blob: 7790c979dfbeb405632d89e09cbd959a343ef91a [file] [log] [blame]
/*
* Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/*
* Top-level SMC handler for ZynqMP power management calls and
* IPI setup functions for communication with PMU.
*/
#include <errno.h>
#include <runtime_svc.h>
#include "../zynqmp_private.h"
#include "pm_api_sys.h"
#include "pm_client.h"
#include "pm_ipi.h"
#if ZYNQMP_WDT_RESTART
#include <arch_helpers.h>
#include <gicv2.h>
#include <mmio.h>
#include <platform.h>
#include <spinlock.h>
#endif
#define PM_SET_SUSPEND_MODE 0xa02
#define PM_GET_TRUSTZONE_VERSION 0xa03
/* !0 - UP, 0 - DOWN */
static int32_t pm_up = 0;
#if ZYNQMP_WDT_RESTART
static spinlock_t inc_lock;
static int active_cores = 0;
#endif
/**
* pm_context - Structure which contains data for power management
* @api_version version of PM API, must match with one on PMU side
* @payload payload array used to store received
* data from ipi buffer registers
*/
static struct {
uint32_t api_version;
uint32_t payload[PAYLOAD_ARG_CNT];
} pm_ctx;
#if ZYNQMP_WDT_RESTART
/**
* trigger_wdt_restart() - Trigger warm restart event to APU cores
*
* This function triggers SGI for all active APU CPUs. SGI handler then
* power down CPU and call system reset.
*/
static void trigger_wdt_restart(void)
{
uint32_t core_count = 0;
uint32_t core_status[3];
uint32_t target_cpu_list = 0;
int i;
for (i = 0; i < 4; i++) {
pm_get_node_status(NODE_APU_0 + i, core_status);
if (core_status[0] == 1) {
core_count++;
target_cpu_list |= (1 << i);
}
}
spin_lock(&inc_lock);
active_cores = core_count;
spin_unlock(&inc_lock);
INFO("Active Cores: %d\n", active_cores);
/* trigger SGI to active cores */
gicv2_raise_sgi(ARM_IRQ_SEC_SGI_7, target_cpu_list);
}
/**
* ttc_fiq_handler() - TTC Handler for timer event
* @id number of the highest priority pending interrupt of the type
* that this handler was registered for
* @flags security state, bit[0]
* @handler pointer to 'cpu_context' structure of the current CPU for the
* security state specified in the 'flags' parameter
* @cookie unused
*
* Function registered as INTR_TYPE_EL3 interrupt handler
*
* When WDT event is received in PMU, PMU needs to notify master to do cleanup
* if required. PMU sets up timer and starts timer to overflow in zero time upon
* WDT event. ATF handles this timer event and takes necessary action required
* for warm restart.
*
* In presence of non-secure software layers (EL1/2) sets the interrupt
* at registered entrance in GIC and informs that PMU responsed or demands
* action.
*/
static uint64_t ttc_fiq_handler(uint32_t id, uint32_t flags, void *handle,
void *cookie)
{
INFO("BL31: Got TTC FIQ\n");
/* Clear TTC interrupt by reading interrupt register */
mmio_read_32(TTC3_INTR_REGISTER_1);
/* Disable the timer interrupts */
mmio_write_32(TTC3_INTR_ENABLE_1, 0);
trigger_wdt_restart();
return 0;
}
/**
* zynqmp_sgi7_irq() - Handler for SGI7 IRQ
* @id number of the highest priority pending interrupt of the type
* that this handler was registered for
* @flags security state, bit[0]
* @handler pointer to 'cpu_context' structure of the current CPU for the
* security state specified in the 'flags' parameter
* @cookie unused
*
* Function registered as INTR_TYPE_EL3 interrupt handler
*
* On receiving WDT event from PMU, ATF generates SGI7 to all running CPUs.
* In response to SGI7 interrupt, each CPUs do clean up if required and last
* running CPU calls system restart.
*/
static uint64_t __unused __dead2 zynqmp_sgi7_irq(uint32_t id, uint32_t flags,
void *handle, void *cookie)
{
int i;
/* enter wfi and stay there */
INFO("Entering wfi\n");
spin_lock(&inc_lock);
active_cores--;
for (i = 0; i < 4; i++) {
mmio_write_32(BASE_GICD_BASE + GICD_CPENDSGIR + 4 * i,
0xffffffff);
}
spin_unlock(&inc_lock);
if (active_cores == 0) {
pm_system_shutdown(PMF_SHUTDOWN_TYPE_RESET,
PMF_SHUTDOWN_SUBTYPE_SUBSYSTEM);
}
/* enter wfi and stay there */
while (1)
wfi();
}
/**
* pm_wdt_restart_setup() - Setup warm restart interrupts
*
* This function sets up handler for SGI7 and TTC interrupts
* used for warm restart.
*/
static int pm_wdt_restart_setup(void)
{
int ret;
/* register IRQ handler for SGI7 */
ret = request_intr_type_el3(ARM_IRQ_SEC_SGI_7, zynqmp_sgi7_irq);
if (ret) {
WARN("BL31: registering SGI7 interrupt failed\n");
goto err;
}
ret = request_intr_type_el3(IRQ_TTC3_1, ttc_fiq_handler);
if (ret)
WARN("BL31: registering TTC3 interrupt failed\n");
err:
return ret;
}
#endif
/**
* pm_setup() - PM service setup
*
* @return On success, the initialization function must return 0.
* Any other return value will cause the framework to ignore
* the service
*
* Initialization functions for ZynqMP power management for
* communicaton with PMU.
*
* Called from sip_svc_setup initialization function with the
* rt_svc_init signature.
*/
int pm_setup(void)
{
int status, ret;
status = pm_ipi_init(primary_proc);
#if ZYNQMP_WDT_RESTART
status = pm_wdt_restart_setup();
if (status)
WARN("BL31: warm-restart setup failed\n");
#endif
if (status >= 0) {
INFO("BL31: PM Service Init Complete: API v%d.%d\n",
PM_VERSION_MAJOR, PM_VERSION_MINOR);
ret = 0;
} else {
INFO("BL31: PM Service Init Failed, Error Code %d!\n", status);
ret = status;
}
pm_up = !status;
return ret;
}
/**
* pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2.
* @smc_fid - Function Identifier
* @x1 - x4 - Arguments
* @cookie - Unused
* @handler - Pointer to caller's context structure
*
* @return - Unused
*
* Determines that smc_fid is valid and supported PM SMC Function ID from the
* list of pm_api_ids, otherwise completes the request with
* the unknown SMC Function ID
*
* The SMC calls for PM service are forwarded from SIP Service SMC handler
* function with rt_svc_handle signature
*/
uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
uint64_t x4, void *cookie, void *handle, uint64_t flags)
{
enum pm_ret_status ret;
uint32_t pm_arg[4];
/* Handle case where PM wasn't initialized properly */
if (!pm_up)
SMC_RET1(handle, SMC_UNK);
pm_arg[0] = (uint32_t)x1;
pm_arg[1] = (uint32_t)(x1 >> 32);
pm_arg[2] = (uint32_t)x2;
pm_arg[3] = (uint32_t)(x2 >> 32);
switch (smc_fid & FUNCID_NUM_MASK) {
/* PM API Functions */
case PM_SELF_SUSPEND:
ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3]);
SMC_RET1(handle, (uint64_t)ret);
case PM_REQ_SUSPEND:
ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3]);
SMC_RET1(handle, (uint64_t)ret);
case PM_REQ_WAKEUP:
{
/* Use address flag is encoded in the 1st bit of the low-word */
unsigned int set_addr = pm_arg[1] & 0x1;
uint64_t address = (uint64_t)pm_arg[2] << 32;
address |= pm_arg[1] & (~0x1);
ret = pm_req_wakeup(pm_arg[0], set_addr, address,
pm_arg[3]);
SMC_RET1(handle, (uint64_t)ret);
}
case PM_FORCE_POWERDOWN:
ret = pm_force_powerdown(pm_arg[0], pm_arg[1]);
SMC_RET1(handle, (uint64_t)ret);
case PM_ABORT_SUSPEND:
ret = pm_abort_suspend(pm_arg[0]);
SMC_RET1(handle, (uint64_t)ret);
case PM_SET_WAKEUP_SOURCE:
ret = pm_set_wakeup_source(pm_arg[0], pm_arg[1], pm_arg[2]);
SMC_RET1(handle, (uint64_t)ret);
case PM_SYSTEM_SHUTDOWN:
ret = pm_system_shutdown(pm_arg[0], pm_arg[1]);
SMC_RET1(handle, (uint64_t)ret);
case PM_REQ_NODE:
ret = pm_req_node(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
SMC_RET1(handle, (uint64_t)ret);
case PM_RELEASE_NODE:
ret = pm_release_node(pm_arg[0]);
SMC_RET1(handle, (uint64_t)ret);
case PM_SET_REQUIREMENT:
ret = pm_set_requirement(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3]);
SMC_RET1(handle, (uint64_t)ret);
case PM_SET_MAX_LATENCY:
ret = pm_set_max_latency(pm_arg[0], pm_arg[1]);
SMC_RET1(handle, (uint64_t)ret);
case PM_GET_API_VERSION:
/* Check is PM API version already verified */
if (pm_ctx.api_version == PM_VERSION) {
SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
((uint64_t)PM_VERSION << 32));
}
ret = pm_get_api_version(&pm_ctx.api_version);
/*
* Enable IPI IRQ
* assume the rich OS is OK to handle callback IRQs now.
* Even if we were wrong, it would not enable the IRQ in
* the GIC.
*/
pm_ipi_irq_enable(primary_proc);
SMC_RET1(handle, (uint64_t)ret |
((uint64_t)pm_ctx.api_version << 32));
case PM_SET_CONFIGURATION:
ret = pm_set_configuration(pm_arg[0]);
SMC_RET1(handle, (uint64_t)ret);
case PM_INIT_FINALIZE:
ret = pm_init_finalize();
SMC_RET1(handle, (uint64_t)ret);
case PM_GET_NODE_STATUS:
{
uint32_t buff[3];
ret = pm_get_node_status(pm_arg[0], buff);
SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buff[0] << 32),
(uint64_t)buff[1] | ((uint64_t)buff[2] << 32));
}
case PM_GET_OP_CHARACTERISTIC:
{
uint32_t result;
ret = pm_get_op_characteristic(pm_arg[0], pm_arg[1], &result);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result << 32));
}
case PM_REGISTER_NOTIFIER:
ret = pm_register_notifier(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3]);
SMC_RET1(handle, (uint64_t)ret);
case PM_RESET_ASSERT:
ret = pm_reset_assert(pm_arg[0], pm_arg[1]);
SMC_RET1(handle, (uint64_t)ret);
case PM_RESET_GET_STATUS:
{
uint32_t reset_status;
ret = pm_reset_get_status(pm_arg[0], &reset_status);
SMC_RET1(handle, (uint64_t)ret |
((uint64_t)reset_status << 32));
}
/* PM memory access functions */
case PM_MMIO_WRITE:
ret = pm_mmio_write(pm_arg[0], pm_arg[1], pm_arg[2]);
SMC_RET1(handle, (uint64_t)ret);
case PM_MMIO_READ:
{
uint32_t value;
ret = pm_mmio_read(pm_arg[0], &value);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_FPGA_LOAD:
ret = pm_fpga_load(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
SMC_RET1(handle, (uint64_t)ret);
case PM_FPGA_GET_STATUS:
{
uint32_t value;
ret = pm_fpga_get_status(&value);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_GET_CHIPID:
{
uint32_t result[2];
ret = pm_get_chipid(result);
SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32),
result[1]);
}
case PM_SECURE_RSA_AES:
ret = pm_secure_rsaaes(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3]);
SMC_RET1(handle, (uint64_t)ret);
case PM_PINCTRL_REQUEST:
ret = pm_pinctrl_request(pm_arg[0]);
SMC_RET1(handle, (uint64_t)ret);
case PM_PINCTRL_RELEASE:
ret = pm_pinctrl_release(pm_arg[0]);
SMC_RET1(handle, (uint64_t)ret);
case PM_PINCTRL_GET_FUNCTION:
{
uint32_t value = 0;
ret = pm_pinctrl_get_function(pm_arg[0], &value);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_PINCTRL_SET_FUNCTION:
ret = pm_pinctrl_set_function(pm_arg[0], pm_arg[1]);
SMC_RET1(handle, (uint64_t)ret);
case PM_PINCTRL_CONFIG_PARAM_GET:
{
uint32_t value;
ret = pm_pinctrl_get_config(pm_arg[0], pm_arg[1], &value);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_PINCTRL_CONFIG_PARAM_SET:
ret = pm_pinctrl_set_config(pm_arg[0], pm_arg[1], pm_arg[2]);
SMC_RET1(handle, (uint64_t)ret);
case PM_IOCTL:
{
uint32_t value;
ret = pm_ioctl(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], &value);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_QUERY_DATA:
{
uint32_t data[4] = { 0 };
ret = pm_query_data(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], data);
SMC_RET2(handle, (uint64_t)data[0] | ((uint64_t)data[1] << 32),
(uint64_t)data[2] | ((uint64_t)data[3] << 32));
}
case PM_CLOCK_ENABLE:
ret = pm_clock_enable(pm_arg[0]);
SMC_RET1(handle, (uint64_t)ret);
case PM_CLOCK_DISABLE:
ret = pm_clock_disable(pm_arg[0]);
SMC_RET1(handle, (uint64_t)ret);
case PM_CLOCK_GETSTATE:
{
uint32_t value;
ret = pm_clock_getstate(pm_arg[0], &value);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_CLOCK_SETDIVIDER:
ret = pm_clock_setdivider(pm_arg[0], pm_arg[1]);
SMC_RET1(handle, (uint64_t)ret);
case PM_CLOCK_GETDIVIDER:
{
uint32_t value;
ret = pm_clock_getdivider(pm_arg[0], &value);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_CLOCK_SETRATE:
ret = pm_clock_setrate(pm_arg[0],
((uint64_t)pm_arg[2]) << 32 | pm_arg[1]);
SMC_RET1(handle, (uint64_t)ret);
case PM_CLOCK_GETRATE:
{
uint64_t value;
ret = pm_clock_getrate(pm_arg[0], &value);
SMC_RET2(handle, (uint64_t)ret |
(((uint64_t)value & 0xFFFFFFFFU) << 32U),
(value >> 32U) & 0xFFFFFFFFU);
}
case PM_CLOCK_SETPARENT:
ret = pm_clock_setparent(pm_arg[0], pm_arg[1]);
SMC_RET1(handle, (uint64_t)ret);
case PM_CLOCK_GETPARENT:
{
uint32_t value;
ret = pm_clock_getparent(pm_arg[0], &value);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_GET_TRUSTZONE_VERSION:
SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
((uint64_t)ZYNQMP_TZ_VERSION << 32));
case PM_SET_SUSPEND_MODE:
ret = pm_set_suspend_mode(pm_arg[0]);
SMC_RET1(handle, (uint64_t)ret);
case PM_SECURE_SHA:
ret = pm_sha_hash(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3]);
SMC_RET1(handle, (uint64_t)ret);
case PM_SECURE_RSA:
ret = pm_rsa_core(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3]);
SMC_RET1(handle, (uint64_t)ret);
case PM_SECURE_IMAGE:
{
uint32_t result[2];
ret = pm_secure_image(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], &result[0]);
SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32),
result[1]);
}
case PM_FPGA_READ:
{
uint32_t value;
ret = pm_fpga_read(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3],
&value);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
case PM_SECURE_AES:
{
uint32_t value;
ret = pm_aes_engine(pm_arg[0], pm_arg[1], &value);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
}
default:
WARN("Unimplemented PM Service Call: 0x%x\n", smc_fid);
SMC_RET1(handle, SMC_UNK);
}
}