blob: b005874632ac62af3b5f56a2501ff0dcec809578 [file] [log] [blame]
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <console.h>
#include <debug.h>
#include <dw_mmc.h>
#include <emmc.h>
#include <errno.h>
#include <gpio.h>
#include <hi6220.h>
#include <hi6553.h>
#include <mmio.h>
#include <pl061_gpio.h>
#include <platform.h>
#include <platform_def.h>
#include <sp804_delay_timer.h>
#include <string.h>
#include <tbbr/tbbr_img_desc.h>
#include "../../bl1/bl1_private.h"
#include "hikey_def.h"
#include "hikey_private.h"
/*
* Declarations of linker defined symbols which will help us find the layout
* of trusted RAM
*/
extern unsigned long __COHERENT_RAM_START__;
extern unsigned long __COHERENT_RAM_END__;
/*
* The next 2 constants identify the extents of the coherent memory region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
* page-aligned addresses.
*/
#define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
/* Data structure which holds the extents of the trusted RAM for BL1 */
static meminfo_t bl1_tzram_layout;
enum {
BOOT_NORMAL = 0,
BOOT_USB_DOWNLOAD,
BOOT_UART_DOWNLOAD,
};
meminfo_t *bl1_plat_sec_mem_layout(void)
{
return &bl1_tzram_layout;
}
/*
* Perform any BL1 specific platform actions.
*/
void bl1_early_platform_setup(void)
{
const size_t bl1_size = BL1_RAM_LIMIT - BL1_RAM_BASE;
/* Initialize the console to provide early debug support */
console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
/* Allow BL1 to see the whole Trusted RAM */
bl1_tzram_layout.total_base = BL1_RW_BASE;
bl1_tzram_layout.total_size = BL1_RW_SIZE;
/* Calculate how much RAM BL1 is using and how much remains free */
bl1_tzram_layout.free_base = BL1_RW_BASE;
bl1_tzram_layout.free_size = BL1_RW_SIZE;
reserve_mem(&bl1_tzram_layout.free_base,
&bl1_tzram_layout.free_size,
BL1_RAM_BASE,
bl1_size);
INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT,
bl1_size);
}
/*
* Perform the very early platform specific architecture setup here. At the
* moment this only does basic initialization. Later architectural setup
* (bl1_arch_setup()) does not do anything platform specific.
*/
void bl1_plat_arch_setup(void)
{
hikey_init_mmu_el3(bl1_tzram_layout.total_base,
bl1_tzram_layout.total_size,
BL1_RO_BASE,
BL1_RO_LIMIT,
BL1_COHERENT_RAM_BASE,
BL1_COHERENT_RAM_LIMIT);
}
static void hikey_sp804_init(void)
{
uint32_t data;
/* select the clock of dual timer0 */
data = mmio_read_32(AO_SC_TIMER_EN0);
while (data & 3) {
data &= ~3;
data |= 3 << 16;
mmio_write_32(AO_SC_TIMER_EN0, data);
data = mmio_read_32(AO_SC_TIMER_EN0);
}
/* enable the pclk of dual timer0 */
data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4);
while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0)) {
mmio_write_32(AO_SC_PERIPH_CLKEN4, PCLK_TIMER1 | PCLK_TIMER0);
data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4);
}
/* reset dual timer0 */
data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
mmio_write_32(AO_SC_PERIPH_RSTEN4, PCLK_TIMER1 | PCLK_TIMER0);
do {
data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
} while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0));
/* unreset dual timer0 */
mmio_write_32(AO_SC_PERIPH_RSTDIS4, PCLK_TIMER1 | PCLK_TIMER0);
do {
data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
} while ((data & PCLK_TIMER1) || (data & PCLK_TIMER0));
sp804_timer_init(SP804_TIMER0_BASE, 10, 192);
}
static void hikey_gpio_init(void)
{
pl061_gpio_init();
pl061_gpio_register(GPIO0_BASE, 0);
pl061_gpio_register(GPIO1_BASE, 1);
pl061_gpio_register(GPIO2_BASE, 2);
pl061_gpio_register(GPIO3_BASE, 3);
pl061_gpio_register(GPIO4_BASE, 4);
pl061_gpio_register(GPIO5_BASE, 5);
pl061_gpio_register(GPIO6_BASE, 6);
pl061_gpio_register(GPIO7_BASE, 7);
pl061_gpio_register(GPIO8_BASE, 8);
pl061_gpio_register(GPIO9_BASE, 9);
pl061_gpio_register(GPIO10_BASE, 10);
pl061_gpio_register(GPIO11_BASE, 11);
pl061_gpio_register(GPIO12_BASE, 12);
pl061_gpio_register(GPIO13_BASE, 13);
pl061_gpio_register(GPIO14_BASE, 14);
pl061_gpio_register(GPIO15_BASE, 15);
pl061_gpio_register(GPIO16_BASE, 16);
pl061_gpio_register(GPIO17_BASE, 17);
pl061_gpio_register(GPIO18_BASE, 18);
pl061_gpio_register(GPIO19_BASE, 19);
/* Power on indicator LED (USER_LED1). */
gpio_set_direction(32, GPIO_DIR_OUT); /* LED1 */
gpio_set_value(32, GPIO_LEVEL_HIGH);
gpio_set_direction(33, GPIO_DIR_OUT); /* LED2 */
gpio_set_value(33, GPIO_LEVEL_LOW);
gpio_set_direction(34, GPIO_DIR_OUT); /* LED3 */
gpio_set_direction(35, GPIO_DIR_OUT); /* LED4 */
}
static void hikey_pmussi_init(void)
{
uint32_t data;
/* Initialize PWR_HOLD GPIO */
gpio_set_direction(0, GPIO_DIR_OUT);
gpio_set_value(0, GPIO_LEVEL_LOW);
/*
* After reset, PMUSSI stays in reset mode.
* Now make it out of reset.
*/
mmio_write_32(AO_SC_PERIPH_RSTDIS4,
AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N);
do {
data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
} while (data & AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N);
/* Set PMUSSI clock latency for read operation. */
data = mmio_read_32(AO_SC_MCU_SUBSYS_CTRL3);
data &= ~AO_SC_MCU_SUBSYS_CTRL3_RCLK_MASK;
data |= AO_SC_MCU_SUBSYS_CTRL3_RCLK_3;
mmio_write_32(AO_SC_MCU_SUBSYS_CTRL3, data);
/* enable PMUSSI clock */
data = AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_CCPU |
AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_MCU;
mmio_write_32(AO_SC_PERIPH_CLKEN5, data);
data = AO_SC_PERIPH_CLKEN4_PCLK_PMUSSI;
mmio_write_32(AO_SC_PERIPH_CLKEN4, data);
gpio_set_value(0, GPIO_LEVEL_HIGH);
}
static void hikey_hi6553_init(void)
{
uint8_t data;
mmio_write_8(HI6553_PERI_EN_MARK, 0x1e);
mmio_write_8(HI6553_NP_REG_ADJ1, 0);
data = DISABLE6_XO_CLK_CONN | DISABLE6_XO_CLK_NFC |
DISABLE6_XO_CLK_RF1 | DISABLE6_XO_CLK_RF2;
mmio_write_8(HI6553_DISABLE6_XO_CLK, data);
/* configure BUCK0 & BUCK1 */
mmio_write_8(HI6553_BUCK01_CTRL2, 0x5e);
mmio_write_8(HI6553_BUCK0_CTRL7, 0x10);
mmio_write_8(HI6553_BUCK1_CTRL7, 0x10);
mmio_write_8(HI6553_BUCK0_CTRL5, 0x1e);
mmio_write_8(HI6553_BUCK1_CTRL5, 0x1e);
mmio_write_8(HI6553_BUCK0_CTRL1, 0xfc);
mmio_write_8(HI6553_BUCK1_CTRL1, 0xfc);
/* configure BUCK2 */
mmio_write_8(HI6553_BUCK2_REG1, 0x4f);
mmio_write_8(HI6553_BUCK2_REG5, 0x99);
mmio_write_8(HI6553_BUCK2_REG6, 0x45);
mdelay(1);
mmio_write_8(HI6553_VSET_BUCK2_ADJ, 0x22);
mdelay(1);
/* configure BUCK3 */
mmio_write_8(HI6553_BUCK3_REG3, 0x02);
mmio_write_8(HI6553_BUCK3_REG5, 0x99);
mmio_write_8(HI6553_BUCK3_REG6, 0x41);
mmio_write_8(HI6553_VSET_BUCK3_ADJ, 0x02);
mdelay(1);
/* configure BUCK4 */
mmio_write_8(HI6553_BUCK4_REG2, 0x9a);
mmio_write_8(HI6553_BUCK4_REG5, 0x99);
mmio_write_8(HI6553_BUCK4_REG6, 0x45);
/* configure LDO20 */
mmio_write_8(HI6553_LDO20_REG_ADJ, 0x50);
mmio_write_8(HI6553_NP_REG_CHG, 0x0f);
mmio_write_8(HI6553_CLK_TOP0, 0x06);
mmio_write_8(HI6553_CLK_TOP3, 0xc0);
mmio_write_8(HI6553_CLK_TOP4, 0x00);
/* configure LDO7 & LDO10 for SD slot */
/* enable LDO7 */
data = mmio_read_8(HI6553_LDO7_REG_ADJ);
data = (data & 0xf8) | 0x2;
mmio_write_8(HI6553_LDO7_REG_ADJ, data);
mdelay(5);
mmio_write_8(HI6553_ENABLE2_LDO1_8, 1 << 6);
mdelay(5);
/* enable LDO10 */
data = mmio_read_8(HI6553_LDO10_REG_ADJ);
data = (data & 0xf8) | 0x5;
mmio_write_8(HI6553_LDO10_REG_ADJ, data);
mdelay(5);
mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 1);
mdelay(5);
/* enable LDO15 */
data = mmio_read_8(HI6553_LDO15_REG_ADJ);
data = (data & 0xf8) | 0x4;
mmio_write_8(HI6553_LDO15_REG_ADJ, data);
mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 6);
mdelay(5);
/* enable LDO19 */
data = mmio_read_8(HI6553_LDO19_REG_ADJ);
data |= 0x7;
mmio_write_8(HI6553_LDO19_REG_ADJ, data);
mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 2);
mdelay(5);
/* enable LDO21 */
data = mmio_read_8(HI6553_LDO21_REG_ADJ);
data = (data & 0xf8) | 0x3;
mmio_write_8(HI6553_LDO21_REG_ADJ, data);
mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 4);
mdelay(5);
/* enable LDO22 */
data = mmio_read_8(HI6553_LDO22_REG_ADJ);
data = (data & 0xf8) | 0x7;
mmio_write_8(HI6553_LDO22_REG_ADJ, data);
mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 5);
mdelay(5);
/* select 32.764KHz */
mmio_write_8(HI6553_CLK19M2_600_586_EN, 0x01);
}
static void init_mmc0_pll(void)
{
unsigned int data;
/* select SYSPLL as the source of MMC0 */
/* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */
mmio_write_32(PERI_SC_CLK_SEL0, 1 << 5 | 1 << 21);
do {
data = mmio_read_32(PERI_SC_CLK_SEL0);
} while (!(data & (1 << 5)));
/* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */
mmio_write_32(PERI_SC_CLK_SEL0, 1 << 29);
do {
data = mmio_read_32(PERI_SC_CLK_SEL0);
} while (data & (1 << 13));
mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 0));
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (!(data & (1 << 0)));
data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
data |= 1 << 1;
mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
do {
mmio_write_32(PERI_SC_CLKCFG8BIT1, (1 << 7) | 0xb);
data = mmio_read_32(PERI_SC_CLKCFG8BIT1);
} while ((data & 0xb) != 0xb);
}
static void reset_mmc0_clk(void)
{
unsigned int data;
/* disable mmc0 bus clock */
mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC0);
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (data & PERI_CLK0_MMC0);
/* enable mmc0 bus clock */
mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC0);
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (!(data & PERI_CLK0_MMC0));
/* reset mmc0 clock domain */
mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC0);
/* bypass mmc0 clock phase */
data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
data |= 3;
mmio_write_32(PERI_SC_PERIPH_CTRL2, data);
/* disable low power */
data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
data |= 1 << 3;
mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
do {
data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
} while (!(data & PERI_RST0_MMC0));
/* unreset mmc0 clock domain */
mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC0);
do {
data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
} while (data & PERI_RST0_MMC0);
}
static void init_media_clk(void)
{
unsigned int data, value;
data = mmio_read_32(PMCTRL_MEDPLLCTRL);
data |= 1;
mmio_write_32(PMCTRL_MEDPLLCTRL, data);
for (;;) {
data = mmio_read_32(PMCTRL_MEDPLLCTRL);
value = 1 << 28;
if ((data & value) == value)
break;
}
data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
data = 1 << 10;
mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
}
static void init_mmc1_pll(void)
{
uint32_t data;
/* select SYSPLL as the source of MMC1 */
/* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */
mmio_write_32(PERI_SC_CLK_SEL0, 1 << 11 | 1 << 27);
do {
data = mmio_read_32(PERI_SC_CLK_SEL0);
} while (!(data & (1 << 11)));
/* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */
mmio_write_32(PERI_SC_CLK_SEL0, 1 << 30);
do {
data = mmio_read_32(PERI_SC_CLK_SEL0);
} while (data & (1 << 14));
mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 1));
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (!(data & (1 << 1)));
data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
data |= 1 << 2;
mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
do {
/* 1.2GHz / 50 = 24MHz */
mmio_write_32(PERI_SC_CLKCFG8BIT2, 0x31 | (1 << 7));
data = mmio_read_32(PERI_SC_CLKCFG8BIT2);
} while ((data & 0x31) != 0x31);
}
static void reset_mmc1_clk(void)
{
unsigned int data;
/* disable mmc1 bus clock */
mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC1);
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (data & PERI_CLK0_MMC1);
/* enable mmc1 bus clock */
mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC1);
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (!(data & PERI_CLK0_MMC1));
/* reset mmc1 clock domain */
mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC1);
/* bypass mmc1 clock phase */
data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
data |= 3 << 2;
mmio_write_32(PERI_SC_PERIPH_CTRL2, data);
/* disable low power */
data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
data |= 1 << 4;
mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
do {
data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
} while (!(data & PERI_RST0_MMC1));
/* unreset mmc0 clock domain */
mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC1);
do {
data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
} while (data & PERI_RST0_MMC1);
}
/* Initialize PLL of both eMMC and SD controllers. */
static void hikey_mmc_pll_init(void)
{
init_mmc0_pll();
reset_mmc0_clk();
init_media_clk();
dsb();
init_mmc1_pll();
reset_mmc1_clk();
}
/*
* Function which will perform any remaining platform-specific setup that can
* occur after the MMU and data cache have been enabled.
*/
void bl1_platform_setup(void)
{
dw_mmc_params_t params;
assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) &&
((SRAM_BASE + SRAM_SIZE) >=
(HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE)));
hikey_sp804_init();
hikey_gpio_init();
hikey_pmussi_init();
hikey_hi6553_init();
hikey_mmc_pll_init();
memset(&params, 0, sizeof(dw_mmc_params_t));
params.reg_base = DWMMC0_BASE;
params.desc_base = HIKEY_BL1_MMC_DESC_BASE;
params.desc_size = 1 << 20;
params.clk_rate = 24 * 1000 * 1000;
params.bus_width = EMMC_BUS_WIDTH_8;
params.flags = EMMC_FLAG_CMD23;
dw_mmc_init(&params);
hikey_io_setup();
}
/*
* The following function checks if Firmware update is needed,
* by checking if TOC in FIP image is valid or not.
*/
unsigned int bl1_plat_get_next_image_id(void)
{
int32_t boot_mode;
unsigned int ret;
boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE);
switch (boot_mode) {
case BOOT_NORMAL:
ret = BL2_IMAGE_ID;
break;
case BOOT_USB_DOWNLOAD:
case BOOT_UART_DOWNLOAD:
ret = NS_BL1U_IMAGE_ID;
break;
default:
WARN("Invalid boot mode is found:%d\n", boot_mode);
panic();
}
return ret;
}
image_desc_t *bl1_plat_get_image_desc(unsigned int image_id)
{
unsigned int index = 0;
while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) {
if (bl1_tbbr_image_descs[index].image_id == image_id)
return &bl1_tbbr_image_descs[index];
index++;
}
return NULL;
}
void bl1_plat_set_ep_info(unsigned int image_id,
entry_point_info_t *ep_info)
{
unsigned int data = 0;
if (image_id == BL2_IMAGE_ID)
return;
inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
__asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data));
do {
data |= 3 << 20;
__asm__ volatile ("msr cpacr_el1, %0" : : "r"(data));
__asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data));
} while ((data & (3 << 20)) != (3 << 20));
INFO("cpacr_el1:0x%x\n", data);
ep_info->args.arg0 = 0xffff & read_mpidr();
ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
DISABLE_ALL_EXCEPTIONS);
}