blob: 708ec057592aea19618f221291052aa8ba2cbaed [file] [log] [blame]
.. section-numbering::
:suffix: .
.. contents::
ARM Trusted Firmware - version 1.4
==================================
New features
------------
- Enabled support for platforms with hardware assisted coherency.
A new build option HW_ASSISTED_COHERENCY allows platforms to take advantage
of the following optimisations:
- Skip performing cache maintenance during power-up and power-down.
- Use spin-locks instead of bakery locks.
- Enable data caches early on warm-booted CPUs.
- Added support for Cortex-A75 and Cortex-A55 processors.
Both Cortex-A75 and Cortex-A55 processors use the ARM DynamIQ Shared Unit
(DSU). The power-down and power-up sequences are therefore mostly managed in
hardware, reducing complexity of the software operations.
- Introduced ARM GIC-600 driver.
ARM GIC-600 IP complies with ARM GICv3 architecture. For FVP platforms, the
GIC-600 driver is chosen when FVP_USE_GIC_DRIVER is set to FVP_GIC600.
- Updated GICv3 support:
- Introduced power management APIs for GICv3 Redistributor. These APIs
allow platforms to power down the Redistributor during CPU power on/off.
Requires the GICv3 implementations to have power management operations.
Implemented the power management APIs for FVP.
- GIC driver data is flushed by the primary CPU so that secondary CPU do
not read stale GIC data.
- Added support for ARM System Control and Management Interface v1.0 (SCMI).
The SCMI driver implements the power domain management and system power
management protocol of the SCMI specification (ARM DEN 0056ASCMI) for
communicating with any compliant power controller.
Support is added for the Juno platform. The driver can be found in the
plat/arm/css/drivers folder.
- Added support to enable pre-integration of TBB with the ARM TrustZone
CryptoCell product, to take advantage of its hardware Root of Trust and
crypto acceleration services.
- Enabled Statistical Profiling Extensions for lower ELs.
The firmware support is limited to the use of SPE in the Non-secure state
and accesses to the SPE specific registers from S-EL1 will trap to EL3.
The SPE are architecturally specified for AArch64 only.
- Code hygiene changes aligned with MISRA guidelines:
- Fixed signed / unsigned comparison warnings in the translation table
library.
- Added U(_x) macro and together with the existing ULL(_x) macro fixed
some of the signed-ness defects flagged by the MISRA scanner.
- Enhancements to Firmware Update feature:
- The FWU logic now checks for overlapping images to prevent execution of
unauthenticated arbitary code.
- Introduced new FWU_SMC_IMAGE_RESET SMC that changes the image loading
state machine to go from COPYING, COPIED or AUTHENTICATED states to
RESET state. Previously, this was only possible when the authentication
of an image failed or when the execution of the image finished.
- Fixed integer overflow which addressed TFV-1: Malformed Firmware Update
SMC can result in copy of unexpectedly large data into secure memory.
- Introduced support for ARM Compiler 6 and LLVM (clang).
ARM TF can now also be built with the ARM Compiler 6 or the clang compilers.
The assembler and linker must be provided by the GNU toolchain.
Tested with ARM CC 6.7 and clang 3.9.x and 4.0.x.
- Memory footprint improvements:
- Introduced `tf_snprintf`, a reduced version of `snprintf` which has
support for a limited set of formats.
The mbedtls driver is updated to optionally use `tf_snprintf` instead of
`snprintf`.
- The `assert()` is updated to no longer print the function name, and
additional logging options are supported via an optional platform define
`PLAT_LOG_LEVEL_ASSERT`, which controls how verbose the assert output is.
- Enhancements to Trusted Firmware support when running in AArch32 execution
state:
- Support booting SP_MIN and BL33 in AArch32 execution mode on Juno. Due to
hardware limitations, BL1 and BL2 boot in AArch64 state and there is
additional trampoline code to warm reset into SP_MIN in AArch32 execution
state.
- Added support for ARM Cortex-A53/57/72 MPCore processors including the
errata workarounds that are already implemented for AArch64 execution
state.
- For FVP platforms, added AArch32 Trusted Board Boot support, including the
Firmware Update feature.
- Introduced ARM SiP service for use by ARM standard platforms.
- Added new ARM SiP Service SMCs to enable the Non-secure world to read PMF
timestamps.
Added PMF instrumentation points in ARM TF in order to quantify the
overall time spent in the PSCI software implementation.
- Added new ARM SiP service SMC to switch execution state.
This allows the lower exception level to change its execution state from
AArch64 to AArch32, or vice verse, via a request to EL3.
- Migrated to use SPDX[0] license identifiers to make software license
auditing simpler.
*NOTE:* Files that have been imported by FreeBSD have not been modified.
[0]: https://spdx.org/
- Enhancements to the translation table library:
- Added version 2 of translation table library that allows different
translation tables to be modified by using different 'contexts'. Version 1
of the transalation table library only allows the current EL's translation
tables to be modified.
Version 2 of the translation table also added support for dynamic
regions; regions that can be added and removed dynamically whilst the
MMU is enabled. Static regions can only be added or removed before the
MMU is enabled.
The dynamic mapping functionality is enabled or disabled when compiling
by setting the build option PLAT_XLAT_TABLES_DYNAMIC to 1 or 0. This can
be done per-image.
- Added support for translation regimes with two virtual address spaces
such as the one shared by EL1 and EL0.
The library does not support initializing translation tables for EL0
software.
- Added support to mark the translation tables as non-cacheable using an
additional build option `XLAT_TABLE_NC`.
- Added support for GCC stack protection. A new build option
ENABLE_STACK_PROTECTOR was introduced that enables compilation of all BL
images with one of the GCC -fstack-protector-* options.
A new platform function plat_get_stack_protector_canary() was introduced
that returns a value used to initialize the canary for stack corruption
detection. For increased effectiveness of protection platforms must provide
an implementation that returns a random value.
- Enhanced support for ARM platforms:
- Added support for multi-threading CPUs, indicated by `MT` field in MPDIR.
A new build flag `ARM_PLAT_MT` is added, and when enabled, the functions
accessing MPIDR assume that the `MT` bit is set for the platform and
access the bit fields accordingly.
Also, a new API `plat_arm_get_cpu_pe_count` is added when `ARM_PLAT_MT` is
enabled, returning the Processing Element count within the physical CPU
corresponding to `mpidr`.
- The ARM platforms migrated to use version 2 of the translation tables.
- Introduced a new ARM platform layer API `plat_arm_psci_override_pm_ops`
which allows ARM platforms to modify `plat_arm_psci_pm_ops` and therefore
dynamically define PSCI capability.
- The ARM platforms migrated to use IMAGE_LOAD_V2 by default.
- Enhanced reporting of errata workaround status with the following policy:
- If an errata workaround is enabled:
- If it applies (i.e. the CPU is affected by the errata), an INFO message
is printed, confirming that the errata workaround has been applied.
- If it does not apply, a VERBOSE message is printed, confirming that the
errata workaround has been skipped.
- If an errata workaround is not enabled, but would have applied had it
been, a WARN message is printed, alerting that errata workaround is
missing.
- Added build options ARM_ARCH_MAJOR and ARM_ARM_MINOR to choose the
architecture version to target ARM TF.
- Updated the spin lock implementation to use the more efficient CAS (Compare
And Swap) instruction when available. This instruction was introduced in
ARMv8.1-A.
- Applied errata workaround for ARM Cortex-A53: 855873.
- Applied errata workaround for ARM-Cortex-A57: 813419.
- Enabled all A53 and A57 errata workarounds for Juno, both in AArch64 and
AArch32 execution states.
- Added support for Socionext UniPhier SoC platform.
- Added support for Hikey960 and Hikey platforms.
- Added support for Rockchip RK3328 platform.
- Added support for NVidia Tegra T186 platform.
- Added support for Designware emmc driver.
- Imported libfdt v1.4.2 that addresses buffer overflow in fdt_offset_ptr().
- Enhanced the CPU operations framework to allow power handlers to be
registered on per-level basis. This enables support for future CPUs that
have multiple threads which might need powering down individually.
- Updated register initialisation to prevent unexpected behaviour:
- Debug registers MDCR-EL3/SDCR and MDCR_EL2/HDCR are initialised to avoid
unexpected traps into the higher exception levels and disable secure
self-hosted debug. Additionally, secure privileged external debug on
Juno is disabled by programming the appropriate Juno SoC registers.
- EL2 and EL3 configurable controls are initialised to avoid unexpected
traps in the higher exception levels.
- Essential control registers are fully initialised on EL3 start-up, when
initialising the non-secure and secure context structures and when
preparing to leave EL3 for a lower EL. This gives better alignement with
the ARM ARM which states that software must initialise RES0 and RES1
fields with 0 / 1.
- Enhanced PSCI support:
- Introduced new platform interfaces that decouple PSCI stat residency
calculation from PMF, enabling platforms to use alternative methods of
capturing timestamps.
- PSCI stat accounting performed for retention/standby states when
requested at multiple power levels.
- Simplified fiptool to have a single linked list of image descriptors.
- For the TSP, resolved corruption of pre-empted secure context by aborting any
pre-empted SMC during PSCI power management requests.
Issues resolved since last release
==================================
- ARM TF can be built with the latest mbed TLS version (v2.4.2). The earlier
version 2.3.0 cannot be used due to build warnings that the ARM TF build
system interprets as errors.
- TBBR, including the Firmware Update feature is now supported on FVP
platforms when running Trusted Firmware in AArch32 state.
- The version of the AEMv8 Base FVP used in this release has resolved the issue
of the model executing a reset instead of terminating in response to a
shutdown request using the PSCI SYSTEM_OFF API.
Known Issues
============
- Building TF with compiler optimisations disabled (-O0) fails.
- Trusted Board Boot currently does not work on Juno when running Trusted
Firmware in AArch32 execution state due to error when loading the sp_min to
memory becasue of lack of free space available. See `tf-issue#501`_ for more
details.
- The errata workaround for A53 errata 843419 is only available from binutils
2.26 and is not present in GCC4.9. If this errata is applicable to the
platform, please use GCC compiler version of at least 5.0. See `PR#1002`_ for
more details.
ARM Trusted Firmware - version 1.3
==================================
New features
------------
- Added support for running Trusted Firmware in AArch32 execution state.
The PSCI library has been refactored to allow integration with **EL3 Runtime
Software**. This is software that is executing at the highest secure
privilege which is EL3 in AArch64 or Secure SVC/Monitor mode in AArch32. See
`PSCI Integration Guide`_.
Included is a minimal AArch32 Secure Payload, **SP-MIN**, that illustrates
the usage and integration of the PSCI library with EL3 Runtime Software
running in AArch32 state.
Booting to the BL1/BL2 images as well as booting straight to the Secure
Payload is supported.
- Improvements to the initialization framework for the PSCI service and ARM
Standard Services in general.
The PSCI service is now initialized as part of ARM Standard Service
initialization. This consolidates the initializations of any ARM Standard
Service that may be added in the future.
A new function ``get_arm_std_svc_args()`` is introduced to get arguments
corresponding to each standard service and must be implemented by the EL3
Runtime Software.
For PSCI, a new versioned structure ``psci_lib_args_t`` is introduced to
initialize the PSCI Library. **Note** this is a compatibility break due to
the change in the prototype of ``psci_setup()``.
- To support AArch32 builds of BL1 and BL2, implemented a new, alternative
firmware image loading mechanism that adds flexibility.
The current mechanism has a hard-coded set of images and execution order
(BL31, BL32, etc). The new mechanism is data-driven by a list of image
descriptors provided by the platform code.
ARM platforms have been updated to support the new loading mechanism.
The new mechanism is enabled by a build flag (``LOAD_IMAGE_V2``) which is
currently off by default for the AArch64 build.
**Note** ``TRUSTED_BOARD_BOOT`` is currently not supported when
``LOAD_IMAGE_V2`` is enabled.
- Updated requirements for making contributions to ARM TF.
Commits now must have a 'Signed-off-by:' field to certify that the
contribution has been made under the terms of the
`Developer Certificate of Origin`_.
A signed CLA is no longer required.
The `Contribution Guide`_ has been updated to reflect this change.
- Introduced Performance Measurement Framework (PMF) which provides support
for capturing, storing, dumping and retrieving time-stamps to measure the
execution time of critical paths in the firmware. This relies on defining
fixed sample points at key places in the code.
- To support the QEMU platform port, imported libfdt v1.4.1 from
https://git.kernel.org/cgit/utils/dtc/dtc.git
- Updated PSCI support:
- Added support for PSCI NODE\_HW\_STATE API for ARM platforms.
- New optional platform hook, ``pwr_domain_pwr_down_wfi()``, in
``plat_psci_ops`` to enable platforms to perform platform-specific actions
needed to enter powerdown, including the 'wfi' invocation.
- PSCI STAT residency and count functions have been added on ARM platforms
by using PMF.
- Enhancements to the translation table library:
- Limited memory mapping support for region overlaps to only allow regions
to overlap that are identity mapped or have the same virtual to physical
address offset, and overlap completely but must not cover the same area.
This limitation will enable future enhancements without having to
support complex edge cases that may not be necessary.
- The initial translation lookup level is now inferred from the virtual
address space size. Previously, it was hard-coded.
- Added support for mapping Normal, Inner Non-cacheable, Outer
Non-cacheable memory in the translation table library.
This can be useful to map a non-cacheable memory region, such as a DMA
buffer.
- Introduced the MT\_EXECUTE/MT\_EXECUTE\_NEVER memory mapping attributes to
specify the access permissions for instruction execution of a memory
region.
- Enabled support to isolate code and read-only data on separate memory pages,
allowing independent access control to be applied to each.
- Enabled SCR\_EL3.SIF (Secure Instruction Fetch) bit in BL1 and BL31 common
architectural setup code, preventing fetching instructions from non-secure
memory when in secure state.
- Enhancements to FIP support:
- Replaced ``fip_create`` with ``fiptool`` which provides a more consistent
and intuitive interface as well as additional support to remove an image
from a FIP file.
- Enabled printing the SHA256 digest with info command, allowing quick
verification of an image within a FIP without having to extract the
image and running sha256sum on it.
- Added support for unpacking the contents of an existing FIP file into
the working directory.
- Aligned command line options for specifying images to use same naming
convention as specified by TBBR and already used in cert\_create tool.
- Refactored the TZC-400 driver to also support memory controllers that
integrate TZC functionality, for example ARM CoreLink DMC-500. Also added
DMC-500 specific support.
- Implemented generic delay timer based on the system generic counter and
migrated all platforms to use it.
- Enhanced support for ARM platforms:
- Updated image loading support to make SCP images (SCP\_BL2 and SCP\_BL2U)
optional.
- Enhanced topology description support to allow multi-cluster topology
definitions.
- Added interconnect abstraction layer to help platform ports select the
right interconnect driver, CCI or CCN, for the platform.
- Added support to allow loading BL31 in the TZC-secured DRAM instead of
the default secure SRAM.
- Added support to use a System Security Control (SSC) Registers Unit
enabling ARM TF to be compiled to support multiple ARM platforms and
then select one at runtime.
- Restricted mapping of Trusted ROM in BL1 to what is actually needed by
BL1 rather than entire Trusted ROM region.
- Flash is now mapped as execute-never by default. This increases security
by restricting the executable region to what is strictly needed.
- Applied following erratum workarounds for Cortex-A57: 833471, 826977,
829520, 828024 and 826974.
- Added support for Mediatek MT6795 platform.
- Added support for QEMU virtualization ARMv8-A target.
- Added support for Rockchip RK3368 and RK3399 platforms.
- Added support for Xilinx Zynq UltraScale+ MPSoC platform.
- Added support for ARM Cortex-A73 MPCore Processor.
- Added support for ARM Cortex-A72 processor.
- Added support for ARM Cortex-A35 processor.
- Added support for ARM Cortex-A32 MPCore Processor.
- Enabled preloaded BL33 alternative boot flow, in which BL2 does not load
BL33 from non-volatile storage and BL31 hands execution over to a preloaded
BL33. The User Guide has been updated with an example of how to use this
option with a bootwrapped kernel.
- Added support to build ARM TF on a Windows-based host machine.
- Updated Trusted Board Boot prototype implementation:
- Enabled the ability for a production ROM with TBBR enabled to boot test
software before a real ROTPK is deployed (e.g. manufacturing mode).
Added support to use ROTPK in certificate without verifying against the
platform value when ``ROTPK_NOT_DEPLOYED`` bit is set.
- Added support for non-volatile counter authentication to the
Authentication Module to protect against roll-back.
- Updated GICv3 support:
- Enabled processor power-down and automatic power-on using GICv3.
- Enabled G1S or G0 interrupts to be configured independently.
- Changed FVP default interrupt driver to be the GICv3-only driver.
**Note** the default build of Trusted Firmware will not be able to boot
Linux kernel with GICv2 FDT blob.
- Enabled wake-up from CPU\_SUSPEND to stand-by by temporarily re-routing
interrupts and then restoring after resume.
Issues resolved since last release
----------------------------------
Known issues
------------
- The version of the AEMv8 Base FVP used in this release resets the model
instead of terminating its execution in response to a shutdown request using
the PSCI ``SYSTEM_OFF`` API. This issue will be fixed in a future version of
the model.
- Building TF with compiler optimisations disabled (``-O0``) fails.
- ARM TF cannot be built with mbed TLS version v2.3.0 due to build warnings
that the ARM TF build system interprets as errors.
- TBBR is not currently supported when running Trusted Firmware in AArch32
state.
ARM Trusted Firmware - version 1.2
==================================
New features
------------
- The Trusted Board Boot implementation on ARM platforms now conforms to the
mandatory requirements of the TBBR specification.
In particular, the boot process is now guarded by a Trusted Watchdog, which
will reset the system in case of an authentication or loading error. On ARM
platforms, a secure instance of ARM SP805 is used as the Trusted Watchdog.
Also, a firmware update process has been implemented. It enables
authenticated firmware to update firmware images from external interfaces to
SoC Non-Volatile memories. This feature functions even when the current
firmware in the system is corrupt or missing; it therefore may be used as
a recovery mode.
- Improvements have been made to the Certificate Generation Tool
(``cert_create``) as follows.
- Added support for the Firmware Update process by extending the Chain
of Trust definition in the tool to include the Firmware Update
certificate and the required extensions.
- Introduced a new API that allows one to specify command line options in
the Chain of Trust description. This makes the declaration of the tool's
arguments more flexible and easier to extend.
- The tool has been reworked to follow a data driven approach, which
makes it easier to maintain and extend.
- Extended the FIP tool (``fip_create``) to support the new set of images
involved in the Firmware Update process.
- Various memory footprint improvements. In particular:
- The bakery lock structure for coherent memory has been optimised.
- The mbed TLS SHA1 functions are not needed, as SHA256 is used to
generate the certificate signature. Therefore, they have been compiled
out, reducing the memory footprint of BL1 and BL2 by approximately
6 KB.
- On ARM development platforms, each BL stage now individually defines
the number of regions that it needs to map in the MMU.
- Added the following new design documents:
- `Authentication framework`_
- `Firmware Update`_
- `TF Reset Design`_
- `Power Domain Topology Design`_
- Applied the new image terminology to the code base and documentation, as
described on the `TF wiki on GitHub`_.
- The build system has been reworked to improve readability and facilitate
adding future extensions.
- On ARM standard platforms, BL31 uses the boot console during cold boot
but switches to the runtime console for any later logs at runtime. The TSP
uses the runtime console for all output.
- Implemented a basic NOR flash driver for ARM platforms. It programs the
device using CFI (Common Flash Interface) standard commands.
- Implemented support for booting EL3 payloads on ARM platforms, which
reduces the complexity of developing EL3 baremetal code by doing essential
baremetal initialization.
- Provided separate drivers for GICv3 and GICv2. These expect the entire
software stack to use either GICv2 or GICv3; hybrid GIC software systems
are no longer supported and the legacy ARM GIC driver has been deprecated.
- Added support for Juno r1 and r2. A single set of Juno TF binaries can run
on Juno r0, r1 and r2 boards. Note that this TF version depends on a Linaro
release that does *not* contain Juno r2 support.
- Added support for MediaTek mt8173 platform.
- Implemented a generic driver for ARM CCN IP.
- Major rework of the PSCI implementation.
- Added framework to handle composite power states.
- Decoupled the notions of affinity instances (which describes the
hierarchical arrangement of cores) and of power domain topology, instead
of assuming a one-to-one mapping.
- Better alignment with version 1.0 of the PSCI specification.
- Added support for the SYSTEM\_SUSPEND PSCI API on ARM platforms. When invoked
on the last running core on a supported platform, this puts the system
into a low power mode with memory retention.
- Unified the reset handling code as much as possible across BL stages.
Also introduced some build options to enable optimization of the reset path
on platforms that support it.
- Added a simple delay timer API, as well as an SP804 timer driver, which is
enabled on FVP.
- Added support for NVidia Tegra T210 and T132 SoCs.
- Reorganised ARM platforms ports to greatly improve code shareability and
facilitate the reuse of some of this code by other platforms.
- Added support for ARM Cortex-A72 processor in the CPU specific framework.
- Provided better error handling. Platform ports can now define their own
error handling, for example to perform platform specific bookkeeping or
post-error actions.
- Implemented a unified driver for ARM Cache Coherent Interconnects used for
both CCI-400 & CCI-500 IPs. ARM platforms ports have been migrated to this
common driver. The standalone CCI-400 driver has been deprecated.
Issues resolved since last release
----------------------------------
- The Trusted Board Boot implementation has been redesigned to provide greater
modularity and scalability. See the `Authentication Framework`_ document.
All missing mandatory features are now implemented.
- The FVP and Juno ports may now use the hash of the ROTPK stored in the
Trusted Key Storage registers to verify the ROTPK. Alternatively, a
development public key hash embedded in the BL1 and BL2 binaries might be
used instead. The location of the ROTPK is chosen at build-time using the
``ARM_ROTPK_LOCATION`` build option.
- GICv3 is now fully supported and stable.
Known issues
------------
- The version of the AEMv8 Base FVP used in this release resets the model
instead of terminating its execution in response to a shutdown request using
the PSCI ``SYSTEM_OFF`` API. This issue will be fixed in a future version of
the model.
- While this version has low on-chip RAM requirements, there are further
RAM usage enhancements that could be made.
- The upstream documentation could be improved for structural consistency,
clarity and completeness. In particular, the design documentation is
incomplete for PSCI, the TSP(D) and the Juno platform.
- Building TF with compiler optimisations disabled (``-O0``) fails.
ARM Trusted Firmware - version 1.1
==================================
New features
------------
- A prototype implementation of Trusted Board Boot has been added. Boot
loader images are verified by BL1 and BL2 during the cold boot path. BL1 and
BL2 use the PolarSSL SSL library to verify certificates and images. The
OpenSSL library is used to create the X.509 certificates. Support has been
added to ``fip_create`` tool to package the certificates in a FIP.
- Support for calling CPU and platform specific reset handlers upon entry into
BL3-1 during the cold and warm boot paths has been added. This happens after
another Boot ROM ``reset_handler()`` has already run. This enables a developer
to perform additional actions or undo actions already performed during the
first call of the reset handlers e.g. apply additional errata workarounds.
- Support has been added to demonstrate routing of IRQs to EL3 instead of
S-EL1 when execution is in secure world.
- The PSCI implementation now conforms to version 1.0 of the PSCI
specification. All the mandatory APIs and selected optional APIs are
supported. In particular, support for the ``PSCI_FEATURES`` API has been
added. A capability variable is constructed during initialization by
examining the ``plat_pm_ops`` and ``spd_pm_ops`` exported by the platform and
the Secure Payload Dispatcher. This is used by the PSCI FEATURES function
to determine which PSCI APIs are supported by the platform.
- Improvements have been made to the PSCI code as follows.
- The code has been refactored to remove redundant parameters from
internal functions.
- Changes have been made to the code for PSCI ``CPU_SUSPEND``, ``CPU_ON`` and
``CPU_OFF`` calls to facilitate an early return to the caller in case a
failure condition is detected. For example, a PSCI ``CPU_SUSPEND`` call
returns ``SUCCESS`` to the caller if a pending interrupt is detected early
in the code path.
- Optional platform APIs have been added to validate the ``power_state`` and
``entrypoint`` parameters early in PSCI ``CPU_ON`` and ``CPU_SUSPEND`` code
paths.
- PSCI migrate APIs have been reworked to invoke the SPD hook to determine
the type of Trusted OS and the CPU it is resident on (if
applicable). Also, during a PSCI ``MIGRATE`` call, the SPD hook to migrate
the Trusted OS is invoked.
- It is now possible to build Trusted Firmware without marking at least an
extra page of memory as coherent. The build flag ``USE_COHERENT_MEM`` can be
used to choose between the two implementations. This has been made possible
through these changes.
- An implementation of Bakery locks, where the locks are not allocated in
coherent memory has been added.
- Memory which was previously marked as coherent is now kept coherent
through the use of software cache maintenance operations.
Approximately, 4K worth of memory is saved for each boot loader stage when
``USE_COHERENT_MEM=0``. Enabling this option increases the latencies
associated with acquire and release of locks. It also requires changes to
the platform ports.
- It is now possible to specify the name of the FIP at build time by defining
the ``FIP_NAME`` variable.
- Issues with depedencies on the 'fiptool' makefile target have been
rectified. The ``fip_create`` tool is now rebuilt whenever its source files
change.
- The BL3-1 runtime console is now also used as the crash console. The crash
console is changed to SoC UART0 (UART2) from the previous FPGA UART0 (UART0)
on Juno. In FVP, it is changed from UART0 to UART1.
- CPU errata workarounds are applied only when the revision and part number
match. This behaviour has been made consistent across the debug and release
builds. The debug build additionally prints a warning if a mismatch is
detected.
- It is now possible to issue cache maintenance operations by set/way for a
particular level of data cache. Levels 1-3 are currently supported.
- The following improvements have been made to the FVP port.
- The build option ``FVP_SHARED_DATA_LOCATION`` which allowed relocation of
shared data into the Trusted DRAM has been deprecated. Shared data is
now always located at the base of Trusted SRAM.
- BL2 Translation tables have been updated to map only the region of
DRAM which is accessible to normal world. This is the region of the 2GB
DDR-DRAM memory at 0x80000000 excluding the top 16MB. The top 16MB is
accessible to only the secure world.
- BL3-2 can now reside in the top 16MB of DRAM which is accessible only to
the secure world. This can be done by setting the build flag
``FVP_TSP_RAM_LOCATION`` to the value ``dram``.
- Separate transation tables are created for each boot loader image. The
``IMAGE_BLx`` build options are used to do this. This allows each stage to
create mappings only for areas in the memory map that it needs.
- A Secure Payload Dispatcher (OPTEED) for the OP-TEE Trusted OS has been
added. Details of using it with ARM Trusted Firmware can be found in
`OP-TEE Dispatcher`_
Issues resolved since last release
----------------------------------
- The Juno port has been aligned with the FVP port as follows.
- Support for reclaiming all BL1 RW memory and BL2 memory by overlaying
the BL3-1/BL3-2 NOBITS sections on top of them has been added to the
Juno port.
- The top 16MB of the 2GB DDR-DRAM memory at 0x80000000 is configured
using the TZC-400 controller to be accessible only to the secure world.
- The ARM GIC driver is used to configure the GIC-400 instead of using a
GIC driver private to the Juno port.
- PSCI ``CPU_SUSPEND`` calls that target a standby state are now supported.
- The TZC-400 driver is used to configure the controller instead of direct
accesses to the registers.
- The Linux kernel version referred to in the user guide has DVFS and HMP
support enabled.
- DS-5 v5.19 did not detect Version 5.8 of the Cortex-A57-A53 Base FVPs in
CADI server mode. This issue is not seen with DS-5 v5.20 and Version 6.2 of
the Cortex-A57-A53 Base FVPs.
Known issues
------------
- The Trusted Board Boot implementation is a prototype. There are issues with
the modularity and scalability of the design. Support for a Trusted
Watchdog, firmware update mechanism, recovery images and Trusted debug is
absent. These issues will be addressed in future releases.
- The FVP and Juno ports do not use the hash of the ROTPK stored in the
Trusted Key Storage registers to verify the ROTPK in the
``plat_match_rotpk()`` function. This prevents the correct establishment of
the Chain of Trust at the first step in the Trusted Board Boot process.
- The version of the AEMv8 Base FVP used in this release resets the model
instead of terminating its execution in response to a shutdown request using
the PSCI ``SYSTEM_OFF`` API. This issue will be fixed in a future version of
the model.
- GICv3 support is experimental. There are known issues with GICv3
initialization in the ARM Trusted Firmware.
- While this version greatly reduces the on-chip RAM requirements, there are
further RAM usage enhancements that could be made.
- The firmware design documentation for the Test Secure-EL1 Payload (TSP) and
its dispatcher (TSPD) is incomplete. Similarly for the PSCI section.
- The Juno-specific firmware design documentation is incomplete.
ARM Trusted Firmware - version 1.0
==================================
New features
------------
- It is now possible to map higher physical addresses using non-flat virtual
to physical address mappings in the MMU setup.
- Wider use is now made of the per-CPU data cache in BL3-1 to store:
- Pointers to the non-secure and secure security state contexts.
- A pointer to the CPU-specific operations.
- A pointer to PSCI specific information (for example the current power
state).
- A crash reporting buffer.
- The following RAM usage improvements result in a BL3-1 RAM usage reduction
from 96KB to 56KB (for FVP with TSPD), and a total RAM usage reduction
across all images from 208KB to 88KB, compared to the previous release.
- Removed the separate ``early_exception`` vectors from BL3-1 (2KB code size
saving).
- Removed NSRAM from the FVP memory map, allowing the removal of one
(4KB) translation table.
- Eliminated the internal ``psci_suspend_context`` array, saving 2KB.
- Correctly dimensioned the PSCI ``aff_map_node`` array, saving 1.5KB in the
FVP port.
- Removed calling CPU mpidr from the bakery lock API, saving 160 bytes.
- Removed current CPU mpidr from PSCI common code, saving 160 bytes.
- Inlined the mmio accessor functions, saving 360 bytes.
- Fully reclaimed all BL1 RW memory and BL2 memory on the FVP port by
overlaying the BL3-1/BL3-2 NOBITS sections on top of these at runtime.
- Made storing the FP register context optional, saving 0.5KB per context
(8KB on the FVP port, with TSPD enabled and running on 8 CPUs).
- Implemented a leaner ``tf_printf()`` function, allowing the stack to be
greatly reduced.
- Removed coherent stacks from the codebase. Stacks allocated in normal
memory are now used before and after the MMU is enabled. This saves 768
bytes per CPU in BL3-1.
- Reworked the crash reporting in BL3-1 to use less stack.
- Optimized the EL3 register state stored in the ``cpu_context`` structure
so that registers that do not change during normal execution are
re-initialized each time during cold/warm boot, rather than restored
from memory. This saves about 1.2KB.
- As a result of some of the above, reduced the runtime stack size in all
BL images. For BL3-1, this saves 1KB per CPU.
- PSCI SMC handler improvements to correctly handle calls from secure states
and from AArch32.
- CPU contexts are now initialized from the ``entry_point_info``. BL3-1 fully
determines the exception level to use for the non-trusted firmware (BL3-3)
based on the SPSR value provided by the BL2 platform code (or otherwise
provided to BL3-1). This allows platform code to directly run non-trusted
firmware payloads at either EL2 or EL1 without requiring an EL2 stub or OS
loader.
- Code refactoring improvements:
- Refactored ``fvp_config`` into a common platform header.
- Refactored the fvp gic code to be a generic driver that no longer has an
explicit dependency on platform code.
- Refactored the CCI-400 driver to not have dependency on platform code.
- Simplified the IO driver so it's no longer necessary to call ``io_init()``
and moved all the IO storage framework code to one place.
- Simplified the interface the the TZC-400 driver.
- Clarified the platform porting interface to the TSP.
- Reworked the TSPD setup code to support the alternate BL3-2
intialization flow where BL3-1 generic code hands control to BL3-2,
rather than expecting the TSPD to hand control directly to BL3-2.
- Considerable rework to PSCI generic code to support CPU specific
operations.
- Improved console log output, by:
- Adding the concept of debug log levels.
- Rationalizing the existing debug messages and adding new ones.
- Printing out the version of each BL stage at runtime.
- Adding support for printing console output from assembler code,
including when a crash occurs before the C runtime is initialized.
- Moved up to the latest versions of the FVPs, toolchain, EDK2, kernel, Linaro
file system and DS-5.
- On the FVP port, made the use of the Trusted DRAM region optional at build
time (off by default). Normal platforms will not have such a "ready-to-use"
DRAM area so it is not a good example to use it.
- Added support for PSCI ``SYSTEM_OFF`` and ``SYSTEM_RESET`` APIs.
- Added support for CPU specific reset sequences, power down sequences and
register dumping during crash reporting. The CPU specific reset sequences
include support for errata workarounds.
- Merged the Juno port into the master branch. Added support for CPU hotplug
and CPU idle. Updated the user guide to describe how to build and run on the
Juno platform.
Issues resolved since last release
----------------------------------
- Removed the concept of top/bottom image loading. The image loader now
automatically detects the position of the image inside the current memory
layout and updates the layout to minimize fragementation. This resolves the
image loader limitations of previously releases. There are currently no
plans to support dynamic image loading.
- CPU idle now works on the publicized version of the Foundation FVP.
- All known issues relating to the compiler version used have now been
resolved. This TF version uses Linaro toolchain 14.07 (based on GCC 4.9).
Known issues
------------
- GICv3 support is experimental. The Linux kernel patches to support this are
not widely available. There are known issues with GICv3 initialization in
the ARM Trusted Firmware.
- While this version greatly reduces the on-chip RAM requirements, there are
further RAM usage enhancements that could be made.
- The firmware design documentation for the Test Secure-EL1 Payload (TSP) and
its dispatcher (TSPD) is incomplete. Similarly for the PSCI section.
- The Juno-specific firmware design documentation is incomplete.
- Some recent enhancements to the FVP port have not yet been translated into
the Juno port. These will be tracked via the tf-issues project.
- The Linux kernel version referred to in the user guide has DVFS and HMP
support disabled due to some known instabilities at the time of this
release. A future kernel version will re-enable these features.
- DS-5 v5.19 does not detect Version 5.8 of the Cortex-A57-A53 Base FVPs in
CADI server mode. This is because the ``<SimName>`` reported by the FVP in
this version has changed. For example, for the Cortex-A57x4-A53x4 Base FVP,
the ``<SimName>`` reported by the FVP is ``FVP_Base_Cortex_A57x4_A53x4``, while
DS-5 expects it to be ``FVP_Base_A57x4_A53x4``.
The temporary fix to this problem is to change the name of the FVP in
``sw/debugger/configdb/Boards/ARM FVP/Base_A57x4_A53x4/cadi_config.xml``.
Change the following line:
::
<SimName>System Generator:FVP_Base_A57x4_A53x4</SimName>
to
System Generator:FVP\_Base\_Cortex-A57x4\_A53x4
A similar change can be made to the other Cortex-A57-A53 Base FVP variants.
ARM Trusted Firmware - version 0.4
==================================
New features
------------
- Makefile improvements:
- Improved dependency checking when building.
- Removed ``dump`` target (build now always produces dump files).
- Enabled platform ports to optionally make use of parts of the Trusted
Firmware (e.g. BL3-1 only), rather than being forced to use all parts.
Also made the ``fip`` target optional.
- Specified the full path to source files and removed use of the ``vpath``
keyword.
- Provided translation table library code for potential re-use by platforms
other than the FVPs.
- Moved architectural timer setup to platform-specific code.
- Added standby state support to PSCI cpu\_suspend implementation.
- SRAM usage improvements:
- Started using the ``-ffunction-sections``, ``-fdata-sections`` and
``--gc-sections`` compiler/linker options to remove unused code and data
from the images. Previously, all common functions were being built into
all binary images, whether or not they were actually used.
- Placed all assembler functions in their own section to allow more unused
functions to be removed from images.
- Updated BL1 and BL2 to use a single coherent stack each, rather than one
per CPU.
- Changed variables that were unnecessarily declared and initialized as
non-const (i.e. in the .data section) so they are either uninitialized
(zero init) or const.
- Moved the Test Secure-EL1 Payload (BL3-2) to execute in Trusted SRAM by
default. The option for it to run in Trusted DRAM remains.
- Implemented a TrustZone Address Space Controller (TZC-400) driver. A
default configuration is provided for the Base FVPs. This means the model
parameter ``-C bp.secure_memory=1`` is now supported.
- Started saving the PSCI cpu\_suspend 'power\_state' parameter prior to
suspending a CPU. This allows platforms that implement multiple power-down
states at the same affinity level to identify a specific state.
- Refactored the entire codebase to reduce the amount of nesting in header
files and to make the use of system/user includes more consistent. Also
split platform.h to separate out the platform porting declarations from the
required platform porting definitions and the definitions/declarations
specific to the platform port.
- Optimized the data cache clean/invalidate operations.
- Improved the BL3-1 unhandled exception handling and reporting. Unhandled
exceptions now result in a dump of registers to the console.
- Major rework to the handover interface between BL stages, in particular the
interface to BL3-1. The interface now conforms to a specification and is
more future proof.
- Added support for optionally making the BL3-1 entrypoint a reset handler
(instead of BL1). This allows platforms with an alternative image loading
architecture to re-use BL3-1 with fewer modifications to generic code.
- Reserved some DDR DRAM for secure use on FVP platforms to avoid future
compatibility problems with non-secure software.
- Added support for secure interrupts targeting the Secure-EL1 Payload (SP)
(using GICv2 routing only). Demonstrated this working by adding an interrupt
target and supporting test code to the TSP. Also demonstrated non-secure
interrupt handling during TSP processing.
Issues resolved since last release
----------------------------------
- Now support use of the model parameter ``-C bp.secure_memory=1`` in the Base
FVPs (see **New features**).
- Support for secure world interrupt handling now available (see **New
features**).
- Made enough SRAM savings (see **New features**) to enable the Test Secure-EL1
Payload (BL3-2) to execute in Trusted SRAM by default.
- The tested filesystem used for this release (Linaro AArch64 OpenEmbedded
14.04) now correctly reports progress in the console.
- Improved the Makefile structure to make it easier to separate out parts of
the Trusted Firmware for re-use in platform ports. Also, improved target
dependency checking.
Known issues
------------
- GICv3 support is experimental. The Linux kernel patches to support this are
not widely available. There are known issues with GICv3 initialization in
the ARM Trusted Firmware.
- Dynamic image loading is not available yet. The current image loader
implementation (used to load BL2 and all subsequent images) has some
limitations. Changing BL2 or BL3-1 load addresses in certain ways can lead
to loading errors, even if the images should theoretically fit in memory.
- The ARM Trusted Firmware still uses too much on-chip Trusted SRAM. A number
of RAM usage enhancements have been identified to rectify this situation.
- CPU idle does not work on the advertised version of the Foundation FVP.
Some FVP fixes are required that are not available externally at the time
of writing. This can be worked around by disabling CPU idle in the Linux
kernel.
- Various bugs in ARM Trusted Firmware, UEFI and the Linux kernel have been
observed when using Linaro toolchain versions later than 13.11. Although
most of these have been fixed, some remain at the time of writing. These
mainly seem to relate to a subtle change in the way the compiler converts
between 64-bit and 32-bit values (e.g. during casting operations), which
reveals previously hidden bugs in client code.
- The firmware design documentation for the Test Secure-EL1 Payload (TSP) and
its dispatcher (TSPD) is incomplete. Similarly for the PSCI section.
ARM Trusted Firmware - version 0.3
==================================
New features
------------
- Support for Foundation FVP Version 2.0 added.
The documented UEFI configuration disables some devices that are unavailable
in the Foundation FVP, including MMC and CLCD. The resultant UEFI binary can
be used on the AEMv8 and Cortex-A57-A53 Base FVPs, as well as the Foundation
FVP.
NOTE: The software will not work on Version 1.0 of the Foundation FVP.
- Enabled third party contributions. Added a new contributing.md containing
instructions for how to contribute and updated copyright text in all files
to acknowledge contributors.
- The PSCI CPU\_SUSPEND API has been stabilised to the extent where it can be
used for entry into power down states with the following restrictions:
- Entry into standby states is not supported.
- The API is only supported on the AEMv8 and Cortex-A57-A53 Base FVPs.
- The PSCI AFFINITY\_INFO api has undergone limited testing on the Base FVPs to
allow experimental use.
- Required C library and runtime header files are now included locally in ARM
Trusted Firmware instead of depending on the toolchain standard include
paths. The local implementation has been cleaned up and reduced in scope.
- Added I/O abstraction framework, primarily to allow generic code to load
images in a platform-independent way. The existing image loading code has
been reworked to use the new framework. Semi-hosting and NOR flash I/O
drivers are provided.
- Introduced Firmware Image Package (FIP) handling code and tools. A FIP
combines multiple firmware images with a Table of Contents (ToC) into a
single binary image. The new FIP driver is another type of I/O driver. The
Makefile builds a FIP by default and the FVP platform code expect to load a
FIP from NOR flash, although some support for image loading using semi-
hosting is retained.
NOTE: Building a FIP by default is a non-backwards-compatible change.
NOTE: Generic BL2 code now loads a BL3-3 (non-trusted firmware) image into
DRAM instead of expecting this to be pre-loaded at known location. This is
also a non-backwards-compatible change.
NOTE: Some non-trusted firmware (e.g. UEFI) will need to be rebuilt so that
it knows the new location to execute from and no longer needs to copy
particular code modules to DRAM itself.
- Reworked BL2 to BL3-1 handover interface. A new composite structure
(bl31\_args) holds the superset of information that needs to be passed from
BL2 to BL3-1, including information on how handover execution control to
BL3-2 (if present) and BL3-3 (non-trusted firmware).
- Added library support for CPU context management, allowing the saving and
restoring of
- Shared system registers between Secure-EL1 and EL1.
- VFP registers.
- Essential EL3 system registers.
- Added a framework for implementing EL3 runtime services. Reworked the PSCI
implementation to be one such runtime service.
- Reworked the exception handling logic, making use of both SP\_EL0 and SP\_EL3
stack pointers for determining the type of exception, managing general
purpose and system register context on exception entry/exit, and handling
SMCs. SMCs are directed to the correct EL3 runtime service.
- Added support for a Test Secure-EL1 Payload (TSP) and a corresponding
Dispatcher (TSPD), which is loaded as an EL3 runtime service. The TSPD
implements Secure Monitor functionality such as world switching and
EL1 context management, and is responsible for communication with the TSP.
NOTE: The TSPD does not yet contain support for secure world interrupts.
NOTE: The TSP/TSPD is not built by default.
Issues resolved since last release
----------------------------------
- Support has been added for switching context between secure and normal
worlds in EL3.
- PSCI API calls ``AFFINITY_INFO`` & ``PSCI_VERSION`` have now been tested (to
a limited extent).
- The ARM Trusted Firmware build artifacts are now placed in the ``./build``
directory and sub-directories instead of being placed in the root of the
project.
- The ARM Trusted Firmware is now free from build warnings. Build warnings
are now treated as errors.
- The ARM Trusted Firmware now provides C library support locally within the
project to maintain compatibility between toolchains/systems.
- The PSCI locking code has been reworked so it no longer takes locks in an
incorrect sequence.
- The RAM-disk method of loading a Linux file-system has been confirmed to
work with the ARM Trusted Firmware and Linux kernel version (based on
version 3.13) used in this release, for both Foundation and Base FVPs.
Known issues
------------
The following is a list of issues which are expected to be fixed in the future
releases of the ARM Trusted Firmware.
- The TrustZone Address Space Controller (TZC-400) is not being programmed
yet. Use of model parameter ``-C bp.secure_memory=1`` is not supported.
- No support yet for secure world interrupt handling.
- GICv3 support is experimental. The Linux kernel patches to support this are
not widely available. There are known issues with GICv3 initialization in
the ARM Trusted Firmware.
- Dynamic image loading is not available yet. The current image loader
implementation (used to load BL2 and all subsequent images) has some
limitations. Changing BL2 or BL3-1 load addresses in certain ways can lead
to loading errors, even if the images should theoretically fit in memory.
- The ARM Trusted Firmware uses too much on-chip Trusted SRAM. Currently the
Test Secure-EL1 Payload (BL3-2) executes in Trusted DRAM since there is not
enough SRAM. A number of RAM usage enhancements have been identified to
rectify this situation.
- CPU idle does not work on the advertised version of the Foundation FVP.
Some FVP fixes are required that are not available externally at the time
of writing.
- Various bugs in ARM Trusted Firmware, UEFI and the Linux kernel have been
observed when using Linaro toolchain versions later than 13.11. Although
most of these have been fixed, some remain at the time of writing. These
mainly seem to relate to a subtle change in the way the compiler converts
between 64-bit and 32-bit values (e.g. during casting operations), which
reveals previously hidden bugs in client code.
- The tested filesystem used for this release (Linaro AArch64 OpenEmbedded
14.01) does not report progress correctly in the console. It only seems to
produce error output, not standard output. It otherwise appears to function
correctly. Other filesystem versions on the same software stack do not
exhibit the problem.
- The Makefile structure doesn't make it easy to separate out parts of the
Trusted Firmware for re-use in platform ports, for example if only BL3-1 is
required in a platform port. Also, dependency checking in the Makefile is
flawed.
- The firmware design documentation for the Test Secure-EL1 Payload (TSP) and
its dispatcher (TSPD) is incomplete. Similarly for the PSCI section.
ARM Trusted Firmware - version 0.2
==================================
New features
------------
- First source release.
- Code for the PSCI suspend feature is supplied, although this is not enabled
by default since there are known issues (see below).
Issues resolved since last release
----------------------------------
- The "psci" nodes in the FDTs provided in this release now fully comply
with the recommendations made in the PSCI specification.
Known issues
------------
The following is a list of issues which are expected to be fixed in the future
releases of the ARM Trusted Firmware.
- The TrustZone Address Space Controller (TZC-400) is not being programmed
yet. Use of model parameter ``-C bp.secure_memory=1`` is not supported.
- No support yet for secure world interrupt handling or for switching context
between secure and normal worlds in EL3.
- GICv3 support is experimental. The Linux kernel patches to support this are
not widely available. There are known issues with GICv3 initialization in
the ARM Trusted Firmware.
- Dynamic image loading is not available yet. The current image loader
implementation (used to load BL2 and all subsequent images) has some
limitations. Changing BL2 or BL3-1 load addresses in certain ways can lead
to loading errors, even if the images should theoretically fit in memory.
- Although support for PSCI ``CPU_SUSPEND`` is present, it is not yet stable
and ready for use.
- PSCI API calls ``AFFINITY_INFO`` & ``PSCI_VERSION`` are implemented but have not
been tested.
- The ARM Trusted Firmware make files result in all build artifacts being
placed in the root of the project. These should be placed in appropriate
sub-directories.
- The compilation of ARM Trusted Firmware is not free from compilation
warnings. Some of these warnings have not been investigated yet so they
could mask real bugs.
- The ARM Trusted Firmware currently uses toolchain/system include files like
stdio.h. It should provide versions of these within the project to maintain
compatibility between toolchains/systems.
- The PSCI code takes some locks in an incorrect sequence. This may cause
problems with suspend and hotplug in certain conditions.
- The Linux kernel used in this release is based on version 3.12-rc4. Using
this kernel with the ARM Trusted Firmware fails to start the file-system as
a RAM-disk. It fails to execute user-space ``init`` from the RAM-disk. As an
alternative, the VirtioBlock mechanism can be used to provide a file-system
to the kernel.
--------------
*Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved.*
.. _PSCI Integration Guide: psci-lib-integration-guide.rst
.. _Developer Certificate of Origin: ../dco.txt
.. _Contribution Guide: ../contributing.rst
.. _Authentication framework: auth-framework.rst
.. _Firmware Update: firmware-update.rst
.. _TF Reset Design: reset-design.rst
.. _Power Domain Topology Design: psci-pd-tree.rst
.. _TF wiki on GitHub: https://github.com/ARM-software/arm-trusted-firmware/wiki/ARM-Trusted-Firmware-Image-Terminology
.. _Authentication Framework: auth-framework.rst
.. _OP-TEE Dispatcher: optee-dispatcher.rst
.. _tf-issue#501: https://github.com/ARM-software/tf-issues/issues/501
.. _PR#1002: https://github.com/ARM-software/arm-trusted-firmware/pull/1002#issuecomment-312650193