blob: 20dfcb8a8688cb0b88909b1b04b37681bd41a146 [file] [log] [blame]
/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2017 Intel Corporation. All rights reserved.
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <inttypes.h>
#include <ctype.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <glib.h>
#include "src/shared/util.h"
#include "src/shared/shell.h"
#include "mesh/crypto.h"
#include "mesh/gatt.h"
#include "mesh/mesh-net.h"
#include "mesh/util.h"
#include "mesh/keys.h"
#include "mesh/node.h"
#include "mesh/prov-db.h"
#include "mesh/net.h"
struct address_range
{
uint16_t min;
uint16_t max;
};
struct mesh_net {
uint32_t iv_index;
uint32_t seq_num;
uint32_t seq_num_reserved;
uint16_t primary_addr;
uint8_t iv_upd_state;
uint8_t num_elements;
uint8_t default_ttl;
bool iv_update;
bool provisioner;
bool blacklist;
guint iv_update_timeout;
GDBusProxy *proxy_in;
GList *address_pool;
GList *dest; /* List of valid local destinations for Whitelist */
GList *sar_in; /* Incoming segmented messages in progress */
GList *msg_out; /* Pre-Network encoded, might be multi-segment */
GList *pkt_out; /* Fully encoded packets awaiting Tx in order */
net_mesh_session_open_callback open_cb;
};
struct generic_key {
uint16_t idx;
};
struct net_key_parts {
uint8_t nid;
uint8_t enc_key[16];
uint8_t privacy_key[16];
uint8_t net_key[16];
uint8_t beacon_key[16];
uint8_t net_id[8];
};
struct mesh_net_key {
struct generic_key generic;
uint8_t phase;
struct net_key_parts current;
struct net_key_parts new;
};
struct app_key_parts {
uint8_t key[16];
uint8_t akf_aid;
};
struct mesh_app_key {
struct generic_key generic;
uint16_t net_idx;
struct app_key_parts current;
struct app_key_parts new;
};
struct mesh_virt_addr {
uint16_t va16;
uint32_t va32;
uint8_t va128[16];
};
struct mesh_pkt {
uint8_t data[30];
uint8_t len;
};
struct mesh_sar_msg {
guint ack_to;
guint msg_to;
uint32_t iv_index;
uint32_t seqAuth;
uint32_t ack;
uint32_t dst;
uint16_t src;
uint16_t net_idx;
uint16_t len;
uint8_t akf_aid;
uint8_t ttl;
uint8_t segN;
uint8_t activity_cnt;
bool ctl;
bool segmented;
bool szmic;
bool proxy;
uint8_t data[20]; /* Open ended, min 20 */
};
struct mesh_destination {
uint16_t cnt;
uint16_t dst;
};
/* Network Packet Layer based Offsets */
#define AKF_BIT 0x40
#define PKT_IVI(p) !!((p)[0] & 0x80)
#define SET_PKT_IVI(p,v) do {(p)[0] &= 0x7f; \
(p)[0] |= ((v) ? 0x80 : 0);} while(0)
#define PKT_NID(p) ((p)[0] & 0x7f)
#define SET_PKT_NID(p,v) do {(p)[0] &= 0x80; (p)[0] |= (v);} while(0)
#define PKT_CTL(p) (!!((p)[1] & 0x80))
#define SET_PKT_CTL(p,v) do {(p)[1] &= 0x7f; \
(p)[1] |= ((v) ? 0x80 : 0);} while(0)
#define PKT_TTL(p) ((p)[1] & 0x7f)
#define SET_PKT_TTL(p,v) do {(p)[1] &= 0x80; (p)[1] |= (v);} while(0)
#define PKT_SEQ(p) (get_be32((p) + 1) & 0xffffff)
#define SET_PKT_SEQ(p,v) put_be32(((p)[1] << 24) + ((v) & 0xffffff), \
(p) + 1)
#define PKT_SRC(p) get_be16((p) + 5)
#define SET_PKT_SRC(p,v) put_be16(v, (p) + 5)
#define PKT_DST(p) get_be16((p) + 7)
#define SET_PKT_DST(p,v) put_be16(v, (p) + 7)
#define PKT_TRANS(p) ((p) + 9)
#define PKT_TRANS_LEN(l) ((l) - 9)
#define PKT_SEGMENTED(p) (!!((p)[9] & 0x80))
#define SET_PKT_SEGMENTED(p,v) do {(p)[9] &= 0x7f; \
(p)[9] |= ((v) ? 0x80 : 0);} while(0)
#define PKT_AKF_AID(p) ((p)[9] & 0x7f)
#define SET_PKT_AKF_AID(p,v) do {(p)[9] &= 0x80; (p)[9] |= (v);} while(0)
#define PKT_OPCODE(p) ((p)[9] & 0x7f)
#define SET_PKT_OPCODE(p,v) do {(p)[9] &= 0x80; (p)[9] |= (v);} while(0)
#define PKT_OBO(p) (!!((p)[10] & 0x80))
#define PKT_SZMIC(p) (!!(PKT_SEGMENTED(p) ? ((p)[10] & 0x40) : 0))
#define SET_PKT_SZMIC(p,v) do {(p)[10] &= 0x7f; \
(p)[10] |= ((v) ? 0x80 : 0);} while(0)
#define PKT_SEQ0(p) ((get_be16((p) + 10) >> 2) & 0x1fff)
#define SET_PKT_SEQ0(p,v) do {put_be16((get_be16((p) + 10) & 0x8003) \
| (((v) & 0x1fff) << 2), \
(p) + 10);} while(0)
#define SET_PKT_SEGO(p,v) do {put_be16((get_be16( \
(p) + 11) & 0xfc1f) | ((v) << 5), \
(p) + 11);} while(0)
#define SET_PKT_SEGN(p,v) do {(p)[12] = ((p)[12] & 0xe0) | (v);} while(0)
#define PKT_ACK(p) (get_be32((p) + 12))
#define SET_PKT_ACK(p,v) (put_be32((v)(p) + 12))
/* Transport Layer based offsets */
#define TRANS_SEGMENTED(t) (!!((t)[0] & 0x80))
#define SET_TRANS_SEGMENTD(t,v) do {(t)[0] &= 0x7f; \
(t)[0] |= ((v) ? 0x80 : 0);} while(0)
#define TRANS_OPCODE(t) ((t)[0] & 0x7f)
#define SET_TRANS_OPCODE(t,v) do {(t)[0] &= 0x80; (t)[0] |= (v);} while(0)
#define TRANS_AKF_AID(t) ((t)[0] & 0x7f)
#define SET_TRANS_AKF_AID(t,v) do {(t)[0] &= 0xc0; (t)[0] |= (v);} while(0)
#define TRANS_AKF(t) (!!((t)[0] & AKF_BIT))
#define TRANS_SZMIC(t) (!!(TRANS_SEGMENTED(t) ? ((t)[1] & 0x80) : 0))
#define TRANS_SEQ0(t) ((get_be16((t) + 1) >> 2) & 0x1fff)
#define SET_TRANS_SEQ0(t,v) do {put_be16((get_be16((t) + 1) & 0x8003) \
| (((v) & 0x1fff) << 2), \
(t) + 1);} while(0)
#define SET_TRANS_ACK(t,v) put_be32((v), (t) + 3)
#define TRANS_SEGO(t) ((get_be16((t) + 2) >> 5) & 0x1f)
#define TRANS_SEGN(t) ((t)[3] & 0x1f)
#define TRANS_PAYLOAD(t) ((t) + (TRANS_SEGMENTED(t) ? 4 : 1))
#define TRANS_LEN(t,l) ((l) -(TRANS_SEGMENTED(t) ? 4 : 1))
/* Proxy Config Opcodes */
#define FILTER_SETUP 0x00
#define FILTER_ADD 0x01
#define FILTER_DEL 0x02
#define FILTER_STATUS 0x03
/* Proxy Filter Types */
#define WHITELIST_FILTER 0x00
#define BLACKLIST_FILTER 0x01
/* IV Updating states for timing enforcement */
#define IV_UPD_INIT 0
#define IV_UPD_NORMAL 1
#define IV_UPD_UPDATING 2
#define IV_UPD_NORMAL_HOLD 3
#define IV_IDX_DIFF_RANGE 42
static struct mesh_net net;
static GList *virt_addrs = NULL;
static GList *net_keys = NULL;
static GList *app_keys = NULL;
/* Forward static declarations */
static void resend_segs(struct mesh_sar_msg *sar);
static int match_net_id(const void *a, const void *net_id)
{
const struct mesh_net_key *net_key = a;
if (net_key->current.nid != 0xff &&
!memcmp(net_key->current.net_id, net_id, 8))
return 0;
if (net_key->new.nid != 0xff &&
!memcmp(net_key->new.net_id, net_id, 8))
return 0;
return -1;
}
static struct mesh_net_key *find_net_key_by_id(const uint8_t *net_id)
{
GList *l;
l = g_list_find_custom(net_keys, net_id, match_net_id);
if (!l)
return NULL;
return l->data;
}
uint16_t net_validate_proxy_beacon(const uint8_t *proxy_beacon)
{
struct mesh_net_key *net_key = find_net_key_by_id(proxy_beacon);
if (net_key == NULL)
return NET_IDX_INVALID;
return net_key->generic.idx;
}
static int match_sar_dst(const void *a, const void *b)
{
const struct mesh_sar_msg *sar = a;
uint16_t dst = GPOINTER_TO_UINT(b);
return (sar->dst == dst) ? 0 : -1;
}
static struct mesh_sar_msg *find_sar_out_by_dst(uint16_t dst)
{
GList *l;
l = g_list_find_custom(net.msg_out, GUINT_TO_POINTER(dst),
match_sar_dst);
if (!l)
return NULL;
return l->data;
}
static int match_sar_src(const void *a, const void *b)
{
const struct mesh_sar_msg *sar = a;
uint16_t src = GPOINTER_TO_UINT(b);
return (sar->src == src) ? 0 : -1;
}
static struct mesh_sar_msg *find_sar_in_by_src(uint16_t src)
{
GList *l;
l = g_list_find_custom(net.sar_in, GUINT_TO_POINTER(src),
match_sar_src);
if (!l)
return NULL;
return l->data;
}
static int match_key_index(const void *a, const void *b)
{
const struct generic_key *generic = a;
uint16_t index = GPOINTER_TO_UINT(b);
return (generic->idx == index) ? 0 : -1;
}
static bool delete_key(GList **list, uint16_t index)
{
GList *l;
l = g_list_find_custom(*list, GUINT_TO_POINTER(index),
match_key_index);
if (!l)
return false;
*list = g_list_delete_link(*list, l);
return true;
}
static uint8_t *get_key(GList *list, uint16_t index)
{
GList *l;
struct mesh_app_key *app_key;
struct mesh_net_key *net_key;
l = g_list_find_custom(list, GUINT_TO_POINTER(index),
match_key_index);
if (!l) return NULL;
if (list == app_keys) {
app_key = l->data;
/* All App Keys must belong to a valid Net Key */
l = g_list_find_custom(net_keys,
GUINT_TO_POINTER(app_key->net_idx),
match_key_index);
if (!l) return NULL;
net_key = l->data;
if (net_key->phase == 2 && app_key->new.akf_aid != 0xff)
return app_key->new.key;
if (app_key->current.akf_aid != 0xff)
return app_key->current.key;
return NULL;
}
net_key = l->data;
if (net_key->phase == 2 && net_key->new.nid != 0xff)
return net_key->new.net_key;
if (net_key->current.nid != 0xff)
return net_key->current.net_key;
return NULL;
}
bool keys_app_key_add(uint16_t net_idx, uint16_t app_idx, uint8_t *key,
bool update)
{
struct mesh_app_key *app_key = NULL;
uint8_t akf_aid;
GList *l = g_list_find_custom(app_keys, GUINT_TO_POINTER(app_idx),
match_key_index);
if (!mesh_crypto_k4(key, &akf_aid))
return false;
akf_aid |= AKF_BIT;
if (l && update) {
app_key = l->data;
if (app_key->net_idx != net_idx)
return false;
memcpy(app_key->new.key, key, 16);
app_key->new.akf_aid = akf_aid;
} else if (l) {
app_key = l->data;
if (memcmp(app_key->current.key, key, 16) ||
app_key->net_idx != net_idx)
return false;
} else {
app_key = g_new(struct mesh_app_key, 1);
memcpy(app_key->current.key, key, 16);
app_key->net_idx = net_idx;
app_key->generic.idx = app_idx;
app_key->current.akf_aid = akf_aid;
/* Invalidate "New" version */
app_key->new.akf_aid = 0xff;
app_keys = g_list_append(app_keys, app_key);
}
return true;
}
bool keys_net_key_add(uint16_t net_idx, uint8_t *key, bool update)
{
struct mesh_net_key *net_key = NULL;
uint8_t p = 0;
GList *l = g_list_find_custom(net_keys, GUINT_TO_POINTER(net_idx),
match_key_index);
if (l && update) {
bool result;
net_key = l->data;
memcpy(net_key->new.net_key, key, 16);
/* Calculate the many component parts */
result = mesh_crypto_nkbk(key, net_key->new.beacon_key);
if (!result)
return false;
result = mesh_crypto_k3(key, net_key->new.net_id);
if (!result)
return false;
result = mesh_crypto_k2(key, &p, 1,
&net_key->new.nid,
net_key->new.enc_key,
net_key->new.privacy_key);
if (!result)
net_key->new.nid = 0xff;
return result;
} else if (l) {
net_key = l->data;
if (memcmp(net_key->current.net_key, key, 16))
return false;
} else {
bool result;
net_key = g_new(struct mesh_net_key, 1);
memcpy(net_key->current.net_key, key, 16);
net_key->generic.idx = net_idx;
/* Invalidate "New" version */
net_key->new.nid = 0xff;
/* Calculate the many component parts */
result = mesh_crypto_nkbk(key, net_key->current.beacon_key);
if (!result) {
g_free(net_key);
return false;
}
result = mesh_crypto_k3(key, net_key->current.net_id);
if (!result) {
g_free(net_key);
return false;
}
result = mesh_crypto_k2(key, &p, 1,
&net_key->current.nid,
net_key->current.enc_key,
net_key->current.privacy_key);
if (!result) {
g_free(net_key);
return false;
}
net_keys = g_list_append(net_keys, net_key);
}
return true;
}
static struct mesh_app_key *find_app_key_by_idx(uint16_t app_idx)
{
GList *l;
l = g_list_find_custom(app_keys, GUINT_TO_POINTER(app_idx),
match_key_index);
if (!l) return NULL;
return l->data;
}
static struct mesh_net_key *find_net_key_by_idx(uint16_t net_idx)
{
GList *l;
l = g_list_find_custom(net_keys, GUINT_TO_POINTER(net_idx),
match_key_index);
if (!l) return NULL;
return l->data;
}
static int match_virt_dst(const void *a, const void *b)
{
const struct mesh_virt_addr *virt = a;
uint32_t dst = GPOINTER_TO_UINT(b);
if (dst < 0x10000 && dst == virt->va16)
return 0;
if (dst == virt->va32)
return 0;
return -1;
}
static struct mesh_virt_addr *find_virt_by_dst(uint32_t dst)
{
GList *l;
l = g_list_find_custom(virt_addrs, GUINT_TO_POINTER(dst),
match_virt_dst);
if (!l) return NULL;
return l->data;
}
uint8_t *keys_net_key_get(uint16_t net_idx, bool current)
{
GList *l;
l = g_list_find_custom(net_keys, GUINT_TO_POINTER(net_idx),
match_key_index);
if (!l) {
return NULL;
} else {
struct mesh_net_key *key = l->data;
if (current)
return key->current.net_key;
else
return key->new.net_key;
}
}
bool keys_app_key_delete(uint16_t app_idx)
{
/* TODO: remove all associated bindings */
return delete_key(&app_keys, app_idx);
}
bool keys_net_key_delete(uint16_t net_idx)
{
/* TODO: remove all associated app keys and bindings */
return delete_key(&net_keys, net_idx);
}
uint8_t keys_get_kr_phase(uint16_t net_idx)
{
GList *l;
struct mesh_net_key *key;
l = g_list_find_custom(net_keys, GUINT_TO_POINTER(net_idx),
match_key_index);
if (!l)
return KR_PHASE_INVALID;
key = l->data;
return key->phase;
}
bool keys_set_kr_phase(uint16_t index, uint8_t phase)
{
GList *l;
struct mesh_net_key *net_key;
l = g_list_find_custom(net_keys, GUINT_TO_POINTER(index),
match_key_index);
if (!l)
return false;
net_key = l->data;
net_key->phase = phase;
return true;
}
uint16_t keys_app_key_get_bound(uint16_t app_idx)
{
GList *l;
l = g_list_find_custom(app_keys, GUINT_TO_POINTER(app_idx),
match_key_index);
if (!l)
return NET_IDX_INVALID;
else {
struct mesh_app_key *key = l->data;
return key->net_idx;
}
}
uint8_t *keys_app_key_get(uint16_t app_idx, bool current)
{
GList *l;
l = g_list_find_custom(app_keys, GUINT_TO_POINTER(app_idx),
match_key_index);
if (!l) {
return NULL;
} else {
struct mesh_app_key *key = l->data;
if (current)
return key->current.key;
else
return key->new.key;
}
}
void keys_cleanup_all(void)
{
g_list_free_full(app_keys, g_free);
g_list_free_full(net_keys, g_free);
app_keys = net_keys = NULL;
}
bool net_get_key(uint16_t net_idx, uint8_t *key)
{
uint8_t *buf;
buf = get_key(net_keys, net_idx);
if (!buf)
return false;
memcpy(key, buf, 16);
return true;
}
bool net_get_flags(uint16_t net_idx, uint8_t *out_flags)
{
uint8_t phase;
phase = keys_get_kr_phase(net_idx);
if (phase == KR_PHASE_INVALID || !out_flags)
return false;
if (phase != KR_PHASE_NONE)
*out_flags = 0x01;
else
*out_flags = 0x00;
if (net.iv_update)
*out_flags |= 0x02;
return true;
}
uint32_t net_get_iv_index(bool *update)
{
if (update)
*update = net.iv_update;
return net.iv_index;
}
void net_set_iv_index(uint32_t iv_index, bool update)
{
net.iv_index = iv_index;
net.iv_update = update;
}
void set_sequence_number(uint32_t seq_num)
{
net.seq_num = seq_num;
}
uint32_t get_sequence_number(void)
{
return net.seq_num;
}
bool net_add_address_pool(uint16_t min, uint16_t max)
{
uint32_t range;
if (max < min)
return false;
range = min + (max << 16);
net.address_pool = g_list_append(net.address_pool,
GUINT_TO_POINTER(range));
return true;
}
static int match_address_range(const void *a, const void *b)
{
uint32_t range = GPOINTER_TO_UINT(a);
uint8_t num_elements = (uint8_t) (GPOINTER_TO_UINT(b));
uint16_t max = range >> 16;
uint16_t min = range & 0xffff;
return ((max - min) >= (num_elements - 1)) ? 0 : -1;
}
uint16_t net_obtain_address(uint8_t num_eles)
{
uint16_t addr;
GList *l;
l = g_list_find_custom(net.address_pool, GUINT_TO_POINTER(num_eles),
match_address_range);
if (l) {
uint32_t range = GPOINTER_TO_UINT(l->data);
uint16_t max = range >> 16;
uint16_t min = range & 0xffff;
addr = min;
min += num_eles;
if (min > max)
net.address_pool = g_list_delete_link(net.address_pool,
l);
else {
range = min + (max << 16);
l->data = GUINT_TO_POINTER(range);
}
return addr;
}
return UNASSIGNED_ADDRESS;
}
static int range_cmp(const void *a, const void *b)
{
uint32_t range1 = GPOINTER_TO_UINT(a);
uint32_t range2 = GPOINTER_TO_UINT(b);
return range2 - range1;
}
void net_release_address(uint16_t addr, uint8_t num_elements)
{
GList *l;
uint32_t range;
for (l = net.address_pool; l != NULL; l = l->next)
{
uint16_t max;
uint16_t min;
range = GPOINTER_TO_UINT(l->data);
max = range >> 16;
min = range & 0xffff;
if (min == (addr + num_elements + 1))
min = addr;
else if (addr && max == (addr - 1))
max = addr + num_elements + 1;
else
continue;
range = min + (max << 16);
l->data = GUINT_TO_POINTER(range);
return;
}
range = addr + ((addr + num_elements - 1) << 16);
net.address_pool = g_list_insert_sorted(net.address_pool,
GUINT_TO_POINTER(range),
range_cmp);
}
bool net_reserve_address_range(uint16_t base, uint8_t num_elements)
{
GList *l;
uint32_t range;
uint16_t max;
uint16_t min;
bool shrink;
for (l = net.address_pool; l != NULL; l = l->next) {
range = GPOINTER_TO_UINT(l->data);
max = range >> 16;
min = range & 0xffff;
if (base >= min && (base + num_elements - 1) <= max)
break;
}
if (!l)
return false;
net.address_pool = g_list_delete_link(net.address_pool, l);
shrink = false;
if (base == min) {
shrink = true;
min = base + num_elements;
}
if (max == base + num_elements - 1) {
shrink = true;
max -= num_elements;
}
if (min > max)
return true;
if (shrink)
range = min + (max << 16);
else
range = min + ((base - 1) << 16);
net.address_pool = g_list_insert_sorted(net.address_pool,
GUINT_TO_POINTER(range),
range_cmp);
if (shrink)
return true;
range = (base + num_elements) + (max << 16);
net.address_pool = g_list_insert_sorted(net.address_pool,
GUINT_TO_POINTER(range),
range_cmp);
return true;
}
static int match_destination(const void *a, const void *b)
{
const struct mesh_destination *dest = a;
uint16_t dst = GPOINTER_TO_UINT(b);
return (dest->dst == dst) ? 0 : -1;
}
void net_dest_ref(uint16_t dst)
{
struct mesh_destination *dest;
GList *l;
if (!dst) return;
l = g_list_find_custom(net.dest, GUINT_TO_POINTER(dst),
match_destination);
if (l) {
dest = l->data;
dest->cnt++;
return;
}
dest = g_new0(struct mesh_destination, 1);
dest->dst = dst;
dest->cnt++;
net.dest = g_list_append(net.dest, dest);
}
void net_dest_unref(uint16_t dst)
{
struct mesh_destination *dest;
GList *l;
l = g_list_find_custom(net.dest, GUINT_TO_POINTER(dst),
match_destination);
if (!l)
return;
dest = l->data;
dest->cnt--;
if (dest->cnt == 0) {
net.dest = g_list_remove(net.dest, dest);
g_free(dest);
}
}
struct build_whitelist {
uint8_t len;
uint8_t data[12];
};
static void whitefilter_add(gpointer data, gpointer user_data)
{
struct mesh_destination *dest = data;
struct build_whitelist *white = user_data;
if (white->len == 0)
white->data[white->len++] = FILTER_ADD;
put_be16(dest->dst, white->data + white->len);
white->len += 2;
if (white->len > (sizeof(white->data) - sizeof(uint16_t))) {
net_ctl_msg_send(0, 0, 0, white->data, white->len);
white->len = 0;
}
}
static void setup_whitelist()
{
struct build_whitelist white;
white.len = 0;
/* Enable (and Clear) Proxy Whitelist */
white.data[white.len++] = FILTER_SETUP;
white.data[white.len++] = WHITELIST_FILTER;
net_ctl_msg_send(0, 0, 0, white.data, white.len);
white.len = 0;
g_list_foreach(net.dest, whitefilter_add, &white);
if (white.len)
net_ctl_msg_send(0, 0, 0, white.data, white.len);
}
static void beacon_update(bool first, bool iv_update, uint32_t iv_index)
{
/* Enforcement of 96 hour and 192 hour IVU time windows */
if (iv_update && !net.iv_update) {
bt_shell_printf("iv_upd_state = IV_UPD_UPDATING\n");
net.iv_upd_state = IV_UPD_UPDATING;
/* TODO: Start timer to enforce IV Update parameters */
} else if (first) {
if (iv_update)
net.iv_upd_state = IV_UPD_UPDATING;
else
net.iv_upd_state = IV_UPD_NORMAL;
bt_shell_printf("iv_upd_state = IV_UPD_%s\n",
iv_update ? "UPDATING" : "NORMAL");
} else if (iv_update && iv_index != net.iv_index) {
bt_shell_printf("IV Update too soon -- Rejecting\n");
return;
}
if (iv_index > net.iv_index ||
iv_update != net.iv_update) {
/* Don't reset our seq_num unless
* we start using new iv_index */
if (!(iv_update && (net.iv_index + 1 == iv_index))) {
net.seq_num = 0;
net.seq_num_reserved = 100;
}
}
if (!net.seq_num || net.iv_index != iv_index ||
net.iv_update != iv_update) {
if (net.seq_num_reserved <= net.seq_num)
net.seq_num_reserved = net.seq_num + 100;
prov_db_local_set_iv_index(iv_index, iv_update,
net.provisioner);
prov_db_local_set_seq_num(net.seq_num_reserved);
}
net.iv_index = iv_index;
net.iv_update = iv_update;
if (first) {
/* Must be done once per Proxy Connection after Beacon RXed */
setup_whitelist();
if (net.open_cb)
net.open_cb(0);
}
}
static bool process_beacon(uint8_t *data, uint8_t size)
{
struct mesh_net_key *net_key;
struct net_key_parts *key_part;
bool rxed_iv_update, rxed_key_refresh, iv_update;
bool my_krf;
uint32_t rxed_iv_index, iv_index;
uint64_t cmac;
if (size != 22)
return false;
rxed_key_refresh = (data[1] & 0x01) == 0x01;
iv_update = rxed_iv_update = (data[1] & 0x02) == 0x02;
iv_index = rxed_iv_index = get_be32(data + 10);
/* Inhibit recognizing iv_update true-->false
* if we have outbound SAR messages in flight */
if (net.msg_out != NULL) {
if (net.iv_update && !rxed_iv_update)
iv_update = true;
}
/* Don't bother going further if nothing has changed */
if (iv_index == net.iv_index && iv_update == net.iv_update &&
net.iv_upd_state != IV_UPD_INIT)
return true;
/* Find key we are using for SNBs */
net_key = find_net_key_by_id(data + 2);
if (net_key == NULL)
return false;
/* We are Provisioner, and control the key_refresh flag */
if (rxed_key_refresh != !!(net_key->phase == 2))
return false;
if (net_key->phase != 2) {
my_krf = false;
key_part = &net_key->current;
} else {
my_krf = true;
key_part = &net_key->new;
}
/* Ignore for incorrect KR state */
if (memcmp(key_part->net_id, data + 2, 8))
return false;
if ((net.iv_index + IV_IDX_DIFF_RANGE < iv_index) ||
(iv_index < net.iv_index)) {
bt_shell_printf("iv index outside range\n");
return false;
}
/* Any behavioral changes must pass CMAC test */
if (!mesh_crypto_beacon_cmac(key_part->beacon_key, key_part->net_id,
rxed_iv_index, my_krf,
rxed_iv_update, &cmac)) {
return false;
}
if (cmac != get_be64(data + 14))
return false;
if (iv_update && (net.iv_upd_state > IV_UPD_UPDATING)) {
if (iv_index != net.iv_index) {
bt_shell_printf("Update too soon -- Rejecting\n");
}
/* Silently ignore old beacons */
return true;
}
beacon_update(net.iv_upd_state == IV_UPD_INIT, iv_update, iv_index);
return true;
}
struct decode_params {
struct mesh_net_key *net_key;
uint8_t *packet;
uint32_t iv_index;
uint8_t size;
bool proxy;
};
static void try_decode(gpointer data, gpointer user_data)
{
struct mesh_net_key *net_key = data;
struct decode_params *decode = user_data;
uint8_t nid = decode->packet[0] & 0x7f;
uint8_t tmp[29];
bool status = false;
if (decode->net_key)
return;
if (net_key->current.nid == nid)
status = mesh_crypto_packet_decode(decode->packet,
decode->size, decode->proxy, tmp,
decode->iv_index,
net_key->current.enc_key,
net_key->current.privacy_key);
if (!status && net_key->new.nid == nid)
status = mesh_crypto_packet_decode(decode->packet,
decode->size, decode->proxy, tmp,
decode->iv_index,
net_key->new.enc_key,
net_key->new.privacy_key);
if (status) {
decode->net_key = net_key;
memcpy(decode->packet, tmp, decode->size);
return;
}
}
static struct mesh_net_key *net_packet_decode(bool proxy, uint32_t iv_index,
uint8_t *packet, uint8_t size)
{
struct decode_params decode = {
.proxy = proxy,
.iv_index = iv_index,
.packet = packet,
.size = size,
.net_key = NULL,
};
g_list_foreach(net_keys, try_decode, &decode);
return decode.net_key;
}
static void flush_sar(GList **list, struct mesh_sar_msg *sar)
{
*list = g_list_remove(*list, sar);
if (sar->msg_to)
g_source_remove(sar->msg_to);
if (sar->ack_to)
g_source_remove(sar->ack_to);
g_free(sar);
}
static void flush_sar_list(GList **list)
{
struct mesh_sar_msg *sar;
GList *l = g_list_first(*list);
while (l) {
sar = l->data;
flush_sar(list, sar);
l = g_list_first(*list);
}
}
static void flush_pkt_list(GList **list)
{
struct mesh_pkt *pkt;
GList *l = g_list_first(*list);
while (l) {
pkt = l->data;
*list = g_list_remove(*list, pkt);
g_free(pkt);
}
}
static void resend_unacked_segs(gpointer data, gpointer user_data)
{
struct mesh_sar_msg *sar = data;
if (sar->activity_cnt)
resend_segs(sar);
}
static void send_pkt_cmplt(DBusMessage *message, void *user_data)
{
struct mesh_pkt *pkt = user_data;
GList *l = g_list_first(net.pkt_out);
if (l && user_data == l->data) {
net.pkt_out = g_list_delete_link(net.pkt_out, l);
g_free(pkt);
} else {
/* This is a serious error, and probable memory leak */
bt_shell_printf("ERR: send_pkt_cmplt %p not head of queue\n", pkt);
}
l = g_list_first(net.pkt_out);
if (l == NULL) {
/* If queue is newly empty, resend all SAR outbound packets */
g_list_foreach(net.msg_out, resend_unacked_segs, NULL);
return;
}
pkt = l->data;
mesh_gatt_write(net.proxy_in, pkt->data, pkt->len,
send_pkt_cmplt, pkt);
}
static void send_mesh_pkt(struct mesh_pkt *pkt)
{
bool queued = !!(net.pkt_out);
net.pkt_out = g_list_append(net.pkt_out, pkt);
if (queued)
return;
mesh_gatt_write(net.proxy_in, pkt->data, pkt->len,
send_pkt_cmplt, pkt);
}
static uint32_t get_next_seq()
{
uint32_t this_seq = net.seq_num++;
if (net.seq_num + 32 >= net.seq_num_reserved) {
net.seq_num_reserved = net.seq_num + 100;
prov_db_local_set_seq_num(net.seq_num_reserved);
}
return this_seq;
}
static void send_seg(struct mesh_sar_msg *sar, uint8_t seg)
{
struct mesh_net_key *net_key;
struct net_key_parts *part;
struct mesh_pkt *pkt;
uint8_t *data;
net_key = find_net_key_by_idx(sar->net_idx);
if (net_key == NULL)
return;
/* Choose which components to use to secure pkt */
if (net_key->phase == 2 && net_key->new.nid != 0xff)
part = &net_key->new;
else
part = &net_key->current;
pkt = g_new0(struct mesh_pkt, 1);
if (pkt == NULL)
return;
/* leave extra byte at start for GATT Proxy type */
data = pkt->data + 1;
SET_PKT_NID(data, part->nid);
SET_PKT_IVI(data, sar->iv_index & 1);
SET_PKT_CTL(data, sar->ctl);
SET_PKT_TTL(data, sar->ttl);
SET_PKT_SEQ(data, get_next_seq());
SET_PKT_SRC(data, sar->src);
SET_PKT_DST(data, sar->dst);
SET_PKT_SEGMENTED(data, sar->segmented);
if (sar->ctl)
SET_PKT_OPCODE(data, sar->data[0]);
else
SET_PKT_AKF_AID(data, sar->akf_aid);
if (sar->segmented) {
if (!sar->ctl)
SET_PKT_SZMIC(data, sar->szmic);
SET_PKT_SEQ0(data, sar->seqAuth);
SET_PKT_SEGO(data, seg);
SET_PKT_SEGN(data, sar->segN);
memcpy(PKT_TRANS(data) + 4,
sar->data + sar->ctl + (seg * 12), 12);
pkt->len = 9 + 4;
if (sar->segN == seg)
pkt->len += (sar->len - sar->ctl) % 12;
if (pkt->len == (9 + 4))
pkt->len += 12;
} else {
memcpy(PKT_TRANS(data) + 1,
sar->data + sar->ctl, 15);
pkt->len = 9 + 1 + sar->len - sar->ctl;
}
pkt->len += (sar->ctl ? 8 : 4);
mesh_crypto_packet_encode(data, pkt->len,
part->enc_key,
sar->iv_index,
part->privacy_key);
/* Prepend GATT_Proxy packet type */
if (sar->proxy)
pkt->data[0] = PROXY_CONFIG_PDU;
else
pkt->data[0] = PROXY_NETWORK_PDU;
pkt->len++;
send_mesh_pkt(pkt);
}
static void resend_segs(struct mesh_sar_msg *sar)
{
uint32_t ack = 1;
uint8_t i;
sar->activity_cnt = 0;
for (i = 0; i <= sar->segN; i++, ack <<= 1) {
if (!(ack & sar->ack))
send_seg(sar, i);
}
}
static bool ack_rxed(bool to, uint16_t src, uint16_t dst, bool obo,
uint16_t seq0, uint32_t ack_flags)
{
struct mesh_sar_msg *sar = find_sar_out_by_dst(src);
uint32_t full_ack;
/* Silently ignore unknown (stale?) ACKs */
if (sar == NULL)
return true;
full_ack = 0xffffffff >> (31 - sar->segN);
sar->ack |= (ack_flags & full_ack);
if (sar->ack == full_ack) {
/* Outbound message 100% received by remote node */
flush_sar(&net.msg_out, sar);
return true;
}
/* Because we are GATT, and slow, only resend PKTs if it is
* time *and* our outbound PKT queue is empty. */
sar->activity_cnt++;
if (net.pkt_out == NULL)
resend_segs(sar);
return true;
}
static bool proxy_ctl_rxed(uint16_t net_idx, uint32_t iv_index,
uint8_t ttl, uint32_t seq_num, uint16_t src, uint16_t dst,
uint8_t *trans, uint16_t len)
{
if (len < 1)
return false;
switch(trans[0]) {
case FILTER_STATUS:
if (len != 4)
return false;
net.blacklist = !!(trans[1] == BLACKLIST_FILTER);
bt_shell_printf("Proxy %slist filter length: %d\n",
net.blacklist ? "Black" : "White",
get_be16(trans + 2));
return true;
default:
return false;
}
return false;
}
static bool ctl_rxed(uint16_t net_idx, uint32_t iv_index,
uint8_t ttl, uint32_t seq_num, uint16_t src, uint16_t dst,
uint8_t *trans, uint16_t len)
{
/* TODO: Handle control messages */
/* Per Mesh Profile 3.6.5.10 */
if (trans[0] == NET_OP_HEARTBEAT) {
uint16_t feat = get_be16(trans + 2);
bt_shell_printf("HEARTBEAT src: %4.4x dst: %4.4x \
TTL: %2.2x feat: %s%s%s%s\n",
src, dst, trans[1],
(feat & MESH_FEATURE_RELAY) ? "relay " : "",
(feat & MESH_FEATURE_PROXY) ? "proxy " : "",
(feat & MESH_FEATURE_FRIEND) ? "friend " : "",
(feat & MESH_FEATURE_LPN) ? "lpn" : "");
return true;
}
bt_shell_printf("unrecognized control message src:%4.4x dst:%4.4x len:%d\n",
src, dst, len);
print_byte_array("msg: ", trans, len);
return false;
}
struct decrypt_params {
uint8_t *nonce;
uint8_t *aad;
uint8_t *out_msg;
uint8_t *trans;
uint32_t iv_index;
uint32_t seq_num;
uint16_t src;
uint16_t dst;
uint16_t len;
uint16_t net_idx;
uint16_t app_idx;
uint8_t akf_aid;
bool szmic;
};
static void try_decrypt(gpointer data, gpointer user_data)
{
struct mesh_app_key *app_key = data;
struct decrypt_params *decrypt = user_data;
size_t mic_size = decrypt->szmic ? sizeof(uint64_t) : sizeof(uint32_t);
bool status = false;
/* Already done... Nothing to do */
if (decrypt->app_idx != APP_IDX_INVALID)
return;
/* Don't decrypt on Appkeys not owned by this NetKey */
if (app_key->net_idx != decrypt->net_idx)
return;
/* Test and decrypt against current key copy */
if (app_key->current.akf_aid == decrypt->akf_aid)
status = mesh_crypto_aes_ccm_decrypt(decrypt->nonce,
app_key->current.key,
decrypt->aad, decrypt->aad ? 16 : 0,
decrypt->trans, decrypt->len,
decrypt->out_msg, NULL, mic_size);
/* Test and decrypt against new key copy */
if (!status && app_key->new.akf_aid == decrypt->akf_aid)
status = mesh_crypto_aes_ccm_decrypt(decrypt->nonce,
app_key->new.key,
decrypt->aad, decrypt->aad ? 16 : 0,
decrypt->trans, decrypt->len,
decrypt->out_msg, NULL, mic_size);
/* If successful, terminate with successful App IDX */
if (status)
decrypt->app_idx = app_key->generic.idx;
}
static uint16_t access_pkt_decrypt(uint8_t *nonce, uint8_t *aad,
uint16_t net_idx, uint8_t akf_aid, bool szmic,
uint8_t *trans, uint16_t len)
{
uint8_t *out_msg;
struct decrypt_params decrypt = {
.nonce = nonce,
.aad = aad,
.net_idx = net_idx,
.akf_aid = akf_aid,
.szmic = szmic,
.trans = trans,
.len = len,
.app_idx = APP_IDX_INVALID,
};
out_msg = g_malloc(len);
if (out_msg == NULL)
return false;
decrypt.out_msg = out_msg;
g_list_foreach(app_keys, try_decrypt, &decrypt);
if (decrypt.app_idx != APP_IDX_INVALID)
memcpy(trans, out_msg, len);
g_free(out_msg);
return decrypt.app_idx;
}
static bool access_rxed(uint8_t *nonce, uint16_t net_idx,
uint32_t iv_index, uint32_t seq_num,
uint16_t src, uint16_t dst,
uint8_t akf_aid, bool szmic, uint8_t *trans, uint16_t len)
{
uint16_t app_idx = access_pkt_decrypt(nonce, NULL,
net_idx, akf_aid, szmic, trans, len);
if (app_idx != APP_IDX_INVALID) {
len -= szmic ? sizeof(uint64_t) : sizeof(uint32_t);
node_local_data_handler(src, dst, iv_index, seq_num,
app_idx, trans, len);
return true;
}
return false;
}
static void try_virt_decrypt(gpointer data, gpointer user_data)
{
struct mesh_virt_addr *virt = data;
struct decrypt_params *decrypt = user_data;
if (decrypt->app_idx != APP_IDX_INVALID || decrypt->dst != virt->va16)
return;
decrypt->app_idx = access_pkt_decrypt(decrypt->nonce,
virt->va128,
decrypt->net_idx, decrypt->akf_aid,
decrypt->szmic, decrypt->trans, decrypt->len);
if (decrypt->app_idx != APP_IDX_INVALID) {
uint16_t len = decrypt->len;
len -= decrypt->szmic ? sizeof(uint64_t) : sizeof(uint32_t);
node_local_data_handler(decrypt->src, virt->va32,
decrypt->iv_index, decrypt->seq_num,
decrypt->app_idx, decrypt->trans, len);
}
}
static bool virtual_rxed(uint8_t *nonce, uint16_t net_idx,
uint32_t iv_index, uint32_t seq_num,
uint16_t src, uint16_t dst,
uint8_t akf_aid, bool szmic, uint8_t *trans, uint16_t len)
{
struct decrypt_params decrypt = {
.nonce = nonce,
.net_idx = net_idx,
.iv_index = iv_index,
.seq_num = seq_num,
.src = dst,
.dst = dst,
.akf_aid = akf_aid,
.szmic = szmic,
.trans = trans,
.len = len,
.app_idx = APP_IDX_INVALID,
};
/* Cycle through known virtual addresses */
g_list_foreach(virt_addrs, try_virt_decrypt, &decrypt);
if (decrypt.app_idx != APP_IDX_INVALID)
return true;
return false;
}
static bool msg_rxed(uint16_t net_idx, uint32_t iv_index, bool szmic,
uint8_t ttl, uint32_t seq_num, uint32_t seq_auth,
uint16_t src, uint16_t dst,
uint8_t *trans, uint16_t len)
{
uint8_t akf_aid = TRANS_AKF_AID(trans);
bool result;
size_t mic_size = szmic ? sizeof(uint64_t) : sizeof(uint32_t);
uint8_t nonce[13];
uint8_t *dev_key;
uint8_t *out = NULL;
if (!TRANS_AKF(trans)) {
/* Compose Nonce */
result = mesh_crypto_device_nonce(seq_auth, src, dst,
iv_index, szmic, nonce);
if (!result) return false;
out = g_malloc0(TRANS_LEN(trans, len));
if (out == NULL) return false;
/* If we are provisioner, we probably RXed on remote Dev Key */
if (net.provisioner) {
dev_key = node_get_device_key(node_find_by_addr(src));
if (dev_key == NULL)
goto local_dev_key;
} else
goto local_dev_key;
result = mesh_crypto_aes_ccm_decrypt(nonce, dev_key,
NULL, 0,
TRANS_PAYLOAD(trans), TRANS_LEN(trans, len),
out, NULL, mic_size);
if (result) {
node_local_data_handler(src, dst,
iv_index, seq_num, APP_IDX_DEV,
out, TRANS_LEN(trans, len) - mic_size);
goto done;
}
local_dev_key:
/* Always fallback to the local Dev Key */
dev_key = node_get_device_key(node_get_local_node());
if (dev_key == NULL)
goto done;
result = mesh_crypto_aes_ccm_decrypt(nonce, dev_key,
NULL, 0,
TRANS_PAYLOAD(trans), TRANS_LEN(trans, len),
out, NULL, mic_size);
if (result) {
node_local_data_handler(src, dst,
iv_index, seq_num, APP_IDX_DEV,
out, TRANS_LEN(trans, len) - mic_size);
goto done;
}
goto done;
}
result = mesh_crypto_application_nonce(seq_auth, src, dst,
iv_index, szmic, nonce);
if (!result) goto done;
/* If Virtual destination wrap the Access decoder with Virtual */
if (IS_VIRTUAL(dst)) {
result = virtual_rxed(nonce, net_idx, iv_index, seq_num,
src, dst, akf_aid, szmic,
TRANS_PAYLOAD(trans), TRANS_LEN(trans, len));
goto done;
}
/* Try all matching App Keys until success or exhaustion */
result = access_rxed(nonce, net_idx, iv_index, seq_num,
src, dst, akf_aid, szmic,
TRANS_PAYLOAD(trans), TRANS_LEN(trans, len));
done:
if (out != NULL)
g_free(out);
return result;
}
static void send_sar_ack(struct mesh_sar_msg *sar)
{
uint8_t ack[7];
sar->activity_cnt = 0;
memset(ack, 0, sizeof(ack));
SET_TRANS_OPCODE(ack, NET_OP_SEG_ACKNOWLEDGE);
SET_TRANS_SEQ0(ack, sar->seqAuth);
SET_TRANS_ACK(ack, sar->ack);
net_ctl_msg_send(0xff, sar->dst, sar->src, ack, sizeof(ack));
}
static gboolean sar_out_ack_timeout(void *user_data)
{
struct mesh_sar_msg *sar = user_data;
sar->activity_cnt++;
/* Because we are GATT, and slow, only resend PKTs if it is
* time *and* our outbound PKT queue is empty. */
if (net.pkt_out == NULL)
resend_segs(sar);
/* Only add resent SAR pkts to empty queue */
return true;
}
static gboolean sar_out_msg_timeout(void *user_data)
{
struct mesh_sar_msg *sar = user_data;
/* msg_to will expire when we return false */
sar->msg_to = 0;
flush_sar(&net.msg_out, sar);
return false;
}
static gboolean sar_in_ack_timeout(void *user_data)
{
struct mesh_sar_msg *sar = user_data;
uint32_t full_ack = 0xffffffff >> (31 - sar->segN);
if (sar->activity_cnt || sar->ack != full_ack)
send_sar_ack(sar);
return true;
}
static gboolean sar_in_msg_timeout(void *user_data)
{
struct mesh_sar_msg *sar = user_data;
/* msg_to will expire when we return false */
sar->msg_to = 0;
flush_sar(&net.sar_in, sar);
return false;
}
static uint32_t calc_seqAuth(uint32_t seq_num, uint8_t *trans)
{
uint32_t seqAuth = seq_num & ~0x1fff;
seqAuth |= TRANS_SEQ0(trans);
return seqAuth;
}
static bool seg_rxed(uint16_t net_idx, uint32_t iv_index, bool ctl,
uint8_t ttl, uint32_t seq_num, uint16_t src, uint16_t dst,
uint8_t *trans, uint16_t len)
{
struct mesh_sar_msg *sar;
uint32_t seqAuth = calc_seqAuth(seq_num, trans);
uint8_t segN, segO;
uint32_t old_ack, full_ack, last_ack_mask;
bool send_ack, result = false;
segN = TRANS_SEGN(trans);
segO = TRANS_SEGO(trans);
/* Only support single incoming SAR'd message per SRC */
sar = find_sar_in_by_src(src);
/* Reuse existing SAR structure if appropriate */
if (sar) {
uint64_t iv_seqAuth = (uint64_t)iv_index << 32 | seqAuth;
uint64_t old_iv_seqAuth = (uint64_t)sar->iv_index << 32 |
sar->seqAuth;
if (old_iv_seqAuth < iv_seqAuth) {
flush_sar(&net.sar_in, sar);
sar = NULL;
} else if (old_iv_seqAuth > iv_seqAuth) {
/* New segment is Stale. Silently ignore */
return false;
} else if (segN != sar->segN) {
/* Remote side sent conflicting data: abandon */
flush_sar(&net.sar_in, sar);
sar = NULL;
}
}
if (sar == NULL) {
sar = g_malloc0(sizeof(*sar) + (12 * segN));
if (sar == NULL)
return false;
sar->net_idx = net_idx;
sar->iv_index = iv_index;
sar->ctl = ctl;
sar->ttl = ttl;
sar->seqAuth = seqAuth;
sar->src = src;
sar->dst = dst;
sar->segmented = true;
sar->szmic = TRANS_SZMIC(trans);
sar->segN = segN;
/* In all cases, the reassembled packet should begin with the
* same first octet of all segments, minus the SEGMENTED flag */
sar->data[0] = trans[0] & 0x7f;
net.sar_in = g_list_append(net.sar_in, sar);
/* Setup expiration timers */
if (IS_UNICAST(dst))
sar->ack_to = g_timeout_add(5000,
sar_in_ack_timeout, sar);
sar->msg_to = g_timeout_add(60000, sar_in_msg_timeout, sar);
}
/* If last segment, calculate full msg size */
if (segN == segO)
sar->len = (segN * 12) + len - 3;
/* Copy to correct offset */
memcpy(sar->data + 1 + (12 * segO), trans + 4, 12);
full_ack = 0xffffffff >> (31 - segN);
last_ack_mask = 0xffffffff << segO;
old_ack = sar->ack;
sar->ack |= 1 << segO;
send_ack = false;
/* Determine if we should forward message */
if (sar->ack == full_ack && old_ack != full_ack) {
/* First time we have seen this complete message */
send_ack = true;
if (ctl)
result = ctl_rxed(sar->net_idx, sar->iv_index,
sar->ttl, sar->seqAuth, sar->src,
sar->dst, sar->data, sar->len);
else
result = msg_rxed(sar->net_idx, sar->iv_index,
sar->szmic, sar->ttl,
seq_num, sar->seqAuth, sar->src,
sar->dst, sar->data, sar->len);
}
/* Never Ack Group addressed SAR messages */
if (!IS_UNICAST(dst))
return result;
/* Tickle the ACK system so it knows we are still RXing segments */
sar->activity_cnt++;
/* Determine if we should ACK */
if (old_ack == sar->ack)
/* Let the timer generate repeat ACKs as needed */
send_ack = false;
else if ((last_ack_mask & sar->ack) == (last_ack_mask & full_ack))
/* If this was largest segO outstanding segment, we ACK */
send_ack = true;
if (send_ack)
send_sar_ack(sar);
return result;
}
bool net_data_ready(uint8_t *msg, uint8_t len)
{
uint8_t type = *msg++;
uint32_t iv_index = net.iv_index;
struct mesh_net_key *net_key;
if (len-- < 10) return false;
if (type == PROXY_MESH_BEACON)
return process_beacon(msg, len);
else if (type > PROXY_CONFIG_PDU)
return false;
/* RXed iv_index must be equal or 1 less than local iv_index */
/* With the clue being high-order bit of first octet */
if (!!(iv_index & 0x01) != !!(msg[0] & 0x80)) {
if (iv_index)
iv_index--;
else
return false;
}
net_key = net_packet_decode(type == PROXY_CONFIG_PDU,
iv_index, msg, len);
if (net_key == NULL)
return false;
/* CTL packets have 64 bit network MIC, otherwise 32 bit MIC */
len -= PKT_CTL(msg) ? sizeof(uint64_t) : sizeof(uint32_t);
if (type == PROXY_CONFIG_PDU) {
/* Proxy Configuration DST messages must be 0x0000 */
if (PKT_DST(msg))
return false;
return proxy_ctl_rxed(net_key->generic.idx,
iv_index, PKT_TTL(msg), PKT_SEQ(msg),
PKT_SRC(msg), PKT_DST(msg),
PKT_TRANS(msg), PKT_TRANS_LEN(len));
} if (PKT_CTL(msg) && PKT_OPCODE(msg) == NET_OP_SEG_ACKNOWLEDGE) {
return ack_rxed(false, PKT_SRC(msg), PKT_DST(msg),
PKT_OBO(msg), PKT_SEQ0(msg), PKT_ACK(msg));
} else if (PKT_SEGMENTED(msg)) {
return seg_rxed(net_key->generic.idx, iv_index, PKT_CTL(msg),
PKT_TTL(msg), PKT_SEQ(msg),
PKT_SRC(msg), PKT_DST(msg),
PKT_TRANS(msg), PKT_TRANS_LEN(len));
} else if (!PKT_CTL(msg)){
return msg_rxed(net_key->generic.idx,
iv_index, false, PKT_TTL(msg), PKT_SEQ(msg),
PKT_SEQ(msg), PKT_SRC(msg), PKT_DST(msg),
PKT_TRANS(msg), PKT_TRANS_LEN(len));
} else {
return ctl_rxed(net_key->generic.idx,
iv_index, PKT_TTL(msg), PKT_SEQ(msg),
PKT_SRC(msg), PKT_DST(msg),
PKT_TRANS(msg), PKT_TRANS_LEN(len));
}
return false;
}
bool net_session_open(GDBusProxy *data_in, bool provisioner,
net_mesh_session_open_callback cb)
{
if (net.proxy_in)
return false;
net.proxy_in = data_in;
net.iv_upd_state = IV_UPD_INIT;
net.blacklist = false;
net.provisioner = provisioner;
net.open_cb = cb;
flush_pkt_list(&net.pkt_out);
return true;
}
void net_session_close(GDBusProxy *data_in)
{
if (net.proxy_in == data_in)
net.proxy_in = NULL;
flush_sar_list(&net.sar_in);
flush_sar_list(&net.msg_out);
flush_pkt_list(&net.pkt_out);
}
bool net_register_unicast(uint16_t unicast, uint8_t count)
{
/* TODO */
return true;
}
bool net_register_group(uint16_t group_addr)
{
/* TODO */
return true;
}
uint32_t net_register_virtual(uint8_t buf[16])
{
/* TODO */
return 0;
}
static bool get_enc_keys(uint16_t app_idx, uint16_t dst,
uint8_t *akf_aid, uint8_t **app_enc_key,
uint16_t *net_idx)
{
if (app_idx == APP_IDX_DEV) {
struct mesh_node *node;
uint8_t *enc_key = NULL;
if (net.provisioner) {
/* Default to Remote Device Key when Provisioner */
node = node_find_by_addr(dst);
enc_key = node_get_device_key(node);
}
if (enc_key == NULL) {
/* Use Local node Device Key */
node = node_get_local_node();
enc_key = node_get_device_key(node);
}
if (enc_key == NULL || node == NULL)
return false;
if (akf_aid) *akf_aid = 0;
if (app_enc_key) *app_enc_key = enc_key;
if (net_idx) *net_idx = node_get_primary_net_idx(node);
} else {
struct mesh_app_key *app_key = find_app_key_by_idx(app_idx);
struct mesh_net_key *net_key;
bool phase_two;
if (app_key == NULL)
return false;
net_key = find_net_key_by_idx(app_key->net_idx);
if (net_key == NULL)
return false;
if (net_idx) *net_idx = app_key->net_idx;
phase_two = !!(net_key->phase == 2);
if (phase_two && app_key->new.akf_aid != 0xff) {
if (app_enc_key) *app_enc_key = app_key->new.key;
if (akf_aid) *akf_aid = app_key->new.akf_aid;
} else {
if (app_enc_key) *app_enc_key = app_key->current.key;
if (akf_aid) *akf_aid = app_key->current.akf_aid;
}
}
return true;
}
bool net_ctl_msg_send(uint8_t ttl, uint16_t src, uint16_t dst,
uint8_t *buf, uint16_t len)
{
struct mesh_node *node = node_get_local_node();
struct mesh_sar_msg sar_ctl;
/* For simplicity, we will reject segmented OB CTL messages */
if (len > 12 || node == NULL || buf == NULL || buf[0] & 0x80)
return false;
if (!src) {
src = node_get_primary(node);
if (!src)
return false;
}
if (ttl == 0xff)
ttl = net.default_ttl;
memset(&sar_ctl, 0, sizeof(sar_ctl));
if (!dst)
sar_ctl.proxy = true;
/* Get the default net_idx for remote device (or local) */
get_enc_keys(APP_IDX_DEV, dst, NULL, NULL, &sar_ctl.net_idx);
sar_ctl.ctl = true;
sar_ctl.iv_index = net.iv_index - net.iv_update;
sar_ctl.ttl = ttl;
sar_ctl.src = src;
sar_ctl.dst = dst;
sar_ctl.len = len;
memcpy(sar_ctl.data, buf, len);
send_seg(&sar_ctl, 0);
return true;
}
bool net_access_layer_send(uint8_t ttl, uint16_t src, uint32_t dst,
uint16_t app_idx, uint8_t *buf, uint16_t len)
{
struct mesh_node *node = node_get_local_node();
struct mesh_sar_msg *sar;
uint8_t *app_enc_key = NULL;
uint8_t *aad = NULL;
uint32_t mic32;
uint8_t aad_len = 0;
uint8_t i, j, ackless_retries = 0;
uint8_t segN, akf_aid;
uint16_t net_idx;
bool result;
if (len > 384 || node == NULL)
return false;
if (!src)
src = node_get_primary(node);
if (!src || !dst)
return false;
if (ttl == 0xff)
ttl = net.default_ttl;
if (IS_VIRTUAL(dst)) {
struct mesh_virt_addr *virt = find_virt_by_dst(dst);
if (virt == NULL)
return false;
dst = virt->va16;
aad = virt->va128;
aad_len = sizeof(virt->va128);
}
result = get_enc_keys(app_idx, dst,
&akf_aid, &app_enc_key, &net_idx);
if (!result)
return false;
segN = SEG_MAX(len + sizeof(mic32));
/* Only one ACK required SAR message per destination at a time */
if (segN && IS_UNICAST(dst)) {
sar = find_sar_out_by_dst(dst);
if (sar)
flush_sar(&net.msg_out, sar);
}
sar = g_malloc0(sizeof(struct mesh_sar_msg) + (segN * 12));
if (sar == NULL)
return false;
if (segN)
sar->segmented = true;
sar->ttl = ttl;
sar->segN = segN;
sar->seqAuth = net.seq_num;
sar->iv_index = net.iv_index - net.iv_update;
sar->net_idx = net_idx;
sar->src = src;
sar->dst = dst;
sar->akf_aid = akf_aid;
sar->len = len + sizeof(uint32_t);
mesh_crypto_application_encrypt(akf_aid,
sar->seqAuth, src,
dst, sar->iv_index,
app_enc_key,
aad, aad_len,
buf, len,
sar->data, &mic32,
sizeof(uint32_t));
/* If sending as a segmented message to a non-Unicast (thus non-ACKing)
* destination, send each segments multiple times. */
if (!IS_UNICAST(dst) && segN)
ackless_retries = 4;
for (j = 0; j <= ackless_retries; j++) {
for (i = 0; i <= segN; i++)
send_seg(sar, i);
}
if (IS_UNICAST(dst) && segN) {
net.msg_out = g_list_append(net.msg_out, sar);
sar->ack_to = g_timeout_add(2000, sar_out_ack_timeout, sar);
sar->msg_to = g_timeout_add(60000, sar_out_msg_timeout, sar);
} else
g_free(sar);
return true;
}
bool net_set_default_ttl(uint8_t ttl)
{
if (ttl > 0x7f)
return false;
net.default_ttl = ttl;
return true;
}
uint8_t net_get_default_ttl()
{
return net.default_ttl;
}
bool net_set_seq_num(uint32_t seq_num)
{
if (seq_num > 0xffffff)
return false;
net.seq_num = seq_num;
return true;
}
uint32_t net_get_seq_num()
{
return net.seq_num;
}