped entry is used for switching back to
* remapped mode.
*/
memset(&irte_pi, 0, sizeof(irte_pi));
dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
/* Update the posted mode fields */
irte_pi.p_pst = 1;
irte_pi.p_urgent = 0;
irte_pi.p_vector = vcpu_pi_info->vector;
irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
~(-1UL << PDA_HIGH_BIT);
modify_irte(&ir_data->irq_2_iommu, &irte_pi);
}
return 0;
}
static struct irq_chip intel_ir_chip = {
.name = "INTEL-IR",
.irq_ack = ir_ack_apic_edge,
.irq_set_affinity = intel_ir_set_affinity,
.irq_compose_msi_msg = intel_ir_compose_msi_msg,
.irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
};
static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
struct irq_cfg *irq_cfg,
struct irq_alloc_info *info,
int index, int sub_handle)
{
struct IR_IO_APIC_route_entry *entry;
struct irte *irte = &data->irte_entry;
struct msi_msg *msg = &data->msi_entry;
prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
switch (info->type) {
case X86_IRQ_ALLOC_TYPE_IOAPIC:
/* Set source-id of interrupt request */
set_ioapic_sid(irte, info->ioapic_id);
apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
info->ioapic_id, irte->present, irte->fpd,
irte->dst_mode, irte->redir_hint,
irte->trigger_mode, irte->dlvry_mode,
irte->avail, irte->vector, irte->dest_id,
irte->sid, irte->sq, irte->svt);
entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
info->ioapic_entry = NULL;
memset(entry, 0, sizeof(*entry));
entry->index2 = (index >> 15) & 0x1;
entry->zero = 0;
entry->format = 1;
entry->index = (index & 0x7fff);
/*
* IO-APIC RTE will be configured with virtual vector.
* irq handler will do the explicit EOI to the io-apic.
*/
entry->vector = info->ioapic_pin;
entry->mask = 0; /* enable IRQ */
entry->trigger = info->ioapic_trigger;
entry->polarity = info->ioapic_polarity;
if (info->ioapic_trigger)
entry->mask = 1; /* Mask level triggered irqs. */
break;
case X86_IRQ_ALLOC_TYPE_HPET:
case X86_IRQ_ALLOC_TYPE_MSI:
case X86_IRQ_ALLOC_TYPE_MSIX:
if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
set_hpet_sid(irte, info->hpet_id);
else
set_msi_sid(irte, info->msi_dev);
msg->address_hi = MSI_ADDR_BASE_HI;
msg->data = sub_handle;
msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
MSI_ADDR_IR_SHV |
MSI_ADDR_IR_INDEX1(index) |
MSI_ADDR_IR_INDEX2(index);
break;
default:
BUG_ON(1);
break;
}
}
static void intel_free_irq_resources(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs)
{
struct irq_data *irq_data;
struct intel_ir_data *data;
struct irq_2_iommu *irq_iommu;
unsigned long flags;
int i;
for (i = 0; i < nr_irqs; i++) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
if (irq_data && irq_data->chip_data) {
data = irq_data->chip_data;
irq_iommu = &data->irq_2_iommu;
raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
clear_entries(irq_iommu);
raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
irq_domain_reset_irq_data(irq_data);
kfree(data);
}
}
}
static int intel_irq_remapping_alloc(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs,
void *arg)
{
struct intel_iommu *iommu = domain->host_data;
struct irq_alloc_info *info = arg;
struct intel_ir_data *data, *ird;
struct irq_data *irq_data;
struct irq_cfg *irq_cfg;
int i, ret, index;
if (!info || !iommu)
return -EINVAL;
if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
info->type != X86_IRQ_ALLOC_TYPE_MSIX)
return -EINVAL;
/*
* With IRQ remapping enabled, don't need contiguous CPU vectors
* to support multiple MSI interrupts.
*/
if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
if (ret < 0)
return ret;
ret = -ENOMEM;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
goto out_free_parent;
down_read(&dmar_global_lock);
index = alloc_irte(iommu, virq, &data->irq_2_iommu, nr_irqs);
up_read(&dmar_global_lock);
if (index < 0) {
pr_warn("Failed to allocate IRTE\n");
kfree(data);
goto out_free_parent;
}
for (i = 0; i < nr_irqs; i++) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
irq_cfg = irqd_cfg(irq_data);
if (!irq_data || !irq_cfg) {
ret = -EINVAL;
goto out_free_data;
}
if (i > 0) {
ird = kzalloc(sizeof(*ird), GFP_KERNEL);
if (!ird)
goto out_free_data;
/* Initialize the common data */
ird->irq_2_iommu = data->irq_2_iommu;
ird->irq_2_iommu.sub_handle = i;
} else {
ird = data;
}
irq_data->hwirq = (index << 16) + i;
irq_data->chip_data = ird;
irq_data->chip = &intel_ir_chip;
intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
}
return 0;
out_free_data:
intel_free_irq_resources(domain, virq, i);
out_free_parent:
irq_domain_free_irqs_common(domain, virq, nr_irqs);
return ret;
}
static void intel_irq_remapping_free(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs)
{
intel_free_irq_resources(domain, virq, nr_irqs);
irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
static void intel_irq_remapping_activate(struct irq_domain *domain,
struct irq_data *irq_data)
{
struct intel_ir_data *data = irq_data->chip_data;
modify_irte(&data->irq_2_iommu, &data->irte_entry);
}
static void intel_irq_remapping_deactivate(struct irq_domain *domain,
struct irq_data *irq_data)
{
struct intel_ir_data *data = irq_data->chip_data;
struct irte entry;
memset(&entry, 0, sizeof(entry));
modify_irte(&data->irq_2_iommu, &entry);
}
static const struct irq_domain_ops intel_ir_domain_ops = {
.alloc = intel_irq_remapping_alloc,
.free = intel_irq_remapping_free,
.activate = intel_irq_remapping_activate,
.deactivate = intel_irq_remapping_deactivate,
};
/*
* Support of Interrupt Remapping Unit Hotplug
*/
static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
{
int ret;
int eim = x2apic_enabled();
if (eim && !ecap_eim_support(iommu->ecap)) {
pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
iommu->reg_phys, iommu->ecap);
return -ENODEV;
}
if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
iommu->reg_phys);
return -ENODEV;
}
/* TODO: check all IOAPICs are covered by IOMMU */
/* Setup Interrupt-remapping now. */
ret = intel_setup_irq_remapping(iommu);
if (ret) {
pr_err("Failed to setup irq remapping for %s\n",
iommu->name);
intel_teardown_irq_remapping(iommu);
ir_remove_ioapic_hpet_scope(iommu);
} else {
iommu_enable_irq_remapping(iommu);
}
return ret;
}
int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
int ret = 0;
struct intel_iommu *iommu = dmaru->iommu;
if (!irq_remapping_enabled)
return 0;
if (iommu == NULL)
return -EINVAL;
if (!ecap_ir_support(iommu->ecap))
return 0;
if (irq_remapping_cap(IRQ_POSTING_CAP) &&
!cap_pi_support(iommu->cap))
return -EBUSY;
if (insert) {
if (!iommu->ir_table)
ret = dmar_ir_add(dmaru, iommu);
} else {
if (iommu->ir_table) {
if (!bitmap_empty(iommu->ir_table->bitmap,
INTR_REMAP_TABLE_ENTRIES)) {
ret = -EBUSY;
} else {
iommu_disable_irq_remapping(iommu);
intel_teardown_irq_remapping(iommu);
ir_remove_ioapic_hpet_scope(iommu);
}
}
}
return ret;
}